praisonaiagents 0.0.16__tar.gz → 0.0.17__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/PKG-INFO +1 -1
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/agent/agent.py +151 -3
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/agents/agents.py +205 -4
- praisonaiagents-0.0.17/praisonaiagents/process/process.py +534 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/task/task.py +13 -3
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents.egg-info/PKG-INFO +1 -1
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/pyproject.toml +1 -1
- praisonaiagents-0.0.16/praisonaiagents/process/process.py +0 -263
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/__init__.py +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/agent/__init__.py +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/agents/__init__.py +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/build/lib/praisonaiagents/__init__.py +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/build/lib/praisonaiagents/agent/__init__.py +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/build/lib/praisonaiagents/agent/agent.py +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/build/lib/praisonaiagents/agents/__init__.py +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/build/lib/praisonaiagents/agents/agents.py +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/build/lib/praisonaiagents/main.py +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/build/lib/praisonaiagents/task/__init__.py +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/build/lib/praisonaiagents/task/task.py +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/main.py +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/process/__init__.py +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents/task/__init__.py +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents.egg-info/SOURCES.txt +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents.egg-info/dependency_links.txt +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents.egg-info/requires.txt +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/praisonaiagents.egg-info/top_level.txt +0 -0
- {praisonaiagents-0.0.16 → praisonaiagents-0.0.17}/setup.cfg +0 -0
@@ -1,9 +1,12 @@
|
|
1
|
-
import
|
2
|
-
import json
|
1
|
+
import os
|
3
2
|
import time
|
3
|
+
import json
|
4
|
+
import logging
|
5
|
+
import asyncio
|
4
6
|
from typing import List, Optional, Any, Dict, Union, Literal
|
5
7
|
from rich.console import Console
|
6
8
|
from rich.live import Live
|
9
|
+
from openai import AsyncOpenAI
|
7
10
|
from ..main import (
|
8
11
|
display_error,
|
9
12
|
display_tool_call,
|
@@ -192,6 +195,12 @@ class Agent:
|
|
192
195
|
self.min_reflect = min_reflect
|
193
196
|
self.reflect_llm = reflect_llm
|
194
197
|
self.console = Console() # Create a single console instance for the agent
|
198
|
+
|
199
|
+
# Initialize system prompt
|
200
|
+
self.system_prompt = f"""{self.backstory}\n
|
201
|
+
Your Role: {self.role}\n
|
202
|
+
Your Goal: {self.goal}
|
203
|
+
"""
|
195
204
|
|
196
205
|
def execute_tool(self, function_name, arguments):
|
197
206
|
"""
|
@@ -536,4 +545,143 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
536
545
|
cleaned = cleaned[len("```"):].strip()
|
537
546
|
if cleaned.endswith("```"):
|
538
547
|
cleaned = cleaned[:-3].strip()
|
539
|
-
return cleaned
|
548
|
+
return cleaned
|
549
|
+
|
550
|
+
async def achat(self, prompt, temperature=0.2, tools=None, output_json=None):
|
551
|
+
"""Async version of chat method"""
|
552
|
+
try:
|
553
|
+
# Build system prompt
|
554
|
+
system_prompt = self.system_prompt
|
555
|
+
if output_json:
|
556
|
+
system_prompt += f"\nReturn ONLY a JSON object that matches this Pydantic model: {output_json.schema_json()}"
|
557
|
+
|
558
|
+
# Build messages
|
559
|
+
if isinstance(prompt, str):
|
560
|
+
messages = [
|
561
|
+
{"role": "system", "content": system_prompt},
|
562
|
+
{"role": "user", "content": prompt + ("\nReturn ONLY a valid JSON object. No other text or explanation." if output_json else "")}
|
563
|
+
]
|
564
|
+
else:
|
565
|
+
# For multimodal prompts
|
566
|
+
messages = [
|
567
|
+
{"role": "system", "content": system_prompt},
|
568
|
+
{"role": "user", "content": prompt}
|
569
|
+
]
|
570
|
+
if output_json:
|
571
|
+
# Add JSON instruction to text content
|
572
|
+
for item in messages[-1]["content"]:
|
573
|
+
if item["type"] == "text":
|
574
|
+
item["text"] += "\nReturn ONLY a valid JSON object. No other text or explanation."
