process-gpt-agent-sdk 0.3.17__tar.gz → 0.3.19__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of process-gpt-agent-sdk might be problematic. Click here for more details.
- {process_gpt_agent_sdk-0.3.17 → process_gpt_agent_sdk-0.3.19}/PKG-INFO +1 -1
- {process_gpt_agent_sdk-0.3.17 → process_gpt_agent_sdk-0.3.19}/process_gpt_agent_sdk.egg-info/PKG-INFO +1 -1
- process_gpt_agent_sdk-0.3.19/processgpt_agent_sdk/__init__.py +43 -0
- {process_gpt_agent_sdk-0.3.17 → process_gpt_agent_sdk-0.3.19}/processgpt_agent_sdk/database.py +169 -45
- {process_gpt_agent_sdk-0.3.17 → process_gpt_agent_sdk-0.3.19}/processgpt_agent_sdk/processgpt_agent_framework.py +111 -55
- process_gpt_agent_sdk-0.3.19/processgpt_agent_sdk/utils.py +190 -0
- {process_gpt_agent_sdk-0.3.17 → process_gpt_agent_sdk-0.3.19}/pyproject.toml +1 -1
- process_gpt_agent_sdk-0.3.17/processgpt_agent_sdk/__init__.py +0 -25
- process_gpt_agent_sdk-0.3.17/processgpt_agent_sdk/utils.py +0 -100
- {process_gpt_agent_sdk-0.3.17 → process_gpt_agent_sdk-0.3.19}/README.md +0 -0
- {process_gpt_agent_sdk-0.3.17 → process_gpt_agent_sdk-0.3.19}/process_gpt_agent_sdk.egg-info/SOURCES.txt +0 -0
- {process_gpt_agent_sdk-0.3.17 → process_gpt_agent_sdk-0.3.19}/process_gpt_agent_sdk.egg-info/dependency_links.txt +0 -0
- {process_gpt_agent_sdk-0.3.17 → process_gpt_agent_sdk-0.3.19}/process_gpt_agent_sdk.egg-info/requires.txt +0 -0
- {process_gpt_agent_sdk-0.3.17 → process_gpt_agent_sdk-0.3.19}/process_gpt_agent_sdk.egg-info/top_level.txt +0 -0
- {process_gpt_agent_sdk-0.3.17 → process_gpt_agent_sdk-0.3.19}/setup.cfg +0 -0
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
from .processgpt_agent_framework import (
|
|
2
|
+
ProcessGPTAgentServer,
|
|
3
|
+
ProcessGPTRequestContext,
|
|
4
|
+
ProcessGPTEventQueue,
|
|
5
|
+
ContextPreparationError,
|
|
6
|
+
)
|
|
7
|
+
from .database import (
|
|
8
|
+
initialize_db,
|
|
9
|
+
get_consumer_id,
|
|
10
|
+
polling_pending_todos,
|
|
11
|
+
record_event,
|
|
12
|
+
record_events_bulk,
|
|
13
|
+
save_task_result,
|
|
14
|
+
update_task_error,
|
|
15
|
+
fetch_form_def,
|
|
16
|
+
fetch_users_grouped,
|
|
17
|
+
fetch_email_users_by_proc_inst_id,
|
|
18
|
+
fetch_tenant_mcp,
|
|
19
|
+
)
|
|
20
|
+
from .utils import (
|
|
21
|
+
summarize_error_to_user,
|
|
22
|
+
summarize_feedback,
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
__all__ = [
|
|
26
|
+
"ProcessGPTAgentServer",
|
|
27
|
+
"ProcessGPTRequestContext",
|
|
28
|
+
"ProcessGPTEventQueue",
|
|
29
|
+
"ContextPreparationError",
|
|
30
|
+
"initialize_db",
|
|
31
|
+
"get_consumer_id",
|
|
32
|
+
"polling_pending_todos",
|
|
33
|
+
"record_event",
|
|
34
|
+
"record_events_bulk",
|
|
35
|
+
"save_task_result",
|
|
36
|
+
"update_task_error",
|
|
37
|
+
"fetch_form_def",
|
|
38
|
+
"fetch_users_grouped",
|
|
39
|
+
"fetch_email_users_by_proc_inst_id",
|
|
40
|
+
"fetch_tenant_mcp",
|
|
41
|
+
"summarize_error_to_user",
|
|
42
|
+
"summarize_feedback",
|
|
43
|
+
]
|
{process_gpt_agent_sdk-0.3.17 → process_gpt_agent_sdk-0.3.19}/processgpt_agent_sdk/database.py
RENAMED
|
@@ -130,51 +130,27 @@ async def polling_pending_todos(agent_orch: str, consumer: str) -> Optional[Dict
|
|
|
130
130
|
).execute()
|
|
131
131
|
|
|
132
132
|
rows = resp.data or []
|
|
133
|
-
|
|
133
|
+
if not rows:
|
|
134
|
+
return None
|
|
135
|
+
|
|
136
|
+
row = rows[0]
|
|
137
|
+
# 빈 값들을 NULL로 변환
|
|
138
|
+
if row.get("feedback") in ([], {}):
|
|
139
|
+
row["feedback"] = None
|
|
140
|
+
if row.get("output") in ([], {}):
|
|
141
|
+
row["output"] = None
|
|
142
|
+
if row.get("draft") in ([], {}):
|
|
143
|
+
row["draft"] = None
|
|
144
|
+
|
|
145
|
+
return row
|
|
134
146
|
|
|
135
147
|
return await _async_retry(_call, name="polling_pending_todos", fallback=lambda: None)
|
|
136
148
|
|
|
137
|
-
# ------------------------------ Context Bundle ------------------------------
|
|
138
|
-
async def fetch_context_bundle(
|
|
139
|
-
proc_inst_id: str,
|
|
140
|
-
tenant_id: str,
|
|
141
|
-
tool_val: str,
|
|
142
|
-
user_ids: str,
|
|
143
|
-
) -> Tuple[str, Optional[Dict[str, Any]], Tuple[Optional[str], List[Dict[str, Any]], Optional[str]], List[Dict[str, Any]]]:
|
|
144
|
-
def _call():
|
|
145
|
-
client = get_db_client()
|
|
146
|
-
resp = client.rpc(
|
|
147
|
-
"fetch_context_bundle",
|
|
148
|
-
{
|
|
149
|
-
"p_proc_inst_id": proc_inst_id or "",
|
|
150
|
-
"p_tenant_id": tenant_id or "",
|
|
151
|
-
"p_tool": tool_val or "",
|
|
152
|
-
"p_user_ids": user_ids or "",
|
|
153
|
-
},
|
|
154
|
-
).execute()
|
|
155
|
-
rows = resp.data or []
|
|
156
|
-
row = rows[0] if rows else {}
|
|
157
|
-
