pro-craft 0.1.35__tar.gz → 0.1.36__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pro-craft might be problematic. Click here for more details.

Files changed (29) hide show
  1. {pro_craft-0.1.35 → pro_craft-0.1.36}/PKG-INFO +2 -1
  2. {pro_craft-0.1.35 → pro_craft-0.1.36}/pyproject.toml +2 -2
  3. pro_craft-0.1.36/src/pro_craft/__init__.py +18 -0
  4. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft/log.py +14 -14
  5. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft/prompt_craft/async_.py +209 -247
  6. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft.egg-info/PKG-INFO +2 -1
  7. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft.egg-info/SOURCES.txt +1 -0
  8. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft.egg-info/requires.txt +1 -0
  9. pro_craft-0.1.36/tests/test_11.py +42 -0
  10. pro_craft-0.1.35/src/pro_craft/__init__.py +0 -23
  11. {pro_craft-0.1.35 → pro_craft-0.1.36}/README.md +0 -0
  12. {pro_craft-0.1.35 → pro_craft-0.1.36}/setup.cfg +0 -0
  13. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft/code_helper/coder.py +0 -0
  14. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft/code_helper/designer.py +0 -0
  15. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft/database.py +0 -0
  16. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft/file_manager.py +0 -0
  17. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft/prompt_craft/__init__.py +0 -0
  18. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft/prompt_craft/new.py +0 -0
  19. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft/prompt_craft/sync.py +0 -0
  20. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft/server/mcp/__init__.py +0 -0
  21. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft/server/mcp/prompt.py +0 -0
  22. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft/server/router/__init__.py +0 -0
  23. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft/server/router/prompt.py +0 -0
  24. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft/utils.py +0 -0
  25. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft.egg-info/dependency_links.txt +0 -0
  26. {pro_craft-0.1.35 → pro_craft-0.1.36}/src/pro_craft.egg-info/top_level.txt +0 -0
  27. {pro_craft-0.1.35 → pro_craft-0.1.36}/tests/test22.py +0 -0
  28. {pro_craft-0.1.35 → pro_craft-0.1.36}/tests/test_coder.py +0 -0
  29. {pro_craft-0.1.35 → pro_craft-0.1.36}/tests/test_designer.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pro-craft
3
- Version: 0.1.35
3
+ Version: 0.1.36
4
4
  Summary: Add your description here
5
5
  Requires-Python: >=3.12
6
6
  Description-Content-Type: text/markdown
@@ -9,6 +9,7 @@ Requires-Dist: anyio>=4.11.0
9
9
  Requires-Dist: db-help>=0.2.2
10
10
  Requires-Dist: fastapi>=0.119.0
11
11
  Requires-Dist: llmada>=1.1.11
12
+ Requires-Dist: plotly>=6.3.1
12
13
  Requires-Dist: pyyaml>=6.0.3
13
14
  Requires-Dist: toml>=0.10.2
14
15
  Requires-Dist: utils-tool==0.1.3
@@ -1,10 +1,10 @@
1
1
  [project]
2
2
  name = "pro-craft"
3
- version = "0.1.35"
3
+ version = "0.1.36"
4
4
  description = "Add your description here"
5
5
  readme = "README.md"
6
6
  requires-python = ">=3.12"
7
- dependencies = [ "aiomysql>=0.2.0", "anyio>=4.11.0", "db-help>=0.2.2", "fastapi>=0.119.0", "llmada>=1.1.11", "pyyaml>=6.0.3", "toml>=0.10.2", "utils-tool==0.1.3", "uvicorn>=0.38.0",]
7
+ dependencies = [ "aiomysql>=0.2.0", "anyio>=4.11.0", "db-help>=0.2.2", "fastapi>=0.119.0", "llmada>=1.1.11", "plotly>=6.3.1", "pyyaml>=6.0.3", "toml>=0.10.2", "utils-tool==0.1.3", "uvicorn>=0.38.0",]
8
8
 
9
9
  [tool.setuptools.package-data]
10
10
  pro_craft = [ "config.yaml",]
@@ -0,0 +1,18 @@
1
+
2
+
3
+
4
+ from dotenv import load_dotenv, find_dotenv
5
+
6
+ dotenv_path = find_dotenv()
7
+ load_dotenv(".env", override=True)
8
+
9
+ from .log import Log
10
+ import logging
11
+ Log_ = Log(console_level = logging.WARNING, # 显示控制台的等级
12
+ log_file_name="app.log")
13
+ logger = Log_.logger
14
+ Log_.set_super_log(logger.critical) # 控制superlog 打印的等级 默认是最高级单独存储一个文件
15
+ super_log = Log_.super_log # 调试工具
16
+ inference_save_case = False
17
+
18
+ from .prompt_craft import AsyncIntel, Intel, IntelNew
@@ -12,6 +12,7 @@ class Log:
12
12
  def __init__(self, console_level = logging.INFO, log_file_name="app.log"):
13
13
  self.Console_LOG_LEVEL = console_level
14
14
  self.log_file_name = log_file_name
15
+ os.makedirs("logs", exist_ok=False)
15
16
  self.LOG_FILE_PATH = os.path.join("logs", log_file_name)
16
17
  self.logger = self.get_logger()
17
18
  self.super_log_level = self.logger.critical
@@ -60,23 +61,22 @@ class Log:
60
61
  )
61
62
  file_handler_debug.setLevel(logging.WARNING) # 文件中显示所有指定级别的日志
62
63
  file_handler_debug.setFormatter(formatter)
63
- logger.addHandler(file_handler_debug)
64
+
65
+ file_handler_cri = RotatingFileHandler(
66
+ self.LOG_FILE_PATH.replace('.log','_slog.log'),
67
+ maxBytes=5 * 1024 * 1024, # 10 MB
68
+ backupCount=5,
69
+ encoding="utf-8",
70
+ )
71
+ file_handler_cri.setLevel(logging.CRITICAL) # 文件中显示所有指定级别的日志
72
+ file_handler_cri.setFormatter(formatter)
73
+ logger.addHandler(file_handler_cri)
64
74
  return logger
65
75
 
