praisonaiagents 0.0.12__tar.gz → 0.0.13__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/PKG-INFO +1 -1
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/agent/agent.py +40 -16
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/agents/agents.py +81 -1
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/main.py +64 -15
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/task/task.py +3 -1
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents.egg-info/PKG-INFO +1 -1
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/pyproject.toml +1 -1
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/__init__.py +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/agent/__init__.py +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/agents/__init__.py +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/build/lib/praisonaiagents/__init__.py +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/build/lib/praisonaiagents/agent/__init__.py +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/build/lib/praisonaiagents/agent/agent.py +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/build/lib/praisonaiagents/agents/__init__.py +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/build/lib/praisonaiagents/agents/agents.py +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/build/lib/praisonaiagents/main.py +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/build/lib/praisonaiagents/task/__init__.py +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/build/lib/praisonaiagents/task/task.py +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/task/__init__.py +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents.egg-info/SOURCES.txt +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents.egg-info/dependency_links.txt +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents.egg-info/requires.txt +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents.egg-info/top_level.txt +0 -0
- {praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/setup.cfg +0 -0
@@ -140,7 +140,7 @@ class Agent:
|
|
140
140
|
max_rpm: Optional[int] = None,
|
141
141
|
max_execution_time: Optional[int] = None,
|
142
142
|
memory: bool = True,
|
143
|
-
verbose: bool =
|
143
|
+
verbose: bool = True,
|
144
144
|
allow_delegation: bool = False,
|
145
145
|
step_callback: Optional[Any] = None,
|
146
146
|
cache: bool = True,
|
@@ -191,6 +191,8 @@ class Agent:
|
|
191
191
|
self.max_reflect = max_reflect
|
192
192
|
self.min_reflect = min_reflect
|
193
193
|
self.reflect_llm = reflect_llm
|
194
|
+
self.console = Console() # Create a single console instance for the agent
|
195
|
+
|
194
196
|
def execute_tool(self, function_name, arguments):
|
195
197
|
"""
|
196
198
|
Execute a tool dynamically based on the function name and arguments.
|
@@ -235,7 +237,6 @@ class Agent:
|
|
235
237
|
return f"Agent(name='{self.name}', role='{self.role}', goal='{self.goal}')"
|
236
238
|
|
237
239
|
def _chat_completion(self, messages, temperature=0.2, tools=None, stream=True):
|
238
|
-
console = Console()
|
239
240
|
start_time = time.time()
|
240
241
|
logging.debug(f"{self.name} sending messages to LLM: {messages}")
|
241
242
|
|
@@ -305,12 +306,24 @@ class Agent:
|
|
305
306
|
stream=True
|
306
307
|
)
|
307
308
|
full_response_text = ""
|
308
|
-
|
309
|
+
|
310
|
+
# Create Live display with proper configuration
|
311
|
+
with Live(
|
312
|
+
display_generating("", start_time),
|
313
|
+
console=self.console,
|
314
|
+
refresh_per_second=4,
|
315
|
+
transient=False, # Changed to False to preserve output
|
316
|
+
vertical_overflow="ellipsis",
|
317
|
+
auto_refresh=True
|
318
|
+
) as live:
|
309
319
|
for chunk in response_stream:
|
310
320
|
if chunk.choices[0].delta.content:
|
311
321
|
full_response_text += chunk.choices[0].delta.content
|
312
322
|
live.update(display_generating(full_response_text, start_time))
|
313
|
-
|
323
|
+
|
324
|
+
# Clear the last generating display with a blank line
|
325
|
+
self.console.print()
|
326
|
+
|
314
327
|
final_response = client.chat.completions.create(
|
315
328
|
model=self.llm,
|
316
329
|
messages=messages,
|
@@ -347,7 +360,11 @@ Your Goal: {self.goal}
|
|
347
360
|
if system_prompt:
|
348
361
|
messages.append({"role": "system", "content": system_prompt})
|
349
362
|
messages.extend(self.chat_history)
|
350
|
-
|
363
|
+
if isinstance(prompt, list):
|
364
|
+
# If we receive a multimodal prompt list, place it directly in the user message
|
365
|
+
messages.append({"role": "user", "content": prompt})
|
366
|
+
else:
|
367
|
+
messages.append({"role": "user", "content": prompt})
|
351
368
|
|
352
369
|
final_response_text = None
|
353
370
|
reflection_count = 0
|
@@ -356,7 +373,14 @@ Your Goal: {self.goal}
|
|
356
373
|
while True:
|
357
374
|
try:
|
358
375
|
if self.verbose:
|
359
|
-
|
