prismboost 0.0.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,61 @@
1
+ Metadata-Version: 2.4
2
+ Name: prismboost
3
+ Version: 0.0.1
4
+ Summary: Geometry-boosted machine learning for industrial diagnostics. PRISM behavioral features + XGBoost.
5
+ Author-email: Jason Rudder <jason.rudder@protonmail.com>
6
+ License: MIT
7
+ Project-URL: Homepage, https://github.com/prism-engines/prismboost
8
+ Project-URL: Repository, https://github.com/prism-engines/prismboost
9
+ Keywords: machine-learning,predictive-maintenance,xgboost,industrial-diagnostics,rul-prediction
10
+ Classifier: Development Status :: 2 - Pre-Alpha
11
+ Classifier: Intended Audience :: Science/Research
12
+ Classifier: License :: OSI Approved :: MIT License
13
+ Classifier: Programming Language :: Python :: 3
14
+ Classifier: Programming Language :: Python :: 3.8
15
+ Classifier: Programming Language :: Python :: 3.9
16
+ Classifier: Programming Language :: Python :: 3.10
17
+ Classifier: Programming Language :: Python :: 3.11
18
+ Classifier: Programming Language :: Python :: 3.12
19
+ Classifier: Topic :: Scientific/Engineering
20
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
21
+ Requires-Python: >=3.8
22
+ Description-Content-Type: text/markdown
23
+
24
+ # prismboost
25
+
26
+ **Geometry-boosted machine learning for industrial diagnostics.**
27
+
28
+ prismboost combines PRISM behavioral feature engineering with gradient boosting for state-of-the-art predictive maintenance and remaining useful life (RUL) prediction.
29
+
30
+ ## Status
31
+
32
+ 🚧 **Coming soon** - Package under active development.
33
+
34
+ ## Results
35
+
36
+ On NASA C-MAPSS turbofan degradation benchmark (FD001):
37
+
38
+ | Method | Test RMSE |
39
+ |--------|-----------|
40
+ | Raw sensors + XGBoost | 17.56 |
41
+ | Published benchmark | 6.62 |
42
+ | **prismboost** | **4.76** |
43
+
44
+ **73% improvement over baseline. 28% better than benchmark.**
45
+
46
+ ## Key Features
47
+
48
+ - **Behavioral feature engineering**: Hurst exponent, entropy, GARCH volatility, Lyapunov exponents per sensor
49
+ - **Geometry-aware**: PCA manifold structure, clustering dynamics, coupling analysis
50
+ - **State trajectory**: Acceleration, curvature, mode transitions in behavioral space
51
+ - **Domain-agnostic**: Works on turbofans, bearings, hydraulics, chemical processes
52
+
53
+ ## Installation
54
+
55
+ ```bash
56
+ pip install prismboost
57
+ ```
58
+
59
+ ## License
60
+
61
+ MIT
@@ -0,0 +1,38 @@
1
+ # prismboost
2
+
3
+ **Geometry-boosted machine learning for industrial diagnostics.**
4
+
5
+ prismboost combines PRISM behavioral feature engineering with gradient boosting for state-of-the-art predictive maintenance and remaining useful life (RUL) prediction.
6
+
7
+ ## Status
8
+
9
+ 🚧 **Coming soon** - Package under active development.
10
+
11
+ ## Results
12
+
13
+ On NASA C-MAPSS turbofan degradation benchmark (FD001):
14
+
15
+ | Method | Test RMSE |
16
+ |--------|-----------|
17
+ | Raw sensors + XGBoost | 17.56 |
18
+ | Published benchmark | 6.62 |
19
+ | **prismboost** | **4.76** |
20
+
21
+ **73% improvement over baseline. 28% better than benchmark.**
22
+
23
+ ## Key Features
24
+
25
+ - **Behavioral feature engineering**: Hurst exponent, entropy, GARCH volatility, Lyapunov exponents per sensor
26
+ - **Geometry-aware**: PCA manifold structure, clustering dynamics, coupling analysis
27
+ - **State trajectory**: Acceleration, curvature, mode transitions in behavioral space
28
+ - **Domain-agnostic**: Works on turbofans, bearings, hydraulics, chemical processes
29
+
30
+ ## Installation
31
+
32
+ ```bash
33
+ pip install prismboost
34
+ ```
35
+
36
+ ## License
37
+
38
+ MIT
@@ -0,0 +1,32 @@
1
+ [build-system]
2
+ requires = ["setuptools>=61.0"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "prismboost"
7
+ version = "0.0.1"
8
+ authors = [
9
+ {name = "Jason Rudder", email = "jason.rudder@protonmail.com"},
10
+ ]
11
+ description = "Geometry-boosted machine learning for industrial diagnostics. PRISM behavioral features + XGBoost."