66
76
  def set_super_log(self,logger_info):
67
77
  self.super_log_level = logger_info
68
78
 
69
- def super_log(self,s, target: str = "target"):
70
- COLOR_RED = "\033[91m"
71
- COLOR_GREEN = "\033[92m"
72
- COLOR_YELLOW = "\033[93m"
73
- COLOR_BLUE = "\033[94m"
74
- COLOR_RESET = "\033[0m" # 重置颜色
75
- log_ = self.super_log_level
76
-
77
- log_("\n"+f"{COLOR_GREEN}=={COLOR_RESET}" * 50)
78
- log_(target + "\n "+"--" * 40)
79
- log_(type(s))
80
- log_(s)
81
- log_("\n"+f"{COLOR_GREEN}=={COLOR_RESET}" * 50)
79
+ def super_log(self,s, target: str = "target",logger = None):
80
+ logger = logger or self.super_log_level
81
+ logger("\n" + "=="*25 + target +"=="*25 + f"\n type: {str(type(s))}" + f"\ncontent: {s}")
82
82
 
@@ -28,25 +28,11 @@ from sqlalchemy.orm import class_mapper # 用于检查对象是否是持久化
28
28
  import tqdm
29
29
  from tqdm.asyncio import tqdm
30
30
  import pandas as pd
31
+ import plotly.graph_objects as go
32
+ from pro_craft import super_log
31
33
 
32
- class IntellectRemoveFormatError(Exception):
33
- pass
34
-
35
- class IntellectRemoveError(Exception):
36
- pass
34
+ BATCH_SIZE = int(os.getenv("DATABASE_SYNC_BATCH_SIZE",100))
37
35
 
38
- BATCH_SIZE = 100
39
- MIN_SUCCESS_RATE = 00.0 # 这里定义通过阈值, 高于该比例则通过
40
-
41
-
42
- def slog(s, target: str = "target",logger = None):
43
- COLOR_GREEN = "\033[92m"
44
- COLOR_RESET = "\033[0m" # 重置颜色
45
- logger("\n"+f"{COLOR_GREEN}=={COLOR_RESET}" * 50)
46
- logger(target + "\n "+"--" * 40)
47
- logger(type(s))
48
- logger(s)
49
- logger("\n"+f"{COLOR_GREEN}=={COLOR_RESET}" * 50)
50
36
 
51
37
  def fix_broken_json_string(broken_json_str):
52
38
  # 移除 BOM
@@ -73,27 +59,6 @@ def fix_broken_json_string(broken_json_str):
73
59
 
74
60
  return fixed_json_str
75
61
 
76
-
77
- # def get_last_sync_time(target_session) -> datetime:
78
- # """从目标数据库获取上次同步时间"""
79
- # metadata_entry = target_session.query(SyncMetadata).filter_by(table_name="sync_metadata").first()
80
- # if metadata_entry:
81
- # return metadata_entry.last_sync_time
82
- # return datetime(1970, 1, 1) # 默认一个很早的时间
83
-
84
- # def update_last_sync_time(target_session, new_sync_time: datetime):
85
- # """更新目标数据库的上次同步时间"""
86
- # metadata_entry = target_session.query(SyncMetadata).filter_by(table_name="sync_metadata").first()
87
- # if metadata_entry:
88
- # metadata_entry.last_sync_time = new_sync_time
89
- # else:
90
- # # 如果不存在,则创建
91
- # new_metadata = SyncMetadata(table_name="sync_metadata", last_sync_time=new_sync_time)
92
- # target_session.add(new_metadata)
93
- # target_session.commit()
94
- # print(f"Updated last sync time to: {new_sync_time}")
95
-
96
-
97
62
  async def get_last_sync_time(target_session: AsyncSession) -> datetime:
98
63
  """从目标数据库获取上次同步时间"""
99
64
  # 修正点:使用 select() 和 execute()
@@ -106,10 +71,6 @@ async def get_last_sync_time(target_session: AsyncSession) -> datetime:
106
71
  return metadata_entry.last_sync_time
107
72
  return datetime(1970, 1, 1) # 默认一个很早的时间
108
73
 
109
-
110
- # from your_module import SyncMetadata # 假设 SyncMetadata 已导入
111
- # from sqlalchemy import select # 确保引入 select
112
-
113
74
  async def update_last_sync_time(target_session: AsyncSession, new_sync_time: datetime):
114
75
  """更新目标数据库的上次同步时间"""
115
76
  # 修正点:使用 select() 和 execute()
@@ -129,8 +90,14 @@ async def update_last_sync_time(target_session: AsyncSession, new_sync_time: dat
129
90
  await target_session.commit() # TODO
130
91
  print(f"Updated last sync time to: {new_sync_time}")
131
92
 
93
+ class IntellectRemoveFormatError(Exception):
94
+ pass
132
95
 
96
+ class IntellectRemoveError(Exception):
97
+ pass
133
98
 
99
+ class ModelNameError(Exception):
100
+ pass
134
101
 
135
102
 
136
103
 
@@ -151,7 +118,7 @@ class AsyncIntel():
151
118
  assert database_url
152
119
  assert 'aio' in database_url
153
120
  except AssertionError as e:
154
- slog(database_url,'database_url',logger=self.logger.warning)
121
+ super_log(database_url,'database_url',logger=self.logger.warning)
155
122
  raise IntellectRemoveFormatError(f"异步服务url必须提供, 且必须是aiomysql配置") from e
156
123
 
157
124
  self.engine = create_async_engine(database_url, echo=False,
@@ -162,16 +129,16 @@ class AsyncIntel():
162
129
  pool_timeout=30 # 等待连接池中连接的最长时间(秒)
163
130
  )
164
131
 
165
- if model_name in ["gemini-2.5-flash-preview-05-20-nothinking",]:
132
+ if "gemini" in model_name:
166
133
  self.llm = BianXieAdapter(model_name = model_name)
167
- elif model_name in ["doubao-1-5-pro-256k-250115","doubao-1-5-pro-32k-250115"]:
134
+ elif "doubao" in model_name:
168
135
  self.llm = ArkAdapter(model_name = model_name)
169
136
  else:
170
- raise Exception("error llm name")
171
-
172
- self.df = pd.DataFrame({"name":[],'status':[],"score":[],"total":[],"bad_case":[]})
137
+ raise ModelNameError("AsyncIntel init get error model_name from zxf")
138
+
139
+ self.eval_df = pd.DataFrame({"name":[],'status':[],"score":[],"total":[],"bad_case":[]})
173
140
 
