pragmastat 3.1.6__tar.gz → 3.1.7__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pragmastat-3.1.7/PKG-INFO +98 -0
- pragmastat-3.1.7/README.md +83 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/pragmastat/__init__.py +1 -1
- pragmastat-3.1.7/pragmastat.egg-info/PKG-INFO +98 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/pyproject.toml +1 -1
- pragmastat-3.1.6/PKG-INFO +0 -76
- pragmastat-3.1.6/README.md +0 -61
- pragmastat-3.1.6/pragmastat.egg-info/PKG-INFO +0 -76
- {pragmastat-3.1.6 → pragmastat-3.1.7}/LICENSE +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/MANIFEST.in +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/examples/demo.py +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/pragmastat/estimators.py +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/pragmastat/fast_center.py +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/pragmastat/fast_spread.py +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/pragmastat.egg-info/SOURCES.txt +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/pragmastat.egg-info/dependency_links.txt +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/pragmastat.egg-info/requires.txt +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/pragmastat.egg-info/top_level.txt +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/setup.cfg +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/setup.py +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/src/fast_center_c.c +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/src/fast_spread_c.c +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/tests/test_invariance.py +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/tests/test_performance.py +0 -0
- {pragmastat-3.1.6 → pragmastat-3.1.7}/tests/test_reference.py +0 -0
|
@@ -0,0 +1,98 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: pragmastat
|
|
3
|
+
Version: 3.1.7
|
|
4
|
+
Summary: Pragmastat: Pragmatic Statistical Toolkit
|
|
5
|
+
Author: Andrey Akinshin
|
|
6
|
+
License-Expression: MIT
|
|
7
|
+
Project-URL: Homepage, https://pragmastat.dev
|
|
8
|
+
Project-URL: Repository, https://github.com/AndreyAkinshin/pragmastat
|
|
9
|
+
Project-URL: DOI, https://doi.org/10.5281/zenodo.17236778
|
|
10
|
+
Requires-Python: >=3.8
|
|
11
|
+
Description-Content-Type: text/markdown
|
|
12
|
+
License-File: LICENSE
|
|
13
|
+
Requires-Dist: numpy>=1.20
|
|
14
|
+
Dynamic: license-file
|
|
15
|
+
|
|
16
|
+
# Pragmastat
|
|
17
|
+
|
|
18
|
+
A Python implementation of 'Pragmastat: Pragmatic Statistical Toolkit' - robust summary estimators designed for real-world data analysis.
|
|
19
|
+
Online manual: https://pragmastat.dev
|
|
20
|
+
|
|
21
|
+
## Installation
|
|
22
|
+
|
|
23
|
+
```bash
|
|
24
|
+
pip install pragmastat
|
|
25
|
+
```
|
|
26
|
+
|
|
27
|
+
## Demo
|
|
28
|
+
|
|
29
|
+
```python
|
|
30
|
+
from pragmastat import center, spread, rel_spread, shift, ratio, avg_spread, disparity
|
|
31
|
+
|
|
32
|
+
x = [0, 2, 4, 6, 8]
|
|
33
|
+
print(center(x)) # 4
|
|
34
|
+
print(center([v + 10 for v in x])) # 14
|
|
35
|
+
print(center([v * 3 for v in x])) # 12
|
|
36
|
+
|
|
37
|
+
print(spread(x)) # 4
|
|
38
|
+
print(spread([v + 10 for v in x])) # 4
|
|
39
|
+
print(spread([v * 2 for v in x])) # 8
|
|
40
|
+
|
|
41
|
+
print(rel_spread(x)) # 1
|
|
42
|
+
print(rel_spread([v * 5 for v in x])) # 1
|
|
43
|
+
|
|
44
|
+
y = [10, 12, 14, 16, 18]
|
|
45
|
+
print(shift(x, y)) # -10
|
|
46
|
+
print(shift(x, x)) # 0
|
|
47
|
+
print(shift([v + 7 for v in x], [v + 3 for v in y])) # -6
|
|
48
|
+
print(shift([v * 2 for v in x], [v * 2 for v in y])) # -20