notify = (row.get("notify_emails") or "").strip()
|
|
158
|
-
mcp = row.get("tenant_mcp") or None
|
|
159
|
-
form_id = row.get("form_id")
|
|
160
|
-
form_fields = row.get("form_fields") or [{"key": form_id, "type": "default", "text": ""}]
|
|
161
|
-
form_html = row.get("form_html")
|
|
162
|
-
agents = row.get("agents") or []
|
|
163
|
-
return notify, mcp, (form_id, form_fields, form_html), agents
|
|
164
|
-
|
|
165
|
-
try:
|
|
166
|
-
return await _async_retry(_call, name="fetch_context_bundle", fallback=lambda: ("", None, (None, [], None), []))
|
|
167
|
-
except Exception as e:
|
|
168
|
-
logger.error("fetch_context_bundle fatal: %s", str(e), exc_info=e)
|
|
169
|
-
return ("", None, (None, [], None), [])
|
|
170
149
|
|
|
171
150
|
# ------------------------------ Events & Results ------------------------------
|
|
172
151
|
async def record_events_bulk(payloads: List[Dict[str, Any]]) -> None:
|
|
173
|
-
"""
|
|
174
|
-
|
|
175
|
-
- 성공: 'record_events_bulk ok'
|
|
176
|
-
- 실패(최종): '❌ record_events_bulk failed' (개수 포함)
|
|
177
|
-
"""
|
|
152
|
+
"""이벤트 다건 저장 함수"""
|
|
153
|
+
|
|
178
154
|
if not payloads:
|
|
179
155
|
return
|
|
180
156
|
|
|
@@ -196,12 +172,8 @@ async def record_events_bulk(payloads: List[Dict[str, Any]]) -> None:
|
|
|
196
172
|
logger.info("record_events_bulk ok: count=%d", len(safe_list))
|
|
197
173
|
|
|
198
174
|
async def record_event(payload: Dict[str, Any]) -> None:
|
|
199
|
-
"""
|
|
200
|
-
|
|
201
|
-
- 성공: 'record_event ok'
|
|
202
|
-
- 실패(최종): '❌ record_event failed'
|
|
203
|
-
- 실패해도 워크플로우는 계속(요청사항)
|
|
204
|
-
"""
|
|
175
|
+
"""단건 이벤트 저장 함수"""
|
|
176
|
+
|
|
205
177
|
if not payload:
|
|
206
178
|
return
|
|
207
179
|
|
|
@@ -219,6 +191,8 @@ async def record_event(payload: Dict[str, Any]) -> None:
|
|
|
219
191
|
logger.info("record_event ok: event_type=%s", payload.get("event_type"))
|
|
220
192
|
|
|
221
193
|
async def save_task_result(todo_id: str, result: Any, final: bool = False) -> None:
|
|
194
|
+
"""결과 저장 함수"""
|
|
195
|
+
|
|
222
196
|
if not todo_id:
|
|
223
197
|
logger.error("save_task_result invalid todo_id: %s", str(todo_id))
|
|
224
198
|
return
|
|
@@ -245,6 +219,8 @@ async def save_task_result(todo_id: str, result: Any, final: bool = False) -> No
|
|
|
245
219
|
|
|
246
220
|
# ------------------------------ Failure Status ------------------------------
|
|
247
221
|
async def update_task_error(todo_id: str) -> None:
|
|
222
|
+
"""작업 실패 상태 업데이트 함수"""
|
|
223
|
+
|
|
248
224
|
if not todo_id:
|
|
249
225
|
return
|
|
250
226
|
|
|
@@ -257,3 +233,151 @@ async def update_task_error(todo_id: str) -> None:
|
|
|
257
233
|
logger.error("❌ update_task_error failed todo_id=%s", todo_id)
|
|
258
234
|
else:
|
|
259
235
|
logger.info("update_task_error ok todo_id=%s", todo_id)
|
|
236
|
+
|
|
237
|
+
# ============================== Prepare Context ==============================
|
|
238
|
+
|
|
239
|
+
from typing import Any, Dict, List, Optional, Tuple
|
|
240
|
+
|
|
241
|
+
async def fetch_form_def(tool_val: str, tenant_id: str) -> Tuple[str, List[Dict[str, Any]], Optional[str]]:
|
|
242
|
+
"""폼 정의 조회 함수"""
|
|
243
|
+
form_id = (tool_val or "").replace("formHandler:", "", 1)
|
|
244
|
+
|
|
245
|
+
def _call():
|
|
246
|
+
client = get_db_client()
|
|
247
|
+
resp = (
|
|
248
|
+
client.table("form_def")
|
|
249
|
+
.select("fields_json, html")
|
|
250
|
+
.eq("id", form_id)
|
|
251
|
+
.eq("tenant_id", tenant_id or "")
|
|
252
|
+
.execute()
|
|
253
|
+
)
|
|
254
|
+
data = (resp.data or [])
|
|
255
|
+
if not data:
|
|
256
|
+
return None
|
|
257
|
+
|
|
258
|
+
row = data[0]
|
|
259
|
+
return {
|
|
260
|
+
"fields": row.get("fields_json"),
|
|
261
|
+
"html": row.get("html"),
|
|
262
|
+
}
|
|
263
|
+
|
|
264
|
+
try:
|
|
265
|
+
res = await _async_retry(_call, name="fetch_form_def")
|
|
266
|
+
except Exception as e:
|
|
267
|
+
logger.error("fetch_form_def fatal: %s", str(e), exc_info=e)
|
|
268
|
+
res = None
|
|
269
|
+
|
|
270
|
+
if not res or not res.get("fields"):
|
|
271
|
+
# 기본(자유형식) 폼
|
|
272
|
+
return (
|
|
273
|
+
form_id or "freeform",
|
|
274
|
+
[{"key": "freeform", "type": "textarea", "text": "자유형식 입력", "placeholder": "원하는 내용을 자유롭게 입력해주세요."}],
|
|
275
|
+
None,
|
|
276
|
+
)
|
|
277
|
+
return (form_id or "freeform", res["fields"], res.get("html"))
|
|
278
|
+
|
|
279
|
+
|
|
280
|
+
async def fetch_users_grouped(user_ids: List[str]) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
|
|
281
|
+
"""해당 todo에서 사용자 목록과 에이전트 목록 조회하는는 함수"""
|
|
282
|
+
ids = [u for u in (user_ids or []) if u]
|
|
283
|
+
if not ids:
|
|
284
|
+
return ([], [])
|
|
285
|
+
|
|
286
|
+
def _call():