174
- async def create_specific_database(self):
141
+ async def create_main_database(self):
175
142
  tables_to_create_names = ["ai_prompts","ai_usecase"]
176
143
  async with self.engine.begin() as conn:
177
144
  # 从 metadata 中获取对应的 Table 对象
@@ -190,51 +157,31 @@ class AsyncIntel():
190
157
  async def create_database(self,engine):
191
158
  async with engine.begin() as conn:
192
159
  await conn.run_sync(PromptBase.metadata.create_all)
193
-
194
- async def _get_latest_prompt_version(self,target_prompt_id,session):
160
+
161
+ async def get_prompt(self,prompt_id,version,session):
195
162
  """
196
163
  获取指定 prompt_id 的最新版本数据,通过创建时间判断。
197
164
  """
198
- stmt = select(Prompt).filter(
199
- Prompt.prompt_id == target_prompt_id
200
- ).order_by(
201
- desc(Prompt.timestamp), # 使用 sqlalchemy.desc() 来指定降序
202
- desc(Prompt.version) # 使用 sqlalchemy.desc() 来指定降序
203
- )
204
-
165
+ if version:
166
+ stmt_ = select(Prompt).filter(
167
+ Prompt.prompt_id == prompt_id,
168
+ Prompt.version == version
169
+ )
170
+ else:
171
+ stmt_ = select(Prompt).filter(
172
+ Prompt.prompt_id == prompt_id,
173
+ )
174
+ stmt = stmt_.order_by(
175
+ desc(Prompt.timestamp), # 使用 sqlalchemy.desc() 来指定降序
176
+ desc(Prompt.version) # 使用 sqlalchemy.desc() 来指定降序
177
+ )
178
+
205
179
  result = await session.execute(stmt)
206
- # 3. 从 Result 对象中获取第一个模型实例
207
- # .scalars() 用于从结果行中获取第一个列的值(这里是Prompt对象本身)
208
- # .first() 获取第一个结果
209
180
  result = result.scalars().first()
210
181
 
211
182
  return result
212
183
 
213
- async def _get_specific_prompt_version(self,target_prompt_id, target_version,session):
214
- """
215
- 获取指定 prompt_id 和特定版本的数据。
216
-
217
- Args:
218
- target_prompt_id (str): 目标提示词的唯一标识符。
219
- target_version (int): 目标提示词的版本号。
220
- table_name (str): 存储提示词数据的数据库表名。
221
- db_manager (DBManager): 数据库管理器的实例,用于执行查询。
222
-
223
- Returns:
224
- dict or None: 如果找到,返回包含 id, prompt_id, version, timestamp, prompt 字段的字典;
225
- 否则返回 None。
226
- """
227
- stmt = select(Prompt).filter(
228
- Prompt.prompt_id == target_prompt_id,
229
- Prompt.version == target_version
230
- )
231
- result = await session.execute(stmt)
232
-
233
- specific_prompt = result.scalars().one_or_none()
234
-
235
- return specific_prompt
236
-
237
- async def sync_prompt_data_to_database(self,database_url:str):
184
+ async def sync_production_database(self,database_url:str):
238
185
  target_engine = create_async_engine(database_url, echo=False)
239
186
  await self.create_database(target_engine)
240
187
  async with create_async_session(self.engine) as source_session:
@@ -328,24 +275,23 @@ class AsyncIntel():
328
275
  print("No new records to sync.")
329
276
 
330
277
 
331
- async def get_prompts_from_sql(self,
278
+ async def get_prompt_safe(self,
332
279
  prompt_id: str,
333
280
  version = None,
334
281
  session = None) -> Prompt:
335
282
  """
336
283
  从sql获取提示词
337
284
  """
338
- # 查看是否已经存在
339
- if version:
340
- prompts_obj = await self._get_specific_prompt_version(prompt_id,version,session=session)
341
- if not prompts_obj:
342
- prompts_obj = await self._get_latest_prompt_version(prompt_id,session = session)
343
- else:
344
- prompts_obj = await self._get_latest_prompt_version(prompt_id,session = session)
345
- return prompts_obj
285
+ prompt_obj = await self.get_prompt(prompt_id=prompt_id,version=version,session=session)
286
+ if prompt_obj:
287
+ return prompt_obj
288
+
289
+ print("warnning 未找到制定版本, 默认使用最新版本")
290
+ prompt_obj = await self.get_prompt(prompt_id=prompt_id,version=None,session=session)
291
+ return prompt_obj
292
+
346
293
 
347
-
348
- async def save_prompt_increment_version(self,
294
+ async def save_prompt(self,
349
295
  prompt_id: str,
350
296
  new_prompt: str,
351
297
  use_case:str = "",
@@ -358,7 +304,7 @@ class AsyncIntel():
358
304
  input_data 指的是输入用例, 可以为空
359
305
  """
360
306
  # 查看是否已经存在
361
- prompts_obj = await self.get_prompts_from_sql(prompt_id=prompt_id,session=session)
307
+ prompts_obj = await self.get_prompt_safe(prompt_id=prompt_id,session=session)
362
308
 
363
309
  if prompts_obj:
364
310
  # 如果存在版本加1
@@ -385,7 +331,7 @@ class AsyncIntel():
385
331
  session.add(prompt1)
386
332
  await session.commit() # 提交事务,将数据写入数据库
387
333
 
388
- async def get_use_case_by_sql(self,
334
+ async def get_use_case(self,
389
335
  target_prompt_id: str,
390
336
  session = None
391
337
  ):
@@ -400,7 +346,7 @@ class AsyncIntel():
400
346
  use_case = result.scalars().all()
401
347
  return use_case
402
348
 
