prismboost 0.0.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- prismboost-0.0.1/PKG-INFO +61 -0
- prismboost-0.0.1/README.md +38 -0
- prismboost-0.0.1/pyproject.toml +32 -0
- prismboost-0.0.1/setup.cfg +4 -0
- prismboost-0.0.1/src/prismboost/__init__.py +11 -0
- prismboost-0.0.1/src/prismboost.egg-info/PKG-INFO +61 -0
- prismboost-0.0.1/src/prismboost.egg-info/SOURCES.txt +7 -0
- prismboost-0.0.1/src/prismboost.egg-info/dependency_links.txt +1 -0
- prismboost-0.0.1/src/prismboost.egg-info/top_level.txt +1 -0
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: prismboost
|
|
3
|
+
Version: 0.0.1
|
|
4
|
+
Summary: Geometry-boosted machine learning for industrial diagnostics. PRISM behavioral features + XGBoost.
|
|
5
|
+
Author-email: Jason Rudder <jason.rudder@protonmail.com>
|
|
6
|
+
License: MIT
|
|
7
|
+
Project-URL: Homepage, https://github.com/prism-engines/prismboost
|
|
8
|
+
Project-URL: Repository, https://github.com/prism-engines/prismboost
|
|
9
|
+
Keywords: machine-learning,predictive-maintenance,xgboost,industrial-diagnostics,rul-prediction
|
|
10
|
+
Classifier: Development Status :: 2 - Pre-Alpha
|
|
11
|
+
Classifier: Intended Audience :: Science/Research
|
|
12
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
13
|
+
Classifier: Programming Language :: Python :: 3
|
|
14
|
+
Classifier: Programming Language :: Python :: 3.8
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
19
|
+
Classifier: Topic :: Scientific/Engineering
|
|
20
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
21
|
+
Requires-Python: >=3.8
|
|
22
|
+
Description-Content-Type: text/markdown
|
|
23
|
+
|
|
24
|
+
# prismboost
|
|
25
|
+
|
|
26
|
+
**Geometry-boosted machine learning for industrial diagnostics.**
|
|
27
|
+
|
|
28
|
+
prismboost combines PRISM behavioral feature engineering with gradient boosting for state-of-the-art predictive maintenance and remaining useful life (RUL) prediction.
|
|
29
|
+
|
|
30
|
+
## Status
|
|
31
|
+
|
|
32
|
+
🚧 **Coming soon** - Package under active development.
|
|
33
|
+
|
|
34
|
+
## Results
|
|
35
|
+
|
|
36
|
+
On NASA C-MAPSS turbofan degradation benchmark (FD001):
|
|
37
|
+
|
|
38
|
+
| Method | Test RMSE |
|
|
39
|
+
|--------|-----------|
|
|
40
|
+
| Raw sensors + XGBoost | 17.56 |
|
|
41
|
+
| Published benchmark | 6.62 |
|
|
42
|
+
| **prismboost** | **4.76** |
|
|
43
|
+
|
|
44
|
+
**73% improvement over baseline. 28% better than benchmark.**
|
|
45
|
+
|
|
46
|
+
## Key Features
|
|
47
|
+
|
|
48
|
+
- **Behavioral feature engineering**: Hurst exponent, entropy, GARCH volatility, Lyapunov exponents per sensor
|
|
49
|
+
- **Geometry-aware**: PCA manifold structure, clustering dynamics, coupling analysis
|
|
50
|
+
- **State trajectory**: Acceleration, curvature, mode transitions in behavioral space
|
|
51
|
+
- **Domain-agnostic**: Works on turbofans, bearings, hydraulics, chemical processes
|
|
52
|
+
|
|
53
|
+
## Installation
|
|
54
|
+
|
|
55
|
+
```bash
|
|
56
|
+
pip install prismboost
|
|
57
|
+
```
|
|
58
|
+
|
|
59
|
+
## License
|
|
60
|
+
|
|
61
|
+
MIT
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
# prismboost
|
|
2
|
+
|
|
3
|
+
**Geometry-boosted machine learning for industrial diagnostics.**
|
|
4
|
+
|
|
5
|
+
prismboost combines PRISM behavioral feature engineering with gradient boosting for state-of-the-art predictive maintenance and remaining useful life (RUL) prediction.