|
|
287
|
+
client = get_db_client()
|
|
288
|
+
resp = (
|
|
289
|
+
client.table("users")
|
|
290
|
+
.select("*")
|
|
291
|
+
.in_("id", ids)
|
|
292
|
+
.execute()
|
|
293
|
+
)
|
|
294
|
+
rows = resp.data or []
|
|
295
|
+
return rows
|
|
296
|
+
|
|
297
|
+
try:
|
|
298
|
+
rows = await _async_retry(_call, name="fetch_users_grouped", fallback=lambda: [])
|
|
299
|
+
except Exception as e:
|
|
300
|
+
logger.error("fetch_users_grouped fatal: %s", str(e), exc_info=e)
|
|
301
|
+
rows = []
|
|
302
|
+
|
|
303
|
+
agents, users = [], []
|
|
304
|
+
for r in rows:
|
|
305
|
+
if r.get("is_agent") is True:
|
|
306
|
+
agents.append(r)
|
|
307
|
+
else:
|
|
308
|
+
users.append(r)
|
|
309
|
+
return (agents, users)
|
|
310
|
+
|
|
311
|
+
async def fetch_email_users_by_proc_inst_id(proc_inst_id: str) -> str:
|
|
312
|
+
"""proc_inst_id로 이메일 수집(사람만): todolist → users(in) 한 번에"""
|
|
313
|
+
if not proc_inst_id:
|
|
314
|
+
return ""
|
|
315
|
+
|
|
316
|
+
def _call():
|
|
317
|
+
client = get_db_client()
|
|
318
|
+
# 3-1) 해당 인스턴스의 user_id 수집(중복 제거)
|
|
319
|
+
tl = (
|
|
320
|
+
client.table("todolist")
|
|
321
|
+
.select("user_id")
|
|
322
|
+
.eq("proc_inst_id", proc_inst_id)
|
|
323
|
+
.execute()
|
|
324
|
+
)
|
|
325
|
+
ids_set = set()
|
|
326
|
+
for row in (tl.data or []):
|
|
327
|
+
uid_csv = (row.get("user_id") or "").strip()
|
|
328
|
+
if not uid_csv:
|
|
329
|
+
continue
|
|
330
|
+
# user_id는 문자열 CSV라고 전제
|
|
331
|
+
for uid in uid_csv.split(","):
|
|
332
|
+
u = uid.strip()
|
|
333
|
+
if u:
|
|
334
|
+
ids_set.add(u)
|
|
335
|
+
if not ids_set:
|
|
336
|
+
return []
|
|
337
|
+
|
|
338
|
+
# 3-2) 한 번의 IN 조회로 사람만 이메일 추출
|
|
339
|
+
ur = (
|
|
340
|
+
client.table("users")
|
|
341
|
+
.select("id, email, is_agent")
|
|
342
|
+
.in_("id", list(ids_set))
|
|
343
|
+
.eq("is_agent", False)
|
|
344
|
+
.execute()
|
|
345
|
+
)
|
|
346
|
+
emails = []
|
|
347
|
+
for u in (ur.data or []):
|
|
348
|
+
email = (u.get("email") or "").strip()
|
|
349
|
+
if email:
|
|
350
|
+
emails.append(email)
|
|
351
|
+
# 중복 제거 및 정렬(보기 좋게)
|
|
352
|
+
return sorted(set(emails))
|
|
353
|
+
|
|
354
|
+
try:
|
|
355
|
+
emails = await _async_retry(_call, name="fetch_email_users_by_proc_inst_id", fallback=lambda: [])
|
|
356
|
+
except Exception as e:
|
|
357
|
+
logger.error("fetch_email_users_by_proc_inst_id fatal: %s", str(e), exc_info=e)
|
|
358
|
+
emails = []
|
|
359
|
+
|
|
360
|
+
return ",".join(emails) if emails else ""
|
|
361
|
+
|
|
362
|
+
async def fetch_tenant_mcp(tenant_id: str) -> Optional[Dict[str, Any]]:
|
|
363
|
+
"""mcp 설정 조회 함수"""
|
|
364
|
+
if not tenant_id:
|
|
365
|
+
return None
|
|
366
|
+
|
|
367
|
+
def _call():
|
|
368
|
+
client = get_db_client()
|
|
369
|
+
return (
|
|
370
|
+
client.table("tenants")
|
|
371
|
+
.select("mcp")
|
|
372
|
+
.eq("id", tenant_id)
|
|
373
|
+
.single()
|
|
374
|
+
.execute()
|
|
375
|
+
)
|
|
376
|
+
|
|
377
|
+
try:
|
|
378
|
+
resp = await _async_retry(_call, name="fetch_tenant_mcp", fallback=lambda: None)
|
|
379
|
+
except Exception as e:
|
|
380
|
+
logger.error("fetch_tenant_mcp fatal: %s", str(e), exc_info=e)
|
|
381
|
+
return None
|
|
382
|
+
|
|
383
|
+
return resp.data.get("mcp") if resp and getattr(resp, "data", None) else None
|
|
@@ -17,13 +17,16 @@ from .database import (
|
|
|
17
17
|
initialize_db,
|
|
18
18
|
polling_pending_todos,
|
|
19
19
|
record_events_bulk,
|
|
20
|
-
record_event,
|
|
20
|
+
record_event,
|
|
21
21
|
save_task_result,
|
|
22
22
|
update_task_error,
|
|
23
23
|
get_consumer_id,
|
|
24
|
-
|
|
24
|
+
fetch_form_def,
|
|
25
|
+
fetch_users_grouped,
|
|
26
|
+
fetch_email_users_by_proc_inst_id,
|
|
27
|
+
fetch_tenant_mcp,
|
|
25
28
|
)
|
|
26
|
-
from .utils import summarize_error_to_user
|
|
29
|
+
from .utils import summarize_error_to_user, summarize_feedback
|
|
27
30
|
|
|
28
31
|
load_dotenv()
|
|
29
32
|
logging.basicConfig(level=logging.INFO)
|
|
@@ -93,64 +96,116 @@ class TodoListRowContext:
|
|
|
93
96
|
class ProcessGPTRequestContext(RequestContext):
|
|
94
97
|
def __init__(self, row: Dict[str, Any]):
|
|
95
98
|
self.row = row
|
|
96
|
-
self._user_input = (row.get("
|
|
99
|
+
self._user_input = (row.get("query") or "").strip()
|
|
97
100
|
self._message = self._user_input
|
|
98
101
|
self._current_task = None
|
|
99
102
|
self._task_state = row.get("draft_status") or ""
|
|
100
103
|
self._extra_context: Dict[str, Any] = {}
|
|
101
104
|
|
|
102
105
|
async def prepare_context(self) -> None:
|
|
103
|
-
"""
|
|
104
|
-
|
|
105
|
-
- 실패 시: 더 이상 진행하지 않고 ContextPreparationError를 발생시켜
|
|
106
|
-
상위 경계에서 FAILED 처리(이벤트 기록 포함)를 단일 경로로 수행.