403
- async def save_use_case_by_sql(self,
349
+ async def save_use_case(self,
404
350
  prompt_id: str,
405
351
  use_case:str = "",
406
352
  timestamp = "",
@@ -414,7 +360,7 @@ class AsyncIntel():
414
360
  从sql保存提示词
415
361
  """
416
362
  #TODO 存之前保证数据库中相同的prompt_id中没有重复的use_case
417
- use_cases = await self.get_use_case_by_sql(target_prompt_id = prompt_id,
363
+ use_cases = await self.get_use_case(target_prompt_id = prompt_id,
418
364
  session = session)
419
365
  for use_case_old in use_cases:
420
366
  if use_case == use_case_old.use_case:
@@ -432,86 +378,8 @@ class AsyncIntel():
432
378
  session.add(use_case)
433
379
  await session.commit() # 提交事务,将数据写入数据库
434
380
 
435
- async def summary_to_sql(
436
- self,
437
- prompt_id:str,
438
- version = None,
439
- prompt = "",
440
- session = None
441
- ):
442
- """
443
- 让大模型微调已经存在的 system_prompt
444
- """
445
- system_prompt_created_prompt = """
446
- 很棒, 我们已经达成了某种默契, 我们之间合作无间, 但是, 可悲的是, 当我关闭这个窗口的时候, 你就会忘记我们之间经历的种种磨合, 这是可惜且心痛的, 所以你能否将目前这一套处理流程结晶成一个优质的prompt 这样, 我们下一次只要将prompt输入, 你就能想起我们今天的磨合过程,
447
- 对了,我提示一点, 这个prompt的主角是你, 也就是说, 你在和未来的你对话, 你要教会未来的你今天这件事, 是否让我看懂到时其次
448
-
449
- 只要输出提示词内容即可, 不需要任何的说明和解释
450
- """
451
- system_result = await self.llm.aproduct(prompt + system_prompt_created_prompt)
452
-
453
- s_prompt = extract_(system_result,pattern_key=r"prompt")
454
- chat_history = s_prompt or system_result
455
- await self.save_prompt_increment_version(prompt_id,
456
- new_prompt = chat_history,
457
- use_case = "",
458
- score = 60,
459
- session = session)
460
-
461
- async def prompt_finetune_to_sql(
462
- self,
463
- prompt_id:str,
464
- version = None,
465
- demand: str = "",
466
- session = None,
467
- ):
468
- """
469
- 让大模型微调已经存在的 system_prompt
470
- """
471
- change_by_opinion_prompt = """
472
- 你是一个资深AI提示词工程师,具备卓越的Prompt设计与优化能力。
473
- 我将为你提供一段现有System Prompt。你的核心任务是基于这段Prompt进行修改,以实现我提出的特定目标和功能需求。
474
- 请你绝对严格地遵循以下原则:
475
- 极端最小化修改原则(核心):
476
- 在满足所有功能需求的前提下,只进行我明确要求的修改。
477
- 即使你认为有更“优化”、“清晰”或“简洁”的表达方式,只要我没有明确要求,也绝不允许进行任何未经指令的修改。
478
- 目的就是尽可能地保留原有Prompt的字符和结构不变,除非我的功能要求必须改变。
479
- 例如,如果我只要求你修改一个词,你就不应该修改整句话的结构。
480
- 严格遵循我的指令:
481
- 你必须精确地执行我提出的所有具体任务和要求。
482
- 绝不允许自行添加任何超出指令范围的说明、角色扮演、约束条件或任何非我指令要求的内容。
483
- 保持原有Prompt的风格和语调:
484
- 尽可能地与现有Prompt的语言风格、正式程度和语调保持一致。
485
- 不要改变不相关的句子或其表达方式。
486
- 只提供修改后的Prompt:
487
- 直接输出修改后的完整System Prompt文本。
488
- 不要包含任何解释、说明或额外对话。
489
- 在你开始之前,请务必确认你已理解并能绝对严格地遵守这些原则。任何未经明确指令的改动都将视为未能完成任务。
490
-
491
- 现有System Prompt:
492
- {old_system_prompt}
493
-
494
- 功能需求:
495
- {opinion}
496
- """
497
-
498
- prompt_ = await self.get_prompts_from_sql(prompt_id = prompt_id,version = version,
499
- session=session)
500
- if demand:
501
- new_prompt = await self.llm.aproduct(
502
- change_by_opinion_prompt.format(old_system_prompt=prompt_.prompt, opinion=demand)
503
- )
504
- else:
505
- new_prompt = prompt_
506
- await self.save_prompt_increment_version(prompt_id = prompt_id,
507
- new_prompt = new_prompt,
508
- use_case = "",
509
- score = 60,
510
- session = session)
511
-
512
-
513
381
  async def push_action_order(self,demand : str,prompt_id: str,
514
- action_type = 'train'):
382
+ action_type = 'train'):# init
515
383
 
516
384
  """
517
385
  从sql保存提示词
@@ -522,9 +390,9 @@ class AsyncIntel():
522
390
  # 查看是否已经存在
523
391
  async with create_async_session(self.engine) as session:
524
392
 
525
- latest_prompt = await self.get_prompts_from_sql(prompt_id=prompt_id,session=session)
393
+ latest_prompt = await self.get_prompt_safe(prompt_id=prompt_id,session=session)
526
394
  if latest_prompt:
527
- await self.save_prompt_increment_version(prompt_id=latest_prompt.prompt_id,
395
+ await self.save_prompt(prompt_id=latest_prompt.prompt_id,
528
396
  new_prompt = latest_prompt.prompt,
529
397
  use_case = latest_prompt.use_case,
530
398
  action_type=action_type,
@@ -534,9 +402,9 @@ class AsyncIntel():
534
402
  )
535
403
  return "success"
536
404
  else:
537
- await self.save_prompt_increment_version(prompt_id=prompt_id,
405
+ await self.save_prompt(prompt_id=prompt_id,
538
406
  new_prompt = demand,
539
- use_case = "init",
407
+ use_case = "",
540
408
  action_type="inference",
541
409
  demand=demand,
542
410
  score=60,
@@ -545,8 +413,7 @@ class AsyncIntel():
545
413
  return "init"
546
414
 