376
|
+
# Handle both string and list prompts for instruction display
|
377
|
+
display_text = prompt
|
378
|
+
if isinstance(prompt, list):
|
379
|
+
# Extract text content from multimodal prompt
|
380
|
+
display_text = next((item["text"] for item in prompt if item["type"] == "text"), "")
|
381
|
+
|
382
|
+
if display_text and str(display_text).strip():
|
383
|
+
display_instruction(f"Agent {self.name} is processing prompt: {display_text}", console=self.console)
|
360
384
|
|
361
385
|
response = self._chat_completion(messages, temperature=temperature, tools=tools if tools else None)
|
362
386
|
if not response:
|
@@ -376,13 +400,13 @@ Your Goal: {self.goal}
|
|
376
400
|
arguments = json.loads(tool_call.function.arguments)
|
377
401
|
|
378
402
|
if self.verbose:
|
379
|
-
display_tool_call(f"Agent {self.name} is calling function '{function_name}' with arguments: {arguments}")
|
403
|
+
display_tool_call(f"Agent {self.name} is calling function '{function_name}' with arguments: {arguments}", console=self.console)
|
380
404
|
|
381
405
|
tool_result = self.execute_tool(function_name, arguments)
|
382
406
|
|
383
407
|
if tool_result:
|
384
408
|
if self.verbose:
|
385
|
-
display_tool_call(f"Function '{function_name}' returned: {tool_result}")
|
409
|
+
display_tool_call(f"Function '{function_name}' returned: {tool_result}", console=self.console)
|
386
410
|
messages.append({
|
387
411
|
"role": "tool",
|
388
412
|
"tool_call_id": tool_call.id,
|
@@ -407,7 +431,7 @@ Your Goal: {self.goal}
|
|
407
431
|
self.chat_history.append({"role": "assistant", "content": response_text})
|
408
432
|
if self.verbose:
|
409
433
|
logging.info(f"Agent {self.name} final response: {response_text}")
|
410
|
-
display_interaction(prompt, response_text, markdown=self.markdown, generation_time=time.time() - start_time)
|
434
|
+
display_interaction(prompt, response_text, markdown=self.markdown, generation_time=time.time() - start_time, console=self.console)
|
411
435
|
return response_text
|
412
436
|
|
413
437
|
reflection_prompt = f"""
|
@@ -430,26 +454,26 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
430
454
|
reflection_output = reflection_response.choices[0].message.parsed
|
431
455
|
|
432
456
|
if self.verbose:
|
433
|
-
display_self_reflection(f"Agent {self.name} self reflection (using {self.reflect_llm if self.reflect_llm else self.llm}): reflection='{reflection_output.reflection}' satisfactory='{reflection_output.satisfactory}'")
|
457
|
+
display_self_reflection(f"Agent {self.name} self reflection (using {self.reflect_llm if self.reflect_llm else self.llm}): reflection='{reflection_output.reflection}' satisfactory='{reflection_output.satisfactory}'", console=self.console)
|
434
458
|
|
435
459
|
messages.append({"role": "assistant", "content": f"Self Reflection: {reflection_output.reflection} Satisfactory?: {reflection_output.satisfactory}"})
|
436
460
|
|
437
461
|
# Only consider satisfactory after minimum reflections
|
438
462
|
if reflection_output.satisfactory == "yes" and reflection_count >= self.min_reflect - 1:
|
439
463
|
if self.verbose:
|
440
|
-
display_self_reflection("Agent marked the response as satisfactory after meeting minimum reflections")
|
464
|
+
display_self_reflection("Agent marked the response as satisfactory after meeting minimum reflections", console=self.console)
|
441
465
|
self.chat_history.append({"role": "user", "content": prompt})
|
442
466
|
self.chat_history.append({"role": "assistant", "content": response_text})
|
443
|
-
display_interaction(prompt, response_text, markdown=self.markdown, generation_time=time.time() - start_time)
|
467
|
+
display_interaction(prompt, response_text, markdown=self.markdown, generation_time=time.time() - start_time, console=self.console)
|
444
468
|
return response_text
|
445
469
|
|
446
470
|
# Check if we've hit max reflections
|
447
471
|
if reflection_count >= self.max_reflect - 1:
|
448
472
|
if self.verbose:
|
449
|
-
display_self_reflection("Maximum reflection count reached, returning current response")
|
473
|
+
display_self_reflection("Maximum reflection count reached, returning current response", console=self.console)
|
450
474
|
self.chat_history.append({"role": "user", "content": prompt})
|
451
475
|
self.chat_history.append({"role": "assistant", "content": response_text})
|
452
|
-
display_interaction(prompt, response_text, markdown=self.markdown, generation_time=time.time() - start_time)
|
476
|
+
display_interaction(prompt, response_text, markdown=self.markdown, generation_time=time.time() - start_time, console=self.console)
|
453
477
|
return response_text
|
454
478
|
|
455
479
|
logging.debug(f"{self.name} reflection count {reflection_count + 1}, continuing reflection process")
|
@@ -460,12 +484,12 @@ Output MUST be JSON with 'reflection' and 'satisfactory'.