|
|
6
|
+
|
|
7
|
+
## Status
|
|
8
|
+
|
|
9
|
+
🚧 **Coming soon** - Package under active development.
|
|
10
|
+
|
|
11
|
+
## Results
|
|
12
|
+
|
|
13
|
+
On NASA C-MAPSS turbofan degradation benchmark (FD001):
|
|
14
|
+
|
|
15
|
+
| Method | Test RMSE |
|
|
16
|
+
|--------|-----------|
|
|
17
|
+
| Raw sensors + XGBoost | 17.56 |
|
|
18
|
+
| Published benchmark | 6.62 |
|
|
19
|
+
| **prismboost** | **4.76** |
|
|
20
|
+
|
|
21
|
+
**73% improvement over baseline. 28% better than benchmark.**
|
|
22
|
+
|
|
23
|
+
## Key Features
|
|
24
|
+
|
|
25
|
+
- **Behavioral feature engineering**: Hurst exponent, entropy, GARCH volatility, Lyapunov exponents per sensor
|
|
26
|
+
- **Geometry-aware**: PCA manifold structure, clustering dynamics, coupling analysis
|
|
27
|
+
- **State trajectory**: Acceleration, curvature, mode transitions in behavioral space
|
|
28
|
+
- **Domain-agnostic**: Works on turbofans, bearings, hydraulics, chemical processes
|
|
29
|
+
|
|
30
|
+
## Installation
|
|
31
|
+
|
|
32
|
+
```bash
|
|
33
|
+
pip install prismboost
|
|
34
|
+
```
|
|
35
|
+
|
|
36
|
+
## License
|
|
37
|
+
|
|
38
|
+
MIT
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
[build-system]
|
|
2
|
+
requires = ["setuptools>=61.0"]
|
|
3
|
+
build-backend = "setuptools.build_meta"
|
|
4
|
+
|
|
5
|
+
[project]
|
|
6
|
+
name = "prismboost"
|
|
7
|
+
version = "0.0.1"
|
|
8
|
+
authors = [
|
|
9
|
+
{name = "Jason Rudder", email = "jason.rudder@protonmail.com"},
|
|
10
|
+
]
|
|
11
|
+
description = "Geometry-boosted machine learning for industrial diagnostics. PRISM behavioral features + XGBoost."
|
|
12
|
+
readme = "README.md"
|
|
13
|
+
license = {text = "MIT"}
|
|
14
|
+
requires-python = ">=3.8"
|
|
15
|
+
classifiers = [
|
|
16
|
+
"Development Status :: 2 - Pre-Alpha",
|
|
17
|
+
"Intended Audience :: Science/Research",
|
|
18
|
+
"License :: OSI Approved :: MIT License",
|
|
19
|
+
"Programming Language :: Python :: 3",
|
|
20
|
+
"Programming Language :: Python :: 3.8",
|
|
21
|
+
"Programming Language :: Python :: 3.9",
|
|
22
|
+
"Programming Language :: Python :: 3.10",
|
|
23
|
+
"Programming Language :: Python :: 3.11",
|
|
24
|
+
"Programming Language :: Python :: 3.12",
|
|
25
|
+
"Topic :: Scientific/Engineering",
|
|
26
|
+
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
|
27
|
+
]
|
|
28
|
+
keywords = ["machine-learning", "predictive-maintenance", "xgboost", "industrial-diagnostics", "rul-prediction"]
|
|
29
|
+
|
|
30
|
+
[project.urls]
|
|
31
|
+
Homepage = "https://github.com/prism-engines/prismboost"
|
|
32
|
+
Repository = "https://github.com/prism-engines/prismboost"
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
"""
|
|
2
|
+
prismboost - Geometry-boosted machine learning for industrial diagnostics.