|
575
|
+
break
|
576
|
+
|
577
|
+
# Format tools if provided
|
578
|
+
formatted_tools = []
|
579
|
+
if tools:
|
580
|
+
for tool in tools:
|
581
|
+
if isinstance(tool, str):
|
582
|
+
tool_def = self._generate_tool_definition(tool)
|
583
|
+
if tool_def:
|
584
|
+
formatted_tools.append(tool_def)
|
585
|
+
elif isinstance(tool, dict):
|
586
|
+
formatted_tools.append(tool)
|
587
|
+
elif hasattr(tool, "to_openai_tool"):
|
588
|
+
formatted_tools.append(tool.to_openai_tool())
|
589
|
+
elif callable(tool):
|
590
|
+
formatted_tools.append(self._generate_tool_definition(tool.__name__))
|
591
|
+
|
592
|
+
# Create async OpenAI client
|
593
|
+
async_client = AsyncOpenAI()
|
594
|
+
|
595
|
+
# Make the API call based on the type of request
|
596
|
+
if tools:
|
597
|
+
response = await async_client.chat.completions.create(
|
598
|
+
model=self.llm,
|
599
|
+
messages=messages,
|
600
|
+
temperature=temperature,
|
601
|
+
tools=formatted_tools
|
602
|
+
)
|
603
|
+
return await self._achat_completion(response, tools)
|
604
|
+
elif output_json:
|
605
|
+
response = await async_client.chat.completions.create(
|
606
|
+
model=self.llm,
|
607
|
+
messages=messages,
|
608
|
+
temperature=temperature,
|
609
|
+
response_format={"type": "json_object"}
|
610
|
+
)
|
611
|
+
result = response.choices[0].message.content
|
612
|
+
# Clean and parse the JSON response
|
613
|
+
cleaned_json = self.clean_json_output(result)
|
614
|
+
try:
|
615
|
+
parsed = json.loads(cleaned_json)
|
616
|
+
return output_json(**parsed)
|
617
|
+
except Exception as e:
|
618
|
+
display_error(f"Error parsing JSON response: {e}")
|
619
|
+
return None
|
620
|
+
else:
|
621
|
+
response = await async_client.chat.completions.create(
|
622
|
+
model=self.llm,
|
623
|
+
messages=messages,
|
624
|
+
temperature=temperature
|
625
|
+
)
|
626
|
+
return response.choices[0].message.content
|
627
|
+
except Exception as e:
|
628
|
+
display_error(f"Error in chat completion: {e}")
|
629
|
+
return None
|
630
|
+
|
631
|
+
async def _achat_completion(self, response, tools):
|
632
|
+
"""Async version of _chat_completion method"""
|
633
|
+
try:
|
634
|
+
message = response.choices[0].message
|
635
|
+
if not hasattr(message, 'tool_calls') or not message.tool_calls:
|
636
|
+
return message.content
|
637
|
+
|
638
|
+
results = []
|
639
|
+
for tool_call in message.tool_calls:
|
640
|
+
try:
|
641
|
+
function_name = tool_call.function.name
|
642
|
+
arguments = json.loads(tool_call.function.arguments)
|
643
|
+
|
644
|
+
# Find the matching tool
|
645
|
+
tool = next((t for t in tools if t.__name__ == function_name), None)
|
646
|
+
if not tool:
|
647
|
+
display_error(f"Tool {function_name} not found")
|
648
|
+
continue
|
649
|
+
|
650
|
+
# Check if the tool is async
|
651
|
+
if asyncio.iscoroutinefunction(tool):
|
652
|
+
result = await tool(**arguments)
|
653
|
+
else:
|
654
|
+
# Run sync function in executor to avoid blocking
|
655
|
+
loop = asyncio.get_event_loop()
|
656
|
+
result = await loop.run_in_executor(None, lambda: tool(**arguments))
|
657
|
+
|
658
|
+
results.append(result)
|
659
|
+
except Exception as e:
|
660
|
+
display_error(f"Error executing tool {function_name}: {e}")
|
661
|
+
results.append(None)
|
662
|
+
|
663
|
+
# If we have results, format them into a response
|
664
|
+
if results:
|
665
|
+
formatted_results = "\n".join([str(r) for r in results if r is not None])
|
666
|
+
if formatted_results:
|
667
|
+
messages = [
|
668
|
+
{"role": "system", "content": self.system_prompt},
|
669
|
+
{"role": "assistant", "content": "Here are the tool results:"},
|
670
|
+
{"role": "user", "content": formatted_results + "\nPlease process these results and provide a final response."}
|
671
|
+
]
|
672
|
+
try:
|
673
|
+
async_client = AsyncOpenAI()
|
674
|
+
final_response = await async_client.chat.completions.create(
|
675
|
+
model=self.llm,
|
676
|
+
messages=messages,
|
677
|
+
temperature=0.2
|
678
|
+
)
|
679
|
+
return final_response.choices[0].message.content
|
680
|
+
except Exception as e:
|
681
|
+
display_error(f"Error in final chat completion: {e}")
|
682
|
+
return formatted_results
|
683
|
+
return formatted_results
|
684
|
+
return None
|
685
|
+
except Exception as e:
|
686
|
+
display_error(f"Error in _achat_completion: {e}")
|
687
|
+
return None
|
@@ -11,6 +11,7 @@ from ..main import display_error, TaskOutput, error_logs, client
|
|
11
11
|
from ..agent.agent import Agent
|
12
12
|
from ..task.task import Task
|
13
13
|
from ..process.process import Process, LoopItems
|
14
|
+
import asyncio
|
14
15
|
|
15
16
|
def encode_file_to_base64(file_path: str) -> str:
|
16
17
|
"""Base64-encode a file."""