|
|
460
484
|
continue # Continue the loop for more reflections
|
461
485
|
|
462
486
|
except Exception as e:
|
463
|
-
display_error(f"Error in parsing self-reflection json {e}. Retrying")
|
487
|
+
display_error(f"Error in parsing self-reflection json {e}. Retrying", console=self.console)
|
464
488
|
logging.error("Reflection parsing failed.", exc_info=True)
|
465
489
|
messages.append({"role": "assistant", "content": f"Self Reflection failed."})
|
466
490
|
reflection_count += 1
|
467
491
|
continue # Continue even after error to try again
|
468
492
|
|
469
493
|
except Exception as e:
|
470
|
-
display_error(f"Error in chat: {e}")
|
494
|
+
display_error(f"Error in chat: {e}", console=self.console)
|
471
495
|
return None
|
@@ -11,6 +11,33 @@ from ..main import display_error, TaskOutput, error_logs, client
|
|
11
11
|
from ..agent.agent import Agent
|
12
12
|
from ..task.task import Task
|
13
13
|
|
14
|
+
def encode_file_to_base64(file_path: str) -> str:
|
15
|
+
"""Base64-encode a file."""
|
16
|
+
import base64
|
17
|
+
with open(file_path, "rb") as f:
|
18
|
+
return base64.b64encode(f.read()).decode("utf-8")
|
19
|
+
|
20
|
+
def process_video(video_path: str, seconds_per_frame=2):
|
21
|
+
"""Split video into frames (base64-encoded)."""
|
22
|
+
import cv2
|
23
|
+
import base64
|
24
|
+
base64_frames = []
|
25
|
+
video = cv2.VideoCapture(video_path)
|
26
|
+
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
27
|
+
fps = video.get(cv2.CAP_PROP_FPS)
|
28
|
+
frames_to_skip = int(fps * seconds_per_frame)
|
29
|
+
curr_frame = 0
|
30
|
+
while curr_frame < total_frames:
|
31
|
+
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
|
32
|
+
success, frame = video.read()
|
33
|
+
if not success:
|
34
|
+
break
|
35
|
+
_, buffer = cv2.imencode(".jpg", frame)
|
36
|
+
base64_frames.append(base64.b64encode(buffer).decode("utf-8"))
|
37
|
+
curr_frame += frames_to_skip
|
38
|
+
video.release()
|
39
|
+
return base64_frames
|
40
|
+
|
14
41
|
class PraisonAIAgents:
|
15
42
|
def __init__(self, agents, tasks, verbose=0, completion_checker=None, max_retries=5, process="sequential", manager_llm=None):
|
16
43
|
self.agents = agents
|
@@ -58,6 +85,19 @@ class PraisonAIAgents:
|
|
58
85
|
display_error(f"Error: Task with ID {task_id} does not exist")
|
59
86
|
return
|
60
87
|
task = self.tasks[task_id]
|
88
|
+
|
89
|
+
# Only import multimodal dependencies if task has images
|
90
|
+
if task.images and task.status == "not started":
|
91
|
+
try:
|
92
|
+
import cv2
|
93
|
+
import base64
|
94
|
+
from moviepy import VideoFileClip
|
95
|
+
except ImportError as e:
|
96
|
+
display_error(f"Error: Missing required dependencies for image/video processing: {e}")
|
97
|
+
display_error("Please install with: pip install opencv-python moviepy")
|
98
|
+
task.status = "failed"
|
99
|
+
return None
|
100
|
+
|
61
101
|
if task.status == "not started":
|
62
102
|
task.status = "in progress"
|
63
103
|
|
@@ -83,7 +123,47 @@ Expected Output: {task.expected_output}.