|
|
3
|
+
|
|
4
|
+
Combines PRISM behavioral feature engineering with gradient boosting
|
|
5
|
+
for state-of-the-art predictive maintenance and RUL prediction.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
__version__ = "0.0.1"
|
|
9
|
+
__author__ = "Jason Rudder"
|
|
10
|
+
|
|
11
|
+
# Package under development - full API coming soon
|
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: prismboost
|
|
3
|
+
Version: 0.0.1
|
|
4
|
+
Summary: Geometry-boosted machine learning for industrial diagnostics. PRISM behavioral features + XGBoost.
|
|
5
|
+
Author-email: Jason Rudder <jason.rudder@protonmail.com>
|
|
6
|
+
License: MIT
|
|
7
|
+
Project-URL: Homepage, https://github.com/prism-engines/prismboost
|
|
8
|
+
Project-URL: Repository, https://github.com/prism-engines/prismboost
|
|
9
|
+
Keywords: machine-learning,predictive-maintenance,xgboost,industrial-diagnostics,rul-prediction
|
|
10
|
+
Classifier: Development Status :: 2 - Pre-Alpha
|
|
11
|
+
Classifier: Intended Audience :: Science/Research
|
|
12
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
13
|
+
Classifier: Programming Language :: Python :: 3
|
|
14
|
+
Classifier: Programming Language :: Python :: 3.8
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
19
|
+
Classifier: Topic :: Scientific/Engineering
|
|
20
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
21
|
+
Requires-Python: >=3.8
|
|
22
|
+
Description-Content-Type: text/markdown
|
|
23
|
+
|
|
24
|
+
# prismboost
|
|
25
|
+
|
|
26
|
+
**Geometry-boosted machine learning for industrial diagnostics.**
|
|
27
|
+
|
|
28
|
+
prismboost combines PRISM behavioral feature engineering with gradient boosting for state-of-the-art predictive maintenance and remaining useful life (RUL) prediction.
|
|
29
|
+
|
|
30
|
+
## Status
|
|
31
|
+
|
|
32
|
+
🚧 **Coming soon** - Package under active development.
|
|
33
|
+
|
|
34
|
+
## Results
|
|
35
|
+
|
|
36
|
+
On NASA C-MAPSS turbofan degradation benchmark (FD001):
|
|
37
|
+
|
|
38
|
+
| Method | Test RMSE |
|
|
39
|
+
|--------|-----------|
|
|
40
|
+
| Raw sensors + XGBoost | 17.56 |
|
|
41
|
+
| Published benchmark | 6.62 |
|
|
42
|
+
| **prismboost** | **4.76** |
|
|
43
|
+
|
|
44
|
+
**73% improvement over baseline. 28% better than benchmark.**
|
|
45
|
+
|
|
46
|
+
## Key Features
|
|
47
|
+
|
|
48
|
+
- **Behavioral feature engineering**: Hurst exponent, entropy, GARCH volatility, Lyapunov exponents per sensor
|
|
49
|
+
- **Geometry-aware**: PCA manifold structure, clustering dynamics, coupling analysis
|
|
50
|
+
- **State trajectory**: Acceleration, curvature, mode transitions in behavioral space
|
|
51
|
+
- **Domain-agnostic**: Works on turbofans, bearings, hydraulics, chemical processes
|
|
52
|
+
|
|
53
|
+
## Installation
|
|
54
|
+
|
|
55
|
+
```bash
|
|
56
|
+
pip install prismboost
|
|
57
|
+
```
|
|
58
|
+
|
|
59
|
+
## License
|
|
60
|
+
|
|
61
|
+
MIT
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
prismboost
|