12
+ readme = "README.md"
13
+ license = {text = "MIT"}
14
+ requires-python = ">=3.8"
15
+ classifiers = [
16
+ "Development Status :: 2 - Pre-Alpha",
17
+ "Intended Audience :: Science/Research",
18
+ "License :: OSI Approved :: MIT License",
19
+ "Programming Language :: Python :: 3",
20
+ "Programming Language :: Python :: 3.8",
21
+ "Programming Language :: Python :: 3.9",
22
+ "Programming Language :: Python :: 3.10",
23
+ "Programming Language :: Python :: 3.11",
24
+ "Programming Language :: Python :: 3.12",
25
+ "Topic :: Scientific/Engineering",
26
+ "Topic :: Scientific/Engineering :: Artificial Intelligence",
27
+ ]
28
+ keywords = ["machine-learning", "predictive-maintenance", "xgboost", "industrial-diagnostics", "rul-prediction"]
29
+
30
+ [project.urls]
31
+ Homepage = "https://github.com/prism-engines/prismboost"
32
+ Repository = "https://github.com/prism-engines/prismboost"
@@ -0,0 +1,4 @@
1
+ [egg_info]
2
+ tag_build =
3
+ tag_date = 0
4
+
@@ -0,0 +1,11 @@
1
+ """
2
+ prismboost - Geometry-boosted machine learning for industrial diagnostics.
3
+
4
+ Combines PRISM behavioral feature engineering with gradient boosting
5
+ for state-of-the-art predictive maintenance and RUL prediction.
6
+ """
7
+
8
+ __version__ = "0.0.1"
9
+ __author__ = "Jason Rudder"
10
+
11
+ # Package under development - full API coming soon
@@ -0,0 +1,61 @@
1
+ Metadata-Version: 2.4
2
+ Name: prismboost
3
+ Version: 0.0.1
4
+ Summary: Geometry-boosted machine learning for industrial diagnostics. PRISM behavioral features + XGBoost.
5
+ Author-email: Jason Rudder <jason.rudder@protonmail.com>
6
+ License: MIT
7
+ Project-URL: Homepage, https://github.com/prism-engines/prismboost
8
+ Project-URL: Repository, https://github.com/prism-engines/prismboost
9
+ Keywords: machine-learning,predictive-maintenance,xgboost,industrial-diagnostics,rul-prediction
10
+ Classifier: Development Status :: 2 - Pre-Alpha
11
+ Classifier: Intended Audience :: Science/Research
12
+ Classifier: License :: OSI Approved :: MIT License
13
+ Classifier: Programming Language :: Python :: 3
14
+ Classifier: Programming Language :: Python :: 3.8
15
+ Classifier: Programming Language :: Python :: 3.9
16
+ Classifier: Programming Language :: Python :: 3.10
17
+ Classifier: Programming Language :: Python :: 3.11
18
+ Classifier: Programming Language :: Python :: 3.12
19
+ Classifier: Topic :: Scientific/Engineering
20
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
21
+ Requires-Python: >=3.8
22
+ Description-Content-Type: text/markdown
23
+
24
+ # prismboost
25
+
26
+ **Geometry-boosted machine learning for industrial diagnostics.**
27
+
28
+ prismboost combines PRISM behavioral feature engineering with gradient boosting for state-of-the-art predictive maintenance and remaining useful life (RUL) prediction.
29
+
30
+ ## Status
31
+
32
+ 🚧 **Coming soon** - Package under active development.
33
+
34
+ ## Results
35
+
36
+ On NASA C-MAPSS turbofan degradation benchmark (FD001):
37
+
38
+ | Method | Test RMSE |
39
+ |--------|-----------|
40
+ | Raw sensors + XGBoost | 17.56 |
41
+ | Published benchmark | 6.62 |
42
+ | **prismboost** | **4.76** |
43
+
44
+ **73% improvement over baseline. 28% better than benchmark.**
45
+
46
+ ## Key Features
47
+
48
+ - **Behavioral feature engineering**: Hurst exponent, entropy, GARCH volatility, Lyapunov exponents per sensor
49
+ - **Geometry-aware**: PCA manifold structure, clustering dynamics, coupling analysis
50
+ - **State trajectory**: Acceleration, curvature, mode transitions in behavioral space
51
+ - **Domain-agnostic**: Works on turbofans, bearings, hydraulics, chemical processes
52
+
53
+ ## Installation
54
+
55
+ ```bash
56
+ pip install prismboost
57
+ ```
58
+
59
+ ## License
60
+
61
+ MIT
@@ -0,0 +1,7 @@
1
+ README.md
2
+ pyproject.toml
3
+ src/prismboost/__init__.py
4
+ src/prismboost.egg-info/PKG-INFO
5
+ src/prismboost.egg-info/SOURCES.txt
6
+ src/prismboost.egg-info/dependency_links.txt
7
+ src/prismboost.egg-info/top_level.txt
@@ -0,0 +1 @@
1
+ prismboost