|
@@ -82,7 +83,8 @@ class PraisonAIAgents:
|
|
82
83
|
return True
|
83
84
|
return len(agent_output.strip()) > 0
|
84
85
|
|
85
|
-
def
|
86
|
+
async def aexecute_task(self, task_id):
|
87
|
+
"""Async version of execute_task method"""
|
86
88
|
if task_id not in self.tasks:
|
87
89
|
display_error(f"Error: Task with ID {task_id} does not exist")
|
88
90
|
return
|
@@ -159,12 +161,12 @@ Expected Output: {task.expected_output}.
|
|
159
161
|
})
|
160
162
|
return content
|
161
163
|
|
162
|
-
agent_output = executor_agent.
|
164
|
+
agent_output = await executor_agent.achat(
|
163
165
|
_get_multimodal_message(task_prompt, task.images),
|
164
166
|
tools=task.tools
|
165
167
|
)
|
166
168
|
else:
|
167
|
-
agent_output = executor_agent.
|
169
|
+
agent_output = await executor_agent.achat(task_prompt, tools=task.tools)
|
168
170
|
|
169
171
|
if agent_output:
|
170
172
|
task_output = TaskOutput(
|
@@ -202,6 +204,83 @@ Expected Output: {task.expected_output}.
|
|
202
204
|
task.status = "failed"
|
203
205
|
return None
|
204
206
|
|
207
|
+
async def arun_task(self, task_id):
|
208
|
+
"""Async version of run_task method"""
|
209
|
+
if task_id not in self.tasks:
|
210
|
+
display_error(f"Error: Task with ID {task_id} does not exist")
|
211
|
+
return
|
212
|
+
task = self.tasks[task_id]
|
213
|
+
if task.status == "completed":
|
214
|
+
logging.info(f"Task with ID {task_id} is already completed")
|
215
|
+
return
|
216
|
+
|
217
|
+
retries = 0
|
218
|
+
while task.status != "completed" and retries < self.max_retries:
|
219
|
+
logging.debug(f"Attempt {retries+1} for task {task_id}")
|
220
|
+
if task.status in ["not started", "in progress"]:
|
221
|
+
task_output = await self.aexecute_task(task_id)
|
222
|
+
if task_output and self.completion_checker(task, task_output.raw):
|
223
|
+
task.status = "completed"
|
224
|
+
if task.callback:
|
225
|
+
await task.execute_callback(task_output)
|
226
|
+
self.save_output_to_file(task, task_output)
|
227
|
+
if self.verbose >= 1:
|
228
|
+
logging.info(f"Task {task_id} completed successfully.")
|
229
|
+
else:
|
230
|
+
task.status = "in progress"
|
231
|
+
if self.verbose >= 1:
|
232
|
+
logging.info(f"Task {task_id} not completed, retrying")
|
233
|
+
await asyncio.sleep(1)
|
234
|
+
retries += 1
|
235
|
+
else:
|
236
|
+
if task.status == "failed":
|
237
|
+
logging.info("Task is failed, resetting to in-progress for another try...")
|
238
|
+
task.status = "in progress"
|
239
|
+
else:
|
240
|
+
logging.info("Invalid Task status")
|
241
|
+
break
|
242
|
+
|
243
|
+
if retries == self.max_retries and task.status != "completed":
|
244
|
+
logging.info(f"Task {task_id} failed after {self.max_retries} retries.")