|
|
107
|
-
"""
|
|
108
|
-
logger.info("\n🔧 컨텍스트 준비 시작...")
|
|
109
|
-
|
|
110
|
-
# 1단계: 기본 정보 추출
|
|
106
|
+
"""익스큐터를 위한 컨텍스트 준비를 합니다."""
|
|
107
|
+
|
|
111
108
|
effective_proc_inst_id = self.row.get("root_proc_inst_id") or self.row.get("proc_inst_id")
|
|
112
109
|
tool_val = self.row.get("tool") or ""
|
|
113
110
|
tenant_id = self.row.get("tenant_id") or ""
|
|
114
111
|
user_ids = self.row.get("user_id") or ""
|
|
115
|
-
|
|
116
|
-
logger.info("📋 기본 정보 추출 완료 - proc_inst_id: %s, tool: %s, tenant: %s",
|
|
117
|
-
effective_proc_inst_id, tool_val, tenant_id)
|
|
118
112
|
|
|
119
113
|
try:
|
|
120
|
-
#
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
114
|
+
# 데이터베이스 조회
|
|
115
|
+
user_id_list = [u.strip() for u in (user_ids or '').split(',') if u.strip()]
|
|
116
|
+
notify_task = fetch_email_users_by_proc_inst_id(effective_proc_inst_id)
|
|
117
|
+
mcp_task = fetch_tenant_mcp(tenant_id)
|
|
118
|
+
form_task = fetch_form_def(tool_val, tenant_id)
|
|
119
|
+
users_task = fetch_users_grouped(user_id_list)
|
|
120
|
+
|
|
121
|
+
notify_emails, tenant_mcp, form_tuple, users_group = await asyncio.gather(
|
|
122
|
+
notify_task, mcp_task, form_task, users_task
|
|
124
123
|
)
|
|
125
124
|
form_id, form_fields, form_html = form_tuple
|
|
125
|
+
agents, users = users_group
|
|
126
|
+
|
|
127
|
+
logger.info("\n\n🔍 [데이터베이스 조회 결과]")
|
|
128
|
+
logger.info("-" * 60)
|
|
129
|
+
|
|
130
|
+
# Users 정보
|
|
131
|
+
if users:
|
|
132
|
+
user_info = []
|
|
133
|
+
for u in users[:5]:
|
|
134
|
+
name = u.get("name", u.get("user_name", "Unknown"))
|
|
135
|
+
email = u.get("email", "")
|
|
136
|
+
user_info.append(f"{name}({email})" if email else name)
|
|
137
|
+
logger.info("• Users (%d명): %s%s", len(users), ", ".join(user_info), "..." if len(users) > 5 else "")
|
|
138
|
+
else:
|
|
139
|
+
logger.info("• Users: 없음")
|
|
140
|
+
|
|
141
|
+
# Agents 정보
|
|
142
|
+
if agents:
|
|
143
|
+
agent_info = []
|
|
144
|
+
for a in agents[:5]:
|
|
145
|
+
name = a.get("name", a.get("agent_name", "Unknown"))
|
|
146
|
+
tools = a.get("tools", [])
|
|
147
|
+
tool_names = [t.get("name", str(t)) for t in tools[:3]] if tools else []
|
|
148
|
+
tool_str = f"[{', '.join(tool_names)}]" if tool_names else ""
|
|
149
|
+
agent_info.append(f"{name}{tool_str}")
|
|
150
|
+
logger.info("• Agents (%d개): %s%s", len(agents), ", ".join(agent_info), "..." if len(agents) > 5 else "")
|
|
151
|
+
else:
|
|
152
|
+
logger.info("• Agents: 없음")
|
|
153
|
+
|
|
154
|
+
# Form 정보
|
|
155
|
+
if form_fields:
|
|
156
|
+
pretty_json = json.dumps(form_fields, ensure_ascii=False, separators=(',', ':'))
|
|
157
|
+
logger.info("• Form: %s (%d개 필드) - %s", form_id, len(form_fields), pretty_json)
|
|
158
|
+
else:
|
|
159
|
+
logger.info("• Form: %s (필드 없음)", form_id)
|
|
126
160
|
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
161
|
+
# Notify 정보
|
|
162
|
+
if notify_emails:
|
|
163
|
+
email_list = notify_emails.split(',') if ',' in notify_emails else [notify_emails]
|
|
164
|
+
logger.info("• Notify (%d개): %s", len(email_list),
|
|
165
|
+
", ".join(email_list[:3]) + ("..." if len(email_list) > 3 else ""))
|
|
166
|
+
else:
|
|
167
|
+
logger.info("• Notify: 없음")
|
|
168
|
+
|
|
169
|
+
# MCP 정보 - 상세 표시
|
|
170
|
+
if tenant_mcp:
|
|
171
|
+
logger.info("• %s 테넌트에 연결된 MCP 설정 정보가 존재합니다.", tenant_id)
|
|
172
|
+
else:
|
|
173
|
+
logger.info("• %s 테넌트에 연결된 MCP 설정 정보가 존재하지 않습니다.", tenant_id)
|
|
174
|
+
|
|
175
|
+
# 피드백 처리
|
|
176
|
+
feedback_data = self.row.get("feedback")
|
|
177
|
+
content_data = self.row.get("output") or self.row.get("draft")
|
|
178
|
+
summarized_feedback = ""
|
|
179
|
+
if feedback_data:
|
|
180
|
+
logger.info("\n\n📝 [피드백 처리]")
|
|
181
|
+
logger.info("-" * 60)
|
|
182
|
+
logger.info("• %d자 → AI 요약 중...", len(feedback_data))
|
|
183
|
+
summarized_feedback = await summarize_feedback(feedback_data, content_data)
|
|
184
|
+
logger.info("• 요약 완료: %d자", len(summarized_feedback))
|
|
185
|
+
|
|
186
|
+
# 컨텍스트 구성
|
|
187
|
+
self._extra_context = {
|
|
188
|
+
"id": self.row.get("id"),
|
|
189
|
+
"proc_inst_id": effective_proc_inst_id,
|
|
190
|
+
"root_proc_inst_id": self.row.get("root_proc_inst_id"),
|
|
191
|
+
"activity_name": self.row.get("activity_name"),
|
|
192
|
+
"agents": agents,
|
|
193
|
+
"users": users,
|
|
194
|
+
"tenant_mcp": tenant_mcp,
|
|
195
|
+
"form_fields": form_fields,
|
|
196
|
+
"form_html": form_html,
|
|
197
|
+
"form_id": form_id,
|
|
198
|
+
"notify_user_emails": notify_emails,
|
|
199
|
+
"summarized_feedback": summarized_feedback,
|
|
200
|
+
}
|
|
201
|
+
|
|
202
|
+
logger.info("\n\n🎉 [컨텍스트 준비 완료] 모든 데이터 준비됨")
|
|
203
|
+
logger.info("-"*60)
|
|
130
204
|
|
|
131
205
|
except Exception as e:
|
|
132
|
-
logger.error("❌
|
|
133
|
-
# 사용자 친화 요약은 상위 경계에서 한 번만 기록하도록 넘김
|
|
206
|
+
logger.error("❌ [데이터 조회 실패] %s", str(e))
|
|
134
207
|
raise ContextPreparationError(e)
|
|
135
208
|
|
|
136
|
-
# 3단계: 컨텍스트 구성
|
|
137
|
-
logger.info("🏗️ 컨텍스트 구성 중...")