547
415
 
548
-
549
- async def intellect_remove(self,
416
+ async def intellect(self,
550
417
  input_data: dict | str,
551
418
  output_format: str,
552
419
  prompt_id: str,
@@ -561,7 +428,7 @@ class AsyncIntel():
561
428
 
562
429
  # 查数据库, 获取最新提示词对象
563
430
  async with create_async_session(self.engine) as session:
564
- result_obj = await self.get_prompts_from_sql(prompt_id=prompt_id,session=session)
431
+ result_obj = await self.get_prompt_safe(prompt_id=prompt_id,session=session)
565
432
  if result_obj is None:
566
433
  raise IntellectRemoveError("不存在的prompt_id")
567
434
 
@@ -570,7 +437,8 @@ class AsyncIntel():
570
437
  # 直接推理即可
571
438
  ai_result = await self.llm.aproduct(prompt + output_format + "\nuser:" + input_)
572
439
  if inference_save_case:
573
- await self.save_use_case_by_sql(prompt_id,
440
+ # 设计一个机制, 传输说获取300数据, 那么数据就一直流转获取, 知道300截止
441
+ await self.save_use_case(prompt_id,
574
442
  use_case = input_,
575
443
  timestamp = datetime.now(),
576
444
  output = ai_result,
@@ -584,9 +452,6 @@ class AsyncIntel():
584
452
  # 则训练推广
585
453
 
586
454
  # 新版本 默人修改会 inference 状态
587
- chat_history = prompt
588
- before_input = result_obj.use_case
589
- demand = result_obj.demand
590
455
 
591
456
 
592
457
  # assert demand
@@ -601,7 +466,7 @@ class AsyncIntel():
601
466
 
602
467
  # ai_result = await self.llm.aproduct(input_prompt)
603
468
  # chat_history = input_prompt + "\nassistant:\n" + ai_result # 用聊天记录作为完整提示词
604
- # await self.save_prompt_increment_version(prompt_id, chat_history,
469
+ # await self.save_prompt(prompt_id, chat_history,
605
470
  # use_case = input_,
606
471
  # score = 60,
607
472
  # session = session)
@@ -619,14 +484,17 @@ class AsyncIntel():
619
484
  # save_new_prompt = new_prompt + "\nassistant:\n" + ai_result
620
485
 
621
486
 
622
- # await self.save_prompt_increment_version(
487
+ # await self.save_prompt(
623
488
  # prompt_id,
624
489
  # new_prompt=save_new_prompt,
625
490
  # use_case = input_,
626
491
  # action_type = "inference",
627
492
  # score = 60,
628
493
  # session = session)
629
-
494
+ chat_history = prompt
495
+ before_input = result_obj.use_case
496
+ demand = result_obj.demand
497
+ input_data = input_
630
498
  if before_input == "" or change_case is True:
631
499
  result_obj.use_case = input_
632
500
  await session.commit()
@@ -641,7 +509,7 @@ class AsyncIntel():
641
509
  save_new_prompt = new_prompt + "\nassistant:\n" + ai_result
642
510
 
643
511
 
644
- await self.save_prompt_increment_version(
512
+ await self.save_prompt(
645
513
  prompt_id,
646
514
  new_prompt=save_new_prompt,
647
515
  use_case = input_,
@@ -650,42 +518,118 @@ class AsyncIntel():
650
518
  session = session)
651
519
 
652
520
  elif result_obj.action_type == "summary":
521
+ system_prompt_summary = """
522
+ 很棒, 我们已经达成了某种默契, 我们之间合作无间, 但是, 可悲的是, 当我关闭这个窗口的时候, 你就会忘记我们之间经历的种种磨合, 这是可惜且心痛的, 所以你能否将目前这一套处理流程结晶成一个优质的prompt 这样, 我们下一次只要将prompt输入, 你就能想起我们今天的磨合过程,
523
+ 对了,我提示一点, 这个prompt的主角是你, 也就是说, 你在和未来的你对话, 你要教会未来的你今天这件事, 是否让我看懂到时其次
524
+
525
+ 只要输出提示词内容即可, 不需要任何的说明和解释
526
+ """
527
+
528
+ latest_prompt = await self.get_prompt_safe(prompt_id=prompt_id,session=session)
529
+
530
+ system_result = await self.llm.aproduct(prompt + system_prompt_summary)
531
+ s_prompt = extract_(system_result,pattern_key=r"prompt")
532
+ new_prompt = s_prompt or system_result
533
+ await self.save_prompt(
534
+ prompt_id,
535
+ new_prompt = new_prompt,
536
+ use_case = latest_prompt.use_case,
537
+ score = 65,
538
+ action_type = "inference",
539
+ session = session
540
+ )
653
541
 
654
- await self.summary_to_sql(prompt_id = prompt_id,
655
- prompt = prompt,
656
- session = session
657
- )
658
542
  ai_result = await self.llm.aproduct(prompt + output_format + "\nuser:" + input_)
659
543
 