|
245
|
+
|
246
|
+
async def arun_all_tasks(self):
|
247
|
+
"""Async version of run_all_tasks method"""
|
248
|
+
process = Process(
|
249
|
+
tasks=self.tasks,
|
250
|
+
agents=self.agents,
|
251
|
+
manager_llm=self.manager_llm,
|
252
|
+
verbose=self.verbose
|
253
|
+
)
|
254
|
+
|
255
|
+
if self.process == "workflow":
|
256
|
+
async for task_id in process.aworkflow():
|
257
|
+
if self.tasks[task_id].async_execution:
|
258
|
+
await self.arun_task(task_id)
|
259
|
+
else:
|
260
|
+
self.run_task(task_id)
|
261
|
+
elif self.process == "sequential":
|
262
|
+
async for task_id in process.asequential():
|
263
|
+
if self.tasks[task_id].async_execution:
|
264
|
+
await self.arun_task(task_id)
|
265
|
+
else:
|
266
|
+
self.run_task(task_id)
|
267
|
+
elif self.process == "hierarchical":
|
268
|
+
async for task_id in process.ahierarchical():
|
269
|
+
if isinstance(task_id, Task):
|
270
|
+
task_id = self.add_task(task_id)
|
271
|
+
if self.tasks[task_id].async_execution:
|
272
|
+
await self.arun_task(task_id)
|
273
|
+
else:
|
274
|
+
self.run_task(task_id)
|
275
|
+
|
276
|
+
async def astart(self):
|
277
|
+
"""Async version of start method"""
|
278
|
+
await self.arun_all_tasks()
|
279
|
+
return {
|
280
|
+
"task_status": self.get_all_tasks_status(),
|
281
|
+
"task_results": {task_id: self.get_task_result(task_id) for task_id in self.tasks}
|
282
|
+
}
|
283
|
+
|
205
284
|
def save_output_to_file(self, task, task_output):
|
206
285
|
if task.output_file:
|
207
286
|
try:
|
@@ -214,7 +293,129 @@ Expected Output: {task.expected_output}.
|
|
214
293
|
except Exception as e:
|
215
294
|
display_error(f"Error saving task output to file: {e}")
|
216
295
|
|
296
|
+
def execute_task(self, task_id):
|
297
|
+
"""Synchronous version of execute_task method"""
|
298
|
+
if task_id not in self.tasks:
|
299
|
+
display_error(f"Error: Task with ID {task_id} does not exist")
|
300
|
+
return
|
301
|
+
task = self.tasks[task_id]
|
302
|
+
|
303
|
+
# Only import multimodal dependencies if task has images
|
304
|
+
if task.images and task.status == "not started":
|
305
|
+
try:
|
306
|
+
import cv2
|
307
|
+
import base64
|
308
|
+
from moviepy import VideoFileClip
|
309
|
+
except ImportError as e:
|
310
|
+
display_error(f"Error: Missing required dependencies for image/video processing: {e}")
|
311
|
+
display_error("Please install with: pip install opencv-python moviepy")
|
312
|
+
task.status = "failed"
|
313
|
+
return None
|
314
|
+
|
315
|
+
if task.status == "not started":
|
316
|
+
task.status = "in progress"
|
317
|
+
|
318
|
+
executor_agent = task.agent
|
319
|
+
|
320
|
+
task_prompt = f"""
|
321
|
+
You need to do the following task: {task.description}.
|
322
|
+
Expected Output: {task.expected_output}.
|
323
|
+
"""
|
324
|
+
if task.context:
|
325
|
+
context_results = ""
|
326
|
+
for context_task in task.context:
|
327
|
+
if context_task.result:
|
328
|
+
context_results += f"Result of previous task {context_task.name if context_task.name else context_task.description}: {context_task.result.raw}\n"
|
329
|
+
else:
|
330
|
+
context_results += f"Previous task {context_task.name if context_task.name else context_task.description} had no result.\n"
|
331
|
+
task_prompt += f"""
|
332
|
+
Here are the results of previous tasks that might be useful:\n
|
333
|
+
{context_results}
|
334
|
+
"""
|
335
|
+
task_prompt += "Please provide only the final result of your work. Do not add any conversation or extra explanation."