|
|
138
|
-
self._extra_context = {
|
|
139
|
-
"id": self.row.get("id"),
|
|
140
|
-
"proc_inst_id": effective_proc_inst_id,
|
|
141
|
-
"root_proc_inst_id": self.row.get("root_proc_inst_id"),
|
|
142
|
-
"activity_name": self.row.get("activity_name"),
|
|
143
|
-
"agents": agents,
|
|
144
|
-
"tenant_mcp": tenant_mcp,
|
|
145
|
-
"form_fields": form_fields,
|
|
146
|
-
"form_html": form_html,
|
|
147
|
-
"form_id": form_id,
|
|
148
|
-
"notify_user_emails": notify_emails,
|
|
149
|
-
}
|
|
150
|
-
|
|
151
|
-
logger.info("✅ 컨텍스트 준비 완료! (agents=%d개)",
|
|
152
|
-
len(agents) if isinstance(agents, list) else 0)
|
|
153
|
-
|
|
154
209
|
def get_user_input(self) -> str:
|
|
155
210
|
return self._user_input
|
|
156
211
|
|
|
@@ -336,11 +391,18 @@ class ProcessGPTAgentServer:
|
|
|
336
391
|
|
|
337
392
|
while self.is_running and not self._shutdown_event.is_set():
|
|
338
393
|
try:
|
|
339
|
-
logger.info("
|
|
394
|
+
logger.info("\n\n" + "-"*80)
|
|
395
|
+
logger.info("🔍 [폴링 시작] 작업 대기 중... (agent_orch=%s)", self.agent_orch)
|
|
396
|
+
logger.info("-"*80)
|
|
397
|
+
|
|
340
398
|
row = await polling_pending_todos(self.agent_orch, get_consumer_id())
|
|
341
399
|
|
|
342
400
|
if row:
|
|
343
|
-
logger.info("
|
|
401
|
+
logger.info("\n\n" + "-"*80)
|
|
402
|
+
logger.info("✅ [새 작업 발견] Task ID: %s", row.get("id"))
|
|
403
|
+
logger.info("• Activity: %s | Tool: %s | Tenant: %s",
|
|
404
|
+
row.get("activity_name"), row.get("tool"), row.get("tenant_id"))
|
|
405
|
+
logger.info("-"*80)
|
|
344
406
|
try:
|
|
345
407
|
self._current_todo_id = str(row.get("id"))
|
|
346
408
|
await self.process_todolist_item(row)
|
|
@@ -380,29 +442,23 @@ class ProcessGPTAgentServer:
|
|
|
380
442
|
4) 예외 재전달(상위 루프는 죽지 않고 다음 폴링)
|
|
381
443
|
"""
|
|
382
444
|
task_id = row.get("id")
|
|
383
|
-
logger.info("\n🎯 작업 처리 시작
|
|
384
|
-
logger.info("📝 작업 정보 - proc_inst_id: %s, activity: %s, tool: %s",
|
|
385
|
-
row.get("proc_inst_id"), row.get("activity_name"), row.get("tool"))
|
|
445
|
+
logger.info("\n🎯 [작업 처리 시작] Task ID: %s", task_id)
|
|
386
446
|
|
|
387
447
|
friendly_text: Optional[str] = None
|
|
388
448
|
|
|
389
449
|
try:
|
|
390
450
|
# 1) 컨텍스트 준비 (실패 시 ContextPreparationError로 올라옴)
|
|
391
|
-
logger.info("🔧 컨텍스트 준비 단계 시작...")
|
|
392
451
|
context = ProcessGPTRequestContext(row)
|
|
393
452
|
await context.prepare_context()
|
|
394
|
-
logger.info("✅ 컨텍스트 준비 완료")
|
|
395
453
|
|
|
396
454
|
# 2) 실행
|
|
397
|
-
logger.info("🤖
|
|
455
|
+
logger.info("\n\n🤖 [Agent Orchestrator 실행]")
|
|
456
|
+
logger.info("-" * 60)
|
|
398
457
|
event_queue = ProcessGPTEventQueue(str(task_id), self.agent_orch, row.get("proc_inst_id"))
|
|
399
458
|
await self.agent_executor.execute(context, event_queue)
|
|
400
|
-
logger.info("✅ 에이전트 실행 완료")
|
|
401
|
-
|
|
402
|
-
# 3) 정상 완료 이벤트
|
|
403
|
-
logger.info("🏁 작업 완료 처리 중...")