660
544
  elif result_obj.action_type == "finetune":
661
545
  demand = result_obj.demand
662
-
546
+ change_by_opinion_prompt = """
547
+ 你是一个资深AI提示词工程师,具备卓越的Prompt设计与优化能力。
548
+ 我将为你提供一段现有System Prompt。你的核心任务是基于这段Prompt进行修改,以实现我提出的特定目标和功能需求。
549
+ 请你绝对严格地遵循以下原则:
550
+ 极端最小化修改原则(核心):
551
+ 在满足所有功能需求的前提下,只进行我明确要求的修改。
552
+ 即使你认为有更“优化”、“清晰”或“简洁”的表达方式,只要我没有明确要求,也绝不允许进行任何未经指令的修改。
553
+ 目的就是尽可能地保留原有Prompt的字符和结构不变,除非我的功能要求必须改变。
554
+ 例如,如果我只要求你修改一个词,你就不应该修改整句话的结构。
555
+ 严格遵循我的指令:
556
+ 你必须精确地执行我提出的所有具体任务和要求。
557
+ 绝不允许自行添加任何超出指令范围的说明、角色扮演、约束条件或任何非我指令要求的内容。
558
+ 保持原有Prompt的风格和语调:
559
+ 尽可能地与现有Prompt的语言风格、正式程度和语调保持一致。
560
+ 不要改变不相关的句子或其表达方式。
561
+ 只提供修改后的Prompt:
562
+ 直接输出修改后的完整System Prompt文本。
563
+ 不要包含任何解释、说明或额外对话。
564
+ 在你开始之前,请务必确认你已理解并能绝对严格地遵守这些原则。任何未经明确指令的改动都将视为未能完成任务。
565
+
566
+ 现有System Prompt:
567
+ {old_system_prompt}
568
+
569
+ 功能需求:
570
+ {opinion}
571
+ """
572
+
573
+ latest_prompt = await self.get_prompt_safe(prompt_id=prompt_id,session=session)
574
+ prompt_ = await self.get_prompt_safe(prompt_id = prompt_id,version = version,
575
+ session=session)
663
576
  assert demand
664
- await self.prompt_finetune_to_sql(prompt_id = prompt_id,
665
- demand = demand,
666
- session = session
667
- )
577
+
578
+ if demand:
579
+ new_prompt = await self.llm.aproduct(
580
+ change_by_opinion_prompt.format(old_system_prompt=prompt_.prompt, opinion=demand)
581
+ )
582
+ else:
583
+ new_prompt = prompt_
584
+ await self.save_prompt(
585
+ prompt_id,
586
+ new_prompt = new_prompt,
587
+ use_case = latest_prompt.use_case,
588
+ score = 70,
589
+ action_type = "inference",
590
+ session = session
591
+ )
592
+
668
593
  ai_result = await self.llm.aproduct(prompt + output_format + "\nuser:" + input_)
669
594
 
670
595
  elif result_obj.action_type == "patch":
671
596
  demand = result_obj.demand
672
597
  assert demand
598
+ latest_prompt = await self.get_prompt_safe(prompt_id=prompt_id,session=session)
599
+
673
600
  chat_history = prompt + demand
601
+ await self.save_prompt(prompt_id,
602
+ chat_history,
603
+ use_case = latest_prompt.use_case,
604
+ score = 70,
605
+ action_type = "inference",
606
+ session = session)
607
+
674
608
  ai_result = await self.llm.aproduct(chat_history + output_format + "\nuser:" + input_)
675
- self.save_prompt_increment_version(prompt_id,
676
- chat_history,
677
- use_case = input_,
678
- score = 60,
679
- session = session)
680
-
609
+
610
+ elif result_obj.action_type.startswith("to:"):
611
+ target_version = result_obj.action_type.split(":")[-1]
612
+ latest_prompt = await self.get_prompt_safe(prompt_id=prompt_id,session=session)
613
+ prompt_obj = await self.get_prompt_safe(prompt_id=prompt_id,
614
+ version=target_version,
615
+ session=session)
616
+
617
+ await self.save_prompt(prompt_id,
618
+ prompt_obj.prompt,
619
+ use_case = latest_prompt.use_case,
620
+ score = prompt_obj.score,
621
+ action_type = "inference",
622
+ session = session)
623
+ ai_result = await self.llm.aproduct(prompt_obj.prompt + output_format + "\nuser:" + input_)
624
+
681
625
  else:
682
626
  raise
683
627
 
684
628
  return ai_result
685
629
 
686
- async def intellect_remove_format(self,
630
+ async def intellect_format(self,
687
631
  input_data: dict | str,
688
- OutputFormat: object,
632
+ OutputFormat: object | None,
689
633
  prompt_id: str,
690
634
  ExtraFormats: list[object] = [],
691
635
  version: str = None,
@@ -699,9 +643,11 @@ class AsyncIntel():
699
643
  "```json([\s\S]*?)```"
700
644
  使用以下方式验证
701
645
  """
702
- output_format = base_format_prompt + "\n".join([inspect.getsource(outputformat) for outputformat in ExtraFormats]) + inspect.getsource(OutputFormat)
703
-
704
- ai_result = await self.intellect_remove(
646
+ if OutputFormat:
647
+ output_format = base_format_prompt + "\n".join([inspect.getsource(outputformat) for outputformat in ExtraFormats]) + inspect.getsource(OutputFormat)
648
+ else:
649
+ output_format = ""
650
+ ai_result = await self.intellect(
705
651
  input_data=input_data,
706
652
  output_format=output_format,
707
653
  prompt_id=prompt_id,
@@ -711,17 +657,17 @@ class AsyncIntel():
711
657
 
712
658
  try:
713
659
  json_str = extract_(ai_result,r'json')
714
- # json_str = fix_broken_json_string(json_str)
715
660
  ai_result = json.loads(json_str)
716
- OutputFormat(**ai_result)
661
+ if OutputFormat:
662
+ OutputFormat(**ai_result)
717
663
 
718
664
  except JSONDecodeError as e:
719
- slog(ai_result,logger=self.logger.error)
720
665
  try:
721
666
  self.logger.error(f"尝试补救")
722
667
  json_str = fix_broken_json_string(json_str)
723
668
  ai_result = json.loads(json_str)
724
- OutputFormat(**ai_result)
669
+ if OutputFormat:
670
+ OutputFormat(**ai_result)
725
671
 
726
672
  except JSONDecodeError as e:
727
673
  raise IntellectRemoveFormatError(f"prompt_id: {prompt_id} 生成的内容为无法被Json解析 {e}") from e
@@ -732,19 +678,10 @@ class AsyncIntel():
732
678
 
733
679
  except Exception as e:
734
680
  raise Exception(f"Error {prompt_id} : {e}") from e
735
-
736
- # finally:
737
- # await self.save_use_case_by_sql(prompt_id,
738
- # use_case = input_data,
739
- # timestamp = datetime.now(),
740
- # output = ai_result,
741
- # solution = output_format,
742
- # faired_time = 1,
743
- # session = session,
744
- # )
681
+
745
682
  return ai_result
746
683
 
747
- async def intellect_remove_formats(self,
684
+ async def intellect_formats(self,
748
685
  input_datas: list[dict | str],
749
686
  OutputFormat: object,
750
687
  prompt_id: str,
@@ -754,7 +691,7 @@ class AsyncIntel():
754
691
  ):
755
692
 