|
336
|
+
|
337
|
+
if self.verbose >= 2:
|
338
|
+
logging.info(f"Executing task {task_id}: {task.description} using {executor_agent.name}")
|
339
|
+
logging.debug(f"Starting execution of task {task_id} with prompt:\n{task_prompt}")
|
340
|
+
|
341
|
+
if task.images:
|
342
|
+
def _get_multimodal_message(text_prompt, images):
|
343
|
+
content = [{"type": "text", "text": text_prompt}]
|
344
|
+
|
345
|
+
for img in images:
|
346
|
+
# If local file path for a valid image
|
347
|
+
if os.path.exists(img):
|
348
|
+
ext = os.path.splitext(img)[1].lower()
|
349
|
+
# If it's a .mp4, convert to frames
|
350
|
+
if ext == ".mp4":
|
351
|
+
frames = process_video(img, seconds_per_frame=1)
|
352
|
+
content.append({"type": "text", "text": "These are frames from the video."})
|
353
|
+
for f in frames:
|
354
|
+
content.append({
|
355
|
+
"type": "image_url",
|
356
|
+
"image_url": {"url": f"data:image/jpg;base64,{f}"}
|
357
|
+
})
|
358
|
+
else:
|
359
|
+
encoded = encode_file_to_base64(img)
|
360
|
+
content.append({
|
361
|
+
"type": "image_url",
|
362
|
+
"image_url": {
|
363
|
+
"url": f"data:image/{ext.lstrip('.')};base64,{encoded}"
|
364
|
+
}
|
365
|
+
})
|
366
|
+
else:
|
367
|
+
# Treat as a remote URL
|
368
|
+
content.append({
|
369
|
+
"type": "image_url",
|
370
|
+
"image_url": {"url": img}
|
371
|
+
})
|
372
|
+
return content
|
373
|
+
|
374
|
+
agent_output = executor_agent.chat(
|
375
|
+
_get_multimodal_message(task_prompt, task.images),
|
376
|
+
tools=task.tools
|
377
|
+
)
|
378
|
+
else:
|
379
|
+
agent_output = executor_agent.chat(task_prompt, tools=task.tools)
|
380
|
+
|
381
|
+
if agent_output:
|
382
|
+
task_output = TaskOutput(
|
383
|
+
description=task.description,
|
384
|
+
summary=task.description[:10],
|
385
|
+
raw=agent_output,
|
386
|
+
agent=executor_agent.name,
|
387
|
+
output_format="RAW"
|
388
|
+
)
|
389
|
+
|
390
|
+
if task.output_json:
|
391
|
+
cleaned = self.clean_json_output(agent_output)
|
392
|
+
try:
|
393
|
+
parsed = json.loads(cleaned)
|
394
|
+
task_output.json_dict = parsed
|
395
|
+
task_output.output_format = "JSON"
|
396
|
+
except:
|
397
|
+
logging.warning(f"Warning: Could not parse output of task {task_id} as JSON")
|
398
|
+
logging.debug(f"Output that failed JSON parsing: {agent_output}")
|
399
|
+
|
400
|
+
if task.output_pydantic:
|
401
|
+
cleaned = self.clean_json_output(agent_output)
|
402
|
+
try:
|
403
|
+
parsed = json.loads(cleaned)
|
404
|
+
pyd_obj = task.output_pydantic(**parsed)
|
405
|
+
task_output.pydantic = pyd_obj
|
406
|
+
task_output.output_format = "Pydantic"
|
407
|
+
except:
|
408
|
+
logging.warning(f"Warning: Could not parse output of task {task_id} as Pydantic Model")
|
409
|
+
logging.debug(f"Output that failed Pydantic parsing: {agent_output}")
|
410
|
+
|
411
|
+
task.result = task_output
|
412
|
+
return task_output
|
413
|
+
else:
|
414
|
+
task.status = "failed"
|
415
|
+
return None
|
416
|
+
|
217
417
|
def run_task(self, task_id):
|
418
|
+
"""Synchronous version of run_task method"""
|
218
419
|
if task_id not in self.tasks:
|
219
420
|
display_error(f"Error: Task with ID {task_id} does not exist")
|
220
421
|
return
|
@@ -253,7 +454,7 @@ Expected Output: {task.expected_output}.
|
|
253
454
|
logging.info(f"Task {task_id} failed after {self.max_retries} retries.")
|
254
455
|
|
255
456
|
def run_all_tasks(self):
|
256
|
-
"""
|
457
|
+
"""Synchronous version of run_all_tasks method"""
|
257
458
|
process = Process(
|
258
459
|
tasks=self.tasks,
|
259
460
|
agents=self.agents,
|