|
|
404
459
|
event_queue.task_done()
|
|
405
|
-
logger.info("🎉
|
|
460
|
+
logger.info("\n🎉 [Agent Orchestrator 완료] Task ID: %s", task_id)
|
|
461
|
+
logger.info("-"*60)
|
|
406
462
|
|
|
407
463
|
except Exception as e:
|
|
408
464
|
logger.error("❌ 작업 처리 중 오류 발생: %s", str(e))
|
|
@@ -0,0 +1,190 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import logging
|
|
3
|
+
import traceback
|
|
4
|
+
from typing import Any, Dict, Optional, List
|
|
5
|
+
from typing import Iterable, Union
|
|
6
|
+
from openai import AsyncOpenAI
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
logger = logging.getLogger(__name__)
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
# ─────────────────────────────
|
|
13
|
+
# Lazy Singleton OpenAI Client
|
|
14
|
+
# ─────────────────────────────
|
|
15
|
+
_client: Optional["AsyncOpenAI"] = None # type: ignore[name-defined]
|
|
16
|
+
|
|
17
|
+
def _require_env(name: str, default: Optional[str] = None) -> str:
|
|
18
|
+
v = os.getenv(name, default if default is not None else "")
|
|
19
|
+
if not v:
|
|
20
|
+
raise RuntimeError(f"Missing required environment variable: {name}")
|
|
21
|
+
return v
|
|
22
|
+
|
|
23
|
+
def get_client() -> "AsyncOpenAI": # type: ignore[name-defined]
|
|
24
|
+
global _client
|
|
25
|
+
if _client is not None:
|
|
26
|
+
return _client
|
|
27
|
+
if AsyncOpenAI is None:
|
|
28
|
+
raise RuntimeError("OpenAI SDK (async) is not available")
|
|
29
|
+
base_url = os.getenv("OPENAI_BASE_URL", "https://api.openai.com/v1")
|
|
30
|
+
api_key = _require_env("OPENAI_API_KEY", "")
|
|
31
|
+
_client = AsyncOpenAI(base_url=base_url, api_key=api_key)
|
|
32
|
+
return _client
|
|
33
|
+
|
|
34
|
+
# ─────────────────────────────
|
|
35
|
+
# 공통 LLM 호출 유틸
|
|
36
|
+
# ─────────────────────────────
|
|
37
|
+
async def _llm_request(system: str, user: str, model_env: str, default_model: str) -> str:
|
|
38
|
+
model_name = os.getenv(model_env, default_model)
|
|
39
|
+
logger.info("📡 LLM 요청 전송 (모델: %s)", model_name)
|
|
40
|
+
|
|
41
|
+
client = get_client()
|
|
42
|
+
# responses API (신규)
|
|
43
|
+
resp = await client.responses.create(
|
|
44
|
+
model=model_name,
|
|
45
|
+
input=[
|
|
46
|
+
{"role": "system", "content": system},
|
|
47
|
+
{"role": "user", "content": user},
|
|
48
|
+
],
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
# 다양한 SDK 출력 구조 호환
|
|
52
|
+
text: Optional[str] = None
|
|
53
|
+
try:
|
|
54
|
+
text = getattr(resp, "output_text", None) # 최신 필드
|
|
55
|
+
except Exception:
|
|
56
|
+
text = None
|
|
57
|
+
|
|
58
|
+
if not text and hasattr(resp, "choices") and resp.choices: # 구 구조 호환
|
|
59
|
+
choice0 = resp.choices[0]
|
|
60
|
+
text = getattr(getattr(choice0, "message", None), "content", None)
|
|
61
|
+
|
|
62
|
+
if not text:
|
|
63
|
+
raise RuntimeError("No text in LLM response")
|
|
64
|
+
|
|
65
|
+
return text.strip()
|
|
66
|
+
|
|
67
|
+
# ─────────────────────────────
|
|
68
|
+
# 공개 API
|
|
69
|
+
# ─────────────────────────────
|
|
70
|
+
async def summarize_error_to_user(exc: Exception, meta: Dict[str, Any]) -> str:
|
|
71
|
+
"""
|
|
72
|
+
예외 정보를 바탕으로 사용자 친화적인 5줄 요약을 생성.
|
|
73
|
+
- 모델: gpt-4.1-nano (환경변수 ERROR_SUMMARY_MODEL로 재정의 가능)
|
|
74
|
+
- 폴백: 없음 (LLM 실패 시 예외를 상위로 전파)
|
|
75
|
+
"""
|
|
76
|
+
logger.info("🔍 오류 컨텍스트 분석 시작")
|
|
77
|
+
|
|
78
|
+
err_text = f"{type(exc).__name__}: {str(exc)}"
|
|
79
|
+
|
|
80
|
+
# 가벼운 스택 문자열 (상위 3프레임)
|
|
81
|
+
try:
|
|
82
|
+
tb = "".join(traceback.TracebackException.from_exception(exc, limit=3).format())
|
|
83
|
+
except Exception:
|
|
84
|
+
tb = traceback.format_exc(limit=3)
|
|
85
|
+
|
|
86
|
+
meta_items: List[str] = []
|
|
87
|
+
for k in ("task_id", "proc_inst_id", "agent_orch", "tool"):
|
|
88
|
+
v = meta.get(k)
|
|
89
|
+
if v:
|
|
90
|
+
meta_items.append(f"{k}={v}")
|
|
91
|
+
meta_text = ", ".join(meta_items)
|
|
92
|
+
|
|
93
|
+
logger.info("📋 오류 컨텍스트 정리 완료 - %s", meta_text)
|
|
94
|
+
|
|
95
|
+
system = (
|
|
96
|
+
"당신은 엔터프라이즈 SDK의 오류 비서입니다. "
|
|
97
|
+
"사용자(비개발자도 이해 가능)를 위해, 아래 조건을 정확히 지켜 5줄로 한국어 설명을 만드세요.\n"
|
|
98
|
+
"형식: 각 줄은 1문장씩, 총 5줄.\n"
|
|
99
|
+
"포함 요소: ①무슨 문제인지(원인 추정) ②어떤 영향이 있는지 ③즉시 할 일(대처) "
|
|
100
|
+
"④재발 방지 팁 ⑤필요시 지원 요청 경로.\n"
|
|
101
|
+
"과장 금지, 간결하고 친절하게."
|
|
102
|
+
)
|
|
103
|
+
user = (
|
|
104
|
+
f"[오류요약대상]\n"
|
|
105
|
+
f"- 컨텍스트: {meta_text}\n"
|
|
106
|
+
f"- 에러: {err_text}\n"
|
|
107
|
+
f"- 스택(상위 3프레임):\n{tb}\n"
|
|
108
|
+
f"위 정보를 바탕으로 5줄 설명을 출력하세요."
|
|
109
|
+
)
|
|
110
|
+
|
|
111
|
+
try:
|
|
112
|
+
text = await _llm_request(system, user, "ERROR_SUMMARY_MODEL", "gpt-4.1-nano")
|
|
113
|
+
logger.info("✅ LLM 오류 요약 생성 완료")
|
|
114
|
+
return text
|
|
115
|
+
except Exception as e:
|
|
116
|
+
logger.warning("⚠️ LLM 오류 요약 생성 실패: %s", e, exc_info=True)
|
|
117
|
+
# 폴백 없이 상위 전파
|
|
118
|
+
raise
|
|
119
|
+
|
|
120
|
+
async def summarize_feedback(feedback_data: List[dict], content_data: dict = {}) -> str:
|
|
121
|
+
"""
|
|
122
|
+
피드백과 결과물을 바탕으로 통합된 피드백 요약을 생성.