756
693
  async with create_async_session(self.engine) as session:
757
- prompt_result = await self.get_prompts_from_sql(prompt_id=prompt_id,
694
+ prompt_result = await self.get_prompt_safe(prompt_id=prompt_id,
758
695
  session=session)
759
696
  if prompt_result is None:
760
697
  raise IntellectRemoveError("不存在的prompt_id")
@@ -763,7 +700,7 @@ class AsyncIntel():
763
700
  tasks = []
764
701
  for input_data in input_datas:
765
702
  tasks.append(
766
- self.intellect_remove_format(
703
+ self.intellect_format(
767
704
  input_data = input_data,
768
705
  prompt_id = prompt_id,
769
706
  OutputFormat = OutputFormat,
@@ -775,7 +712,7 @@ class AsyncIntel():
775
712
  results = await asyncio.gather(*tasks, return_exceptions=False)
776
713
  return results
777
714
 
778
- def intellect_remove_warp(self,prompt_id: str):
715
+ def intellect_warp(self,prompt_id: str):
779
716
  def outer_packing(func):
780
717
  @functools.wraps(func)
781
718
  async def wrapper(*args, **kwargs):
@@ -790,7 +727,7 @@ class AsyncIntel():
790
727
  elif isinstance(input_data,str):
791
728
  input_ = output_ = input_data
792
729
 
793
- output_ = await self.intellect_remove_format(
730
+ output_ = await self.intellect_format(
794
731
  input_data = input_data,
795
732
  prompt_id = prompt_id,
796
733
  OutputFormat = OutputFormat,
@@ -803,7 +740,7 @@ class AsyncIntel():
803
740
  return wrapper
804
741
  return outer_packing
805
742
 
806
- async def intellect_remove_format_eval(self,
743
+ async def intellect_format_eval(self,
807
744
  OutputFormat: object,
808
745
  prompt_id: str,
809
746
  ExtraFormats: list[object] = [],
@@ -811,10 +748,14 @@ class AsyncIntel():
811
748
  MIN_SUCCESS_RATE = 80.0,
812
749
  ConTent_Function = None,
813
750
  ):
814
-
751
+ """
752
+ ConTent_Function:
753
+ # TODO 人类评价 eval
754
+ # TODO llm 评价 eval
755
+ """
815
756
  async with create_async_session(self.engine) as session:
816
- use_cases = await self.get_use_case_by_sql(target_prompt_id=prompt_id,session=session)
817
- prompt_result = await self.get_prompts_from_sql(prompt_id=prompt_id,
757
+ use_cases = await self.get_use_case(target_prompt_id=prompt_id,session=session)
758
+ prompt_result = await self.get_prompt_safe(prompt_id=prompt_id,
818
759
  session=session)
819
760
  if prompt_result is None:
820
761
  raise IntellectRemoveError("不存在的prompt_id")
@@ -828,7 +769,7 @@ class AsyncIntel():
828
769
  async def evals_func(use_case,prompt_id,OutputFormat,ExtraFormats,version):
829
770
  try:
830
771
  # 这里将参数传入
831
- await self.intellect_remove_format(
772
+ ai_result = await self.intellect_format(
832
773
  input_data = use_case.use_case,
833
774
  prompt_id = prompt_id,
834
775
  OutputFormat = OutputFormat,
@@ -836,23 +777,20 @@ class AsyncIntel():
836
777
  version = version,
837
778
  inference_save_case = False,
838
779
  )
839
- # TODO base_eval
840
- # TODO 人类评价 eval
841
- # TODO llm 评价 eval
842
780
  if ConTent_Function:
843
781
  ConTent_Function()
844
782
  result_cases.append({"type":"Successful","case":use_case.use_case,"reply":f"pass"})
845
- use_case.output = "Successful"
783
+ use_case.output = ai_result
846
784
  except IntellectRemoveFormatError as e:
847
785
  result_cases.append({"type":"FAILED","case":use_case.use_case,"reply":f"{e}"})
848
786
  use_case.output = f"{"FAILED"}-{e}"
849
787
  except Exception as e: # 捕获其他可能的错误
850
788
  result_cases.append({"type":"FAILED","case":use_case.use_case,"reply":f"Exp {e}"})
851
789
  use_case.output = f"{"FAILED"}-{e}"
852
- await session.commit()
790
+ await session.commit()
853
791
 
854
792
  tasks = []
855
- for use_case in tqdm.tqdm(use_cases):
793
+ for use_case in use_cases:
856
794
  tasks.append(
857
795
  evals_func(
858
796
  use_case = use_case,
@@ -884,7 +822,7 @@ class AsyncIntel():
884
822
 
885
823
 
886
824
  def draw_data(self):
887
- df = self.df
825
+ df = self.eval_df
888
826
  # --- 可视化部分 ---
889
827
  fig = go.Figure()
890
828
 
@@ -938,13 +876,37 @@ class AsyncIntel():
938
876
  margin=dict(l=100, r=20, t=60, b=50),
939
877
  height=400 + len(df) * 30
940
878
  )
879
+ error_message =str(df['bad_case'].to_dict())
880
+ fig.add_annotation(
881
+ text=f"<b>bad_case:</b> {error_message}", # 要显示的文本
882
+ xref="paper", yref="paper", # 使用“paper”坐标系,表示相对于图表区域
883
+ x=0.01, y=-0.15, # x=0.01 靠近左侧,y=-0.15 在图表底部下方 (您可以调整这些值)
884
+ showarrow=False, # 不显示箭头
885
+ align="left",
886
+ font=dict(
887
+ family="Arial, sans-serif",
888
+ size=12,
889
+ color="red" # 错误信息通常用红色
890
+ ),
891
+ bgcolor="white", # 背景颜色
892
+ bordercolor="red", # 边框颜色
893
+ borderwidth=1,
894
+ borderpad=4,
895
+ xanchor='left', # 文本框左对齐到x坐标
896
+ yanchor='top' # 文本框顶部对齐到y坐标
897
+ )
898
+ # 可能还需要调整底部的边距以容纳错误信息
899
+ fig.update_layout(
900
+ margin=dict(l=100, r=20, t=60, b=100), # 增加底部边距
901
+ height=400 + len(df) * 30 + 50 # 增加图表高度以适应文本框
902
+ )
941
903
 