|
|
83
123
|
if self.verbose >= 2:
|
84
124
|
logging.info(f"Executing task {task_id}: {task.description} using {executor_agent.name}")
|
85
125
|
logging.debug(f"Starting execution of task {task_id} with prompt:\n{task_prompt}")
|
86
|
-
|
126
|
+
|
127
|
+
if task.images:
|
128
|
+
def _get_multimodal_message(text_prompt, images):
|
129
|
+
content = [{"type": "text", "text": text_prompt}]
|
130
|
+
|
131
|
+
for img in images:
|
132
|
+
# If local file path for a valid image
|
133
|
+
if os.path.exists(img):
|
134
|
+
ext = os.path.splitext(img)[1].lower()
|
135
|
+
# If it's a .mp4, convert to frames
|
136
|
+
if ext == ".mp4":
|
137
|
+
frames = process_video(img, seconds_per_frame=1)
|
138
|
+
content.append({"type": "text", "text": "These are frames from the video."})
|
139
|
+
for f in frames:
|
140
|
+
content.append({
|
141
|
+
"type": "image_url",
|
142
|
+
"image_url": {"url": f"data:image/jpg;base64,{f}"}
|
143
|
+
})
|
144
|
+
else:
|
145
|
+
encoded = encode_file_to_base64(img)
|
146
|
+
content.append({
|
147
|
+
"type": "image_url",
|
148
|
+
"image_url": {
|
149
|
+
"url": f"data:image/{ext.lstrip('.')};base64,{encoded}"
|
150
|
+
}
|
151
|
+
})
|
152
|
+
else:
|
153
|
+
# Treat as a remote URL
|
154
|
+
content.append({
|
155
|
+
"type": "image_url",
|
156
|
+
"image_url": {"url": img}
|
157
|
+
})
|
158
|
+
return content
|
159
|
+
|
160
|
+
agent_output = executor_agent.chat(
|
161
|
+
_get_multimodal_message(task_prompt, task.images),
|
162
|
+
tools=task.tools
|
163
|
+
)
|
164
|
+
else:
|
165
|
+
agent_output = executor_agent.chat(task_prompt, tools=task.tools)
|
166
|
+
|
87
167
|
if agent_output:
|
88
168
|
task_output = TaskOutput(
|
89
169
|
description=task.description,
|
@@ -25,43 +25,92 @@ logging.basicConfig(
|
|
25
25
|
# Global list to store error logs
|
26
26
|
error_logs = []
|
27
27
|
|
28
|
-
def
|
29
|
-
|
30
|
-
if
|
28
|
+
def _clean_display_content(content: str, max_length: int = 20000) -> str:
|
29
|
+
"""Helper function to clean and truncate content for display."""
|
30
|
+
if not content or not str(content).strip():
|
31
|
+
return ""
|
32
|
+
|
33
|
+
content = str(content)
|
34
|
+
# Handle base64 content
|
35
|
+
if "base64" in content:
|
36
|
+
content_parts = []
|
37
|
+
for line in content.split('\n'):
|
38
|
+
if "base64" not in line:
|
39
|
+
content_parts.append(line)
|
40
|
+
content = '\n'.join(content_parts)
|
41
|
+
|
42
|
+
# Truncate if too long
|
43
|
+
if len(content) > max_length:
|
44
|
+
content = content[:max_length] + "..."
|
45
|
+
|
46
|
+
return content.strip()
|
47
|
+
|
48
|
+
def display_interaction(message, response, markdown=True, generation_time=None, console=None):
|
49
|
+
"""Display the interaction between user and assistant."""