|
|
123
|
+
- 모델: gpt-4.1-nano (환경변수 FEEDBACK_SUMMARY_MODEL로 재정의 가능)
|
|
124
|
+
- 폴백: 없음 (LLM 실패 시 예외를 상위로 전파)
|
|
125
|
+
"""
|
|
126
|
+
logger.info(
|
|
127
|
+
"🔍 피드백 요약 처리 시작 | 피드백: %s, 결과물: %s자",
|
|
128
|
+
feedback_data, content_data)
|
|
129
|
+
|
|
130
|
+
system_prompt = _get_feedback_system_prompt()
|
|
131
|
+
user_prompt = _create_feedback_summary_prompt(feedback_data, content_data)
|
|
132
|
+
|
|
133
|
+
try:
|
|
134
|
+
text = await _llm_request(system_prompt, user_prompt, "FEEDBACK_SUMMARY_MODEL", "gpt-4.1-nano")
|
|
135
|
+
logger.info("✅ LLM 피드백 요약 생성 완료")
|
|
136
|
+
return text
|
|
137
|
+
except Exception as e:
|
|
138
|
+
logger.error("❌ LLM 피드백 요약 생성 실패: %s", e, exc_info=True)
|
|
139
|
+
# 폴백 없이 상위 전파
|
|
140
|
+
raise
|
|
141
|
+
|
|
142
|
+
# ─────────────────────────────
|
|
143
|
+
# 프롬프트 유틸
|
|
144
|
+
# ─────────────────────────────
|
|
145
|
+
def _create_feedback_summary_prompt(feedback_data: List[dict], content_data: dict = {}) -> str:
|
|
146
|
+
"""피드백 정리 프롬프트 - 현재 결과물과 피드백을 함께 분석"""
|
|
147
|
+
blocks: List[str] = ["다음은 사용자의 피드백과 결과물입니다. 이를 분석하여 통합된 피드백을 작성해주세요:"]
|
|
148
|
+
if feedback_data:
|
|
149
|
+
blocks.append(f"=== 피드백 내용 ===\n{feedback_data}")
|
|
150
|
+
if content_data:
|
|
151
|
+
blocks.append(f"=== 현재 결과물/작업 내용 ===\n{content_data}")
|
|
152
|
+
|
|
153
|
+
blocks.append(
|
|
154
|
+
"""**상황 분석 및 처리 방식:**
|
|
155
|
+
- **현재 결과물을 보고 어떤 점이 문제인지, 개선이 필요한지 판단**
|
|
156
|
+
- 피드백이 있다면 그 의도와 요구사항을 정확히 파악
|
|
157
|
+
- 결과물 자체가 마음에 안들어서 다시 작업을 요청하는 경우일 수 있음
|
|
158
|
+
- 작업 방식이나 접근법이 잘못되었다고 판단하는 경우일 수 있음
|
|
159
|
+
- 부분적으로는 좋지만 특정 부분의 수정이나 보완이 필요한 경우일 수 있음
|
|
160
|
+
- 현재 결과물에 매몰되지 말고, 실제 어떤 부분이 문제인지 파악하여 개선 방안을 제시
|
|
161
|
+
|
|
162
|
+
**피드백 통합 원칙:**
|
|
163
|
+
- **가장 최신 피드백을 최우선으로 반영**
|
|
164
|
+
- 결과물과 피드백을 종합적으로 분석하여 핵심 문제점 파악
|
|
165
|
+
- **시간 흐름을 파악하여 피드백들 간의 연결고리와 문맥을 이해**
|
|
166
|
+
- 구체적이고 실행 가능한 개선사항 제시
|
|
167
|
+
- **자연스럽고 통합된 하나의 완전한 피드백으로 작성**
|
|
168
|
+
- 최대 1000자까지 허용하여 상세히 작성
|
|
169
|
+
|
|
170
|
+
**중요한 상황별 처리:**
|
|
171
|
+
- 결과물 품질에 대한 불만 → **품질 개선** 요구
|
|
172
|
+
- 작업 방식에 대한 불만 → **접근법 변경** 요구
|
|
173
|
+
- 이전에 저장을 했는데 잘못 저장되었다면 → **수정**이 필요
|
|
174
|
+
- 이전에 조회만 했는데 저장이 필요하다면 → **저장**이 필요
|
|
175
|
+
- 부분적 수정이 필요하다면 → **특정 부분 개선** 요구
|
|
176
|
+
|
|
177
|
+
출력 형식: 현재 상황을 종합적으로 분석한 완전한 피드백 문장 (다음 작업자가 즉시 이해하고 실행할 수 있도록)"""
|
|
178
|
+
)
|
|
179
|
+
return "\n\n".join(blocks)
|
|
180
|
+
|
|
181
|
+
def _get_feedback_system_prompt() -> str:
|
|
182
|
+
"""피드백 요약용 시스템 프롬프트"""
|
|
183
|
+
return """당신은 피드백 정리 전문가입니다.
|
|
184
|
+
|
|
185
|
+
핵심 원칙:
|
|
186
|
+
- 최신 피드백을 최우선으로 하여 시간 흐름을 파악
|
|
187
|
+
- 피드백 간 문맥과 연결고리를 파악하여 하나의 완전한 요청으로 통합
|
|
188
|
+
- 자연스럽고 통합된 피드백으로 작성
|
|
189
|
+
- 구체적인 요구사항과 개선사항을 누락 없이 포함
|
|
190
|
+
- 다음 작업자가 즉시 이해할 수 있도록 명확하게"""
|
|
@@ -1,25 +0,0 @@
|
|
|
1
|
-
from .processgpt_agent_framework import ProcessGPTAgentServer
|
|
2
|
-
from .database import (
|
|
3
|
-
initialize_db,
|
|
4
|
-
get_consumer_id,
|
|
5
|
-
polling_pending_todos,
|
|
6
|
-
record_event,
|
|
7
|
-
record_events_bulk,
|
|
8
|
-
save_task_result,
|
|
9
|
-
update_task_error,
|
|
10
|
-
fetch_context_bundle,
|
|
11
|
-
)
|
|
12
|
-
from .utils import summarize_error_to_user
|
|
13
|
-
|
|
14
|
-
__all__ = [
|
|
15
|
-
"ProcessGPTAgentServer",
|
|
16
|
-
"initialize_db",
|
|
17
|
-
"get_consumer_id",
|
|
18
|
-
"polling_pending_todos",
|
|
19
|
-
"record_event",
|
|
20
|
-
"record_events_bulk",
|
|
21
|
-
"save_task_result",
|
|
22
|
-
"update_task_error",
|
|
23
|
-
"fetch_context_bundle",
|
|
24
|
-
"summarize_error_to_user",
|
|
25
|
-
]
|
|
@@ -1,100 +0,0 @@
|
|
|
1
|
-
import os
|
|
2
|
-
import traceback
|
|
3
|
-
import logging
|
|
4
|
-
from typing import Any, Dict
|
|
5
|
-
|
|
6
|
-
# OpenAI 호환 엔드포인트 사용 (환경변수 기반)
|
|
7
|
-
# OPENAI_API_KEY, OPENAI_BASE_URL(required if not default)
|
|
8
|
-
try:
|
|
9
|
-
from openai import OpenAI
|
|
10
|
-
except Exception: # 라이브러리 미설치/호환 환경 대비
|
|
11
|
-
OpenAI = None # type: ignore
|
|
12
|
-
|
|
13
|
-
logger = logging.getLogger(__name__)
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
async def summarize_error_to_user(exc: Exception, meta: Dict[str, Any]) -> str:
|
|
17
|
-
"""
|
|
18
|
-
예외 정보를 바탕으로 사용자 친화적인 5줄 요약을 생성.