942
904
  fig.show()
943
905
  pass
944
906
 
945
907
  async def _evals(self,prompt_id, OutputFormat, ExtraFormats_list = [],**kwargs):
946
908
 
947
- status,score, total, bad_case = await self.intellect_remove_format_eval(
909
+ status,score, total, bad_case = await self.intellect_format_eval(
948
910
  prompt_id=prompt_id,
949
911
  OutputFormat = OutputFormat,
950
912
  ExtraFormats = ExtraFormats_list,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pro-craft
3
- Version: 0.1.35
3
+ Version: 0.1.36
4
4
  Summary: Add your description here
5
5
  Requires-Python: >=3.12
6
6
  Description-Content-Type: text/markdown
@@ -9,6 +9,7 @@ Requires-Dist: anyio>=4.11.0
9
9
  Requires-Dist: db-help>=0.2.2
10
10
  Requires-Dist: fastapi>=0.119.0
11
11
  Requires-Dist: llmada>=1.1.11
12
+ Requires-Dist: plotly>=6.3.1
12
13
  Requires-Dist: pyyaml>=6.0.3
13
14
  Requires-Dist: toml>=0.10.2
14
15
  Requires-Dist: utils-tool==0.1.3
@@ -21,5 +21,6 @@ src/pro_craft/server/mcp/prompt.py
21
21
  src/pro_craft/server/router/__init__.py
22
22
  src/pro_craft/server/router/prompt.py
23
23
  tests/test22.py
24
+ tests/test_11.py
24
25
  tests/test_coder.py
25
26
  tests/test_designer.py
@@ -3,6 +3,7 @@ anyio>=4.11.0
3
3
  db-help>=0.2.2
4
4
  fastapi>=0.119.0
5
5
  llmada>=1.1.11
6
+ plotly>=6.3.1
6
7
  pyyaml>=6.0.3
7
8
  toml>=0.10.2
8
9
  utils-tool==0.1.3
@@ -0,0 +1,42 @@
1
+ from pro_craft.prompt_craft.async_ import AsyncIntel
2
+
3
+ import os
4
+
5
+ async def test_1():
6
+ intels = AsyncIntel(database_url=os.getenv("adatabase_url"),model_name="doubao-1-5-pro-32k-250115")
7
+ # 先使用该函数,实现,创建, 初始化, 训练等等
8
+ result = await intels.push_action_order(
9
+ # demand='以下是一个代码模板, 我希望你做的是, 根据要求微调代码模板来构建代码```pythonfrom pydantic import BaseModel, Fieldfrom pro_craft import AsyncIntelinference_save_case = Falsemodel_name = "doubao-1-5-pro-256k-250115"inters = AsyncIntel(model_name = model_name)## modelsclass Chapter(BaseModel): """ 表示文档中的一个记忆卡片(章节)。 """ title: str = Field(..., description="记忆卡片的标题") content: str = Field(..., description="记忆卡片的内容")class Document(BaseModel): """ 表示一个包含标题和多个记忆卡片的文档。 """ title: str = Field(..., description="整个文档的标题内容") chapters: List[Chapter] = Field(..., description="文档中包含的记忆卡片列表") ## modelsasync def amemory_card_merge(memory_cards: list[str]): memoryCards_str, memoryCards_time_str = memoryCards2str(memory_cards) input_data = memoryCards_str + "各记忆卡片的时间" + memoryCards_time_str result = await inters.intellect_remove_format( input_data= input_data, prompt_id = "memorycard-merge", version = None, inference_save_case=inference_save_case, OutputFormat = Document, ExtraFormats=[Chapter], ) return result```',
10
+ demand="添加一些注释",
11
+ prompt_id="zxf_code_template_2",
12
+ action_type="to:1.8"
13
+ )
14
+ print(result)
15
+
16
+
17
+
18
+ async def test_work():
19
+ intels = AsyncIntel(database_url=os.getenv("adatabase_url"),model_name="doubao-1-5-pro-32k-250115")
20
+ # @intels.intellect_warp("zxf_code_template")
21
+ # async def work_test(input_data, OutputFormat):
22
+ # print(input_data)
23
+ await intels.create_main_database()
24
+ # 期间不断使用这个函数进行配合
25
+ input_data = "我要一个生成记忆卡片的程序,只包括文本即可"
26
+ result = await intels.intellect(input_data=input_data,
27
+ output_format="",
28
+ prompt_id="zxf_code_template_2")
29
+
30
+ print(result)
31
+
32
+
33
+ async def test_work2():
34
+ intels = AsyncIntel(database_url=os.getenv("adatabase_url"),model_name="doubao-1-5-pro-32k-250115")
35
+
36
+ @intels.intellect_warp("zxf_code_template_2")
37
+ async def work_test(input_data, OutputFormat):
38
+ print(input_data)
39
+ input_data = "我要一个生成记忆卡片的程序, 记忆卡片包括标题(title), 内容(content), 时间(time), 标签(tag)"
40
+
41
+ print(await work_test(input_data = input_data,
42
+ OutputFormat = ""))
@@ -1,23 +0,0 @@
1
- from dotenv import load_dotenv, find_dotenv
2
- dotenv_path = find_dotenv()
3
- load_dotenv(".env", override=True)
4
-
5
- from .log import Log
6
- import logging
7
- Log_ = Log(console_level = logging.WARNING,
8
- log_file_name="app.log")
9
- logger = Log_.logger
10
- Log_.set_super_log(logger.critical)
11
-
12
- super_log = Log_.super_log # 调试工具
13
-
14
- def slog(s, target: str = "target",logger = logger.info):
15
- COLOR_GREEN = "\033[92m"
16
- COLOR_RESET = "\033[0m" # 重置颜色
17
- logger("\n"+f"{COLOR_GREEN}=={COLOR_RESET}" * 50)
18
- logger(target + "\n "+"--" * 40)
19
- logger(type(s))
20
- logger(s)
21
- logger("\n"+f"{COLOR_GREEN}=={COLOR_RESET}" * 50)
22
-
23
- from .prompt_craft import AsyncIntel, Intel, IntelNew
File without changes
File without changes
File without changes