|
50
|
+
if console is None:
|
51
|
+
console = Console()
|
52
|
+
if generation_time:
|
31
53
|
console.print(Text(f"Response generated in {generation_time:.1f}s", style="dim"))
|
32
|
-
|
33
|
-
|
54
|
+
|
55
|
+
# Handle multimodal content (list)
|
56
|
+
if isinstance(message, list):
|
57
|
+
# Extract just the text content from the multimodal message
|
58
|
+
text_content = next((item["text"] for item in message if item["type"] == "text"), "")
|
59
|
+
message = text_content
|
60
|
+
|
61
|
+
message = _clean_display_content(str(message))
|
62
|
+
response = _clean_display_content(str(response))
|
34
63
|
|
35
64
|
if markdown:
|
36
65
|
console.print(Panel.fit(Markdown(message), title="Message", border_style="cyan"))
|
37
66
|
console.print(Panel.fit(Markdown(response), title="Response", border_style="cyan"))
|
38
67
|
else:
|
39
68
|
console.print(Panel.fit(Text(message, style="bold green"), title="Message", border_style="cyan"))
|
40
|
-
console.print(Panel.fit(Text(response, style="bold
|
41
|
-
|
42
|
-
def display_self_reflection(message: str):
|
43
|
-
|
69
|
+
console.print(Panel.fit(Text(response, style="bold blue"), title="Response", border_style="cyan"))
|
70
|
+
|
71
|
+
def display_self_reflection(message: str, console=None):
|
72
|
+
if not message or not message.strip():
|
73
|
+
return
|
74
|
+
if console is None:
|
75
|
+
console = Console()
|
76
|
+
message = _clean_display_content(str(message))
|
44
77
|
console.print(Panel.fit(Text(message, style="bold yellow"), title="Self Reflection", border_style="magenta"))
|
45
78
|
|
46
|
-
def display_instruction(message: str):
|
47
|
-
|
79
|
+
def display_instruction(message: str, console=None):
|
80
|
+
if not message or not message.strip():
|
81
|
+
return
|
82
|
+
if console is None:
|
83
|
+
console = Console()
|
84
|
+
message = _clean_display_content(str(message))
|
48
85
|
console.print(Panel.fit(Text(message, style="bold blue"), title="Instruction", border_style="cyan"))
|
49
86
|
|
50
|
-
def display_tool_call(message: str):
|
51
|
-
|
87
|
+
def display_tool_call(message: str, console=None):
|
88
|
+
if not message or not message.strip():
|
89
|
+
return
|
90
|
+
if console is None:
|
91
|
+
console = Console()
|
92
|
+
message = _clean_display_content(str(message))
|
52
93
|
console.print(Panel.fit(Text(message, style="bold cyan"), title="Tool Call", border_style="green"))
|
53
94
|
|
54
|
-
def display_error(message: str):
|
55
|
-
|
95
|
+
def display_error(message: str, console=None):
|
96
|
+
if not message or not message.strip():
|
97
|
+
return
|
98
|
+
if console is None:
|
99
|
+
console = Console()
|
100
|
+
message = _clean_display_content(str(message))
|
56
101
|
console.print(Panel.fit(Text(message, style="bold red"), title="Error", border_style="red"))
|
57
102
|
# Store errors
|
58
103
|
error_logs.append(message)
|
59
104
|
|
60
105
|
def display_generating(content: str = "", start_time: Optional[float] = None):
|
106
|
+
if not content or not str(content).strip():
|
107
|
+
return Panel("", title="", border_style="green") # Return empty panel when no content
|
61
108
|
elapsed_str = ""
|
62
109
|
if start_time is not None:
|
63
110
|
elapsed = time.time() - start_time
|
64
111
|
elapsed_str = f" {elapsed:.1f}s"
|
112
|
+
|
113
|
+
content = _clean_display_content(str(content))
|
65
114
|
return Panel(Markdown(content), title=f"Generating...{elapsed_str}", border_style="green")
|
66
115
|
|
67
116
|
def clean_triple_backticks(text: str) -> str:
|
@@ -22,7 +22,8 @@ class Task:
|
|
22
22
|
status: str = "not started",
|
23
23
|
result: Optional[TaskOutput] = None,
|
24
24
|
create_directory: Optional[bool] = False,
|
25
|
-
id: Optional[int] = None
|
25
|
+
id: Optional[int] = None,
|
26
|
+
images: Optional[List[str]] = None
|
26
27
|
):
|
27
28
|
self.description = description
|
28
29
|
self.expected_output = expected_output
|
@@ -40,6 +41,7 @@ class Task:
|
|
40
41
|
self.result = result
|
41
42
|
self.create_directory = create_directory
|
42
43
|
self.id = id
|
44
|
+
self.images = images if images else []
|
43
45
|
|
44
46
|
if self.output_json and self.output_pydantic:
|
45
47
|
raise ValueError("Only one output type can be defined")
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents/build/lib/praisonaiagents/main.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{praisonaiagents-0.0.12 → praisonaiagents-0.0.13}/praisonaiagents.egg-info/dependency_links.txt
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|