|
|
19
|
-
- 모델: gpt-4.1-nano (요청사항 반영)
|
|
20
|
-
- 실패 시 Fallback: 간단한 수동 요약문
|
|
21
|
-
"""
|
|
22
|
-
# 오류 컨텍스트 정리
|
|
23
|
-
logger.info("🔍 오류 컨텍스트 분석 중...")
|
|
24
|
-
err_text = f"{type(exc).__name__}: {str(exc)}"
|
|
25
|
-
tb = traceback.format_exc(limit=3)
|
|
26
|
-
meta_lines = [
|
|
27
|
-
f"task_id={meta.get('task_id')}",
|
|
28
|
-
f"proc_inst_id={meta.get('proc_inst_id')}",
|
|
29
|
-
f"agent_orch={meta.get('agent_orch')}",
|
|
30
|
-
f"tool={meta.get('tool')}",
|
|
31
|
-
]
|
|
32
|
-
meta_text = ", ".join([x for x in meta_lines if x])
|
|
33
|
-
logger.info("📋 오류 컨텍스트 분석 완료 - %s", meta_text)
|
|
34
|
-
|
|
35
|
-
system = (
|
|
36
|
-
"당신은 엔터프라이즈 SDK의 오류 비서입니다. "
|
|
37
|
-
"사용자(비개발자도 이해 가능)를 위해, 아래 조건을 정확히 지켜 5줄로 한국어 설명을 만드세요.\n"
|
|
38
|
-
"형식: 각 줄은 1문장씩, 총 5줄.\n"
|
|
39
|
-
"포함 요소: ①무슨 문제인지(원인 추정) ②어떤 영향이 있는지 ③즉시 할 일(대처) "
|
|
40
|
-
"④재발 방지 팁 ⑤필요시 지원 요청 경로.\n"
|
|
41
|
-
"과장 금지, 간결하고 친절하게."
|
|
42
|
-
)
|
|
43
|
-
user = (
|
|
44
|
-
f"[오류요약대상]\n"
|
|
45
|
-
f"- 컨텍스트: {meta_text}\n"
|
|
46
|
-
f"- 에러: {err_text}\n"
|
|
47
|
-
f"- 스택(상위 3프레임):\n{tb}\n"
|
|
48
|
-
f"위 정보를 바탕으로 5줄 설명을 출력하세요."
|
|
49
|
-
)
|
|
50
|
-
|
|
51
|
-
try:
|
|
52
|
-
if OpenAI is None:
|
|
53
|
-
logger.warning("⚠️ OpenAI SDK 사용 불가 - Fallback 모드로 전환")
|
|
54
|
-
raise RuntimeError("OpenAI SDK not available")
|
|
55
|
-
|
|
56
|
-
logger.info("🤖 OpenAI 클라이언트 초기화 중...")
|
|
57
|
-
client = OpenAI(
|
|
58
|
-
base_url=os.getenv("OPENAI_BASE_URL", "https://api.openai.com/v1"),
|
|
59
|
-
api_key=os.getenv("OPENAI_API_KEY", ""),
|
|
60
|
-
)
|
|
61
|
-
|
|
62
|
-
model_name = os.getenv("ERROR_SUMMARY_MODEL", "gpt-4.1-nano")
|
|
63
|
-
logger.info("📡 LLM 요청 전송 중... (모델: %s)", model_name)
|
|
64
|
-
|
|
65
|
-
# responses API (신규 SDK)
|
|
66
|
-
resp = client.responses.create(
|
|
67
|
-
model=model_name,
|
|
68
|
-
input=[{"role": "system", "content": system},
|
|
69
|
-
{"role": "user", "content": user}],
|
|
70
|
-
)
|
|
71
|
-
|
|
72
|
-
logger.info("🔍 LLM 응답 분석 중...")
|
|
73
|
-
# 텍스트 추출(호환성 고려)
|
|
74
|
-
text = None
|
|
75
|
-
try:
|
|
76
|
-
text = resp.output_text # type: ignore[attr-defined]
|
|
77
|
-
except Exception:
|
|
78
|
-
# 다른 필드 구조 호환
|
|
79
|
-
if hasattr(resp, "choices") and resp.choices:
|
|
80
|
-
text = getattr(resp.choices[0].message, "content", None) # type: ignore
|
|
81
|
-
if not text:
|
|
82
|
-
raise RuntimeError("No text in LLM response")
|
|
83
|
-
|
|
84
|
-
logger.info("✅ LLM 오류 요약 생성 완료")
|
|
85
|
-
return text.strip()
|
|
86
|
-
|
|
87
|
-
except Exception as e:
|
|
88
|
-
logger.warning("⚠️ LLM 오류 요약 생성 실패: %s - Fallback 모드로 전환", str(e))
|
|
89
|
-
# Fallback: 간단 5줄
|
|
90
|
-
logger.info("📝 Fallback 오류 요약 생성 중...")
|
|
91
|
-
|
|
92
|
-
fallback_text = (
|
|
93
|
-
"1) 처리 중 알 수 없는 오류가 발생했어요(환경/입력 값 문제일 수 있어요).\n"
|
|
94
|
-
"2) 작업 결과가 저장되지 않았거나 일부만 반영됐을 수 있어요.\n"
|
|
95
|
-
"3) 입력 값과 네트워크 상태를 확인하고, 다시 시도해 주세요.\n"
|
|
96
|
-
"4) 같은 문제가 반복되면 로그와 설정(키/URL/권한)을 점검해 주세요.\n"
|
|
97
|
-
"5) 계속되면 관리자나 운영팀에 문의해 원인 분석을 요청해 주세요."
|
|
98
|
-
)
|
|
99
|
-
logger.info("✅ Fallback 오류 요약 생성 완료")
|
|
100
|
-
return fallback_text
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|