|
|
49
|
+
print(shift(y, x)) # 10
|
|
50
|
+
|
|
51
|
+
x = [1, 2, 4, 8, 16]
|
|
52
|
+
y = [2, 4, 8, 16, 32]
|
|
53
|
+
print(ratio(x, y)) # 0.5
|
|
54
|
+
print(ratio(x, x)) # 1
|
|
55
|
+
print(ratio([v * 2 for v in x], [v * 5 for v in y])) # 0.2
|
|
56
|
+
|
|
57
|
+
x = [0, 3, 6, 9, 12]
|
|
58
|
+
y = [0, 2, 4, 6, 8]
|
|
59
|
+
print(spread(x)) # 6
|
|
60
|
+
print(spread(y)) # 4
|
|
61
|
+
|
|
62
|
+
print(avg_spread(x, y)) # 5
|
|
63
|
+
print(avg_spread(x, x)) # 6
|
|
64
|
+
print(avg_spread([v * 2 for v in x], [v * 3 for v in x])) # 15
|
|
65
|
+
print(avg_spread(y, x)) # 5
|
|
66
|
+
print(avg_spread([v * 2 for v in x], [v * 2 for v in y])) # 10
|
|
67
|
+
|
|
68
|
+
print(shift(x, y)) # 2
|
|
69
|
+
print(avg_spread(x, y)) # 5
|
|
70
|
+
|
|
71
|
+
print(disparity(x, y)) # 0.4
|
|
72
|
+
print(disparity([v + 5 for v in x], [v + 5 for v in y])) # 0.4
|
|
73
|
+
print(disparity([v * 2 for v in x], [v * 2 for v in y])) # 0.4
|
|
74
|
+
print(disparity(y, x)) # -0.4
|
|
75
|
+
```
|
|
76
|
+
|
|
77
|
+
## The MIT License
|
|
78
|
+
|
|
79
|
+
Copyright (c) 2025 Andrey Akinshin
|
|
80
|
+
|
|
81
|
+
Permission is hereby granted, free of charge, to any person obtaining
|
|
82
|
+
a copy of this software and associated documentation files (the
|
|
83
|
+
"Software"), to deal in the Software without restriction, including
|
|
84
|
+
without limitation the rights to use, copy, modify, merge, publish,
|
|
85
|
+
distribute, sublicense, and/or sell copies of the Software, and to
|
|
86
|
+
permit persons to whom the Software is furnished to do so, subject to
|
|
87
|
+
the following conditions:
|
|
88
|
+
|
|
89
|
+
The above copyright notice and this permission notice shall be
|
|
90
|
+
included in all copies or substantial portions of the Software.
|
|
91
|
+
|
|
92
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
93
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
94
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
95
|
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
96
|
+
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
97
|
+
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
98
|
+
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
@@ -0,0 +1,83 @@
|
|
|
1
|
+
# Pragmastat
|
|
2
|
+
|
|
3
|
+
A Python implementation of 'Pragmastat: Pragmatic Statistical Toolkit' - robust summary estimators designed for real-world data analysis.
|
|
4
|
+
Online manual: https://pragmastat.dev
|
|
5
|
+
|
|
6
|
+
## Installation
|
|
7
|
+
|
|
8
|
+
```bash
|
|
9
|
+
pip install pragmastat
|
|
10
|
+
```
|
|
11
|
+
|
|
12
|
+
## Demo
|
|
13
|
+
|
|
14
|
+
```python
|
|
15
|
+
from pragmastat import center, spread, rel_spread, shift, ratio, avg_spread, disparity
|
|
16
|
+
|
|
17
|
+
x = [0, 2, 4, 6, 8]
|
|
18
|
+
print(center(x)) # 4
|
|
19
|
+
print(center([v + 10 for v in x])) # 14
|
|
20
|
+
print(center([v * 3 for v in x])) # 12
|
|
21
|
+
|
|
22
|
+
print(spread(x)) # 4
|
|
23
|
+
print(spread([v + 10 for v in x])) # 4
|
|
24
|
+
print(spread([v * 2 for v in x])) # 8
|
|
25
|
+
|
|
26
|
+
print(rel_spread(x)) # 1
|
|
27
|
+
print(rel_spread([v * 5 for v in x])) # 1
|
|
28
|
+
|
|
29
|
+
y = [10, 12, 14, 16, 18]
|
|
30
|
+
print(shift(x, y)) # -10
|
|
31
|
+
print(shift(x, x)) # 0
|
|
32
|
+
print(shift([v + 7 for v in x], [v + 3 for v in y])) # -6
|
|
33
|
+
print(shift([v * 2 for v in x], [v * 2 for v in y])) # -20
|
|
34
|
+
print(shift(y, x)) # 10
|
|
35
|
+
|
|
36
|
+
x = [1, 2, 4, 8, 16]
|
|
37
|
+
y = [2, 4, 8, 16, 32]
|
|
38
|
+
print(ratio(x, y)) # 0.5
|
|
39
|
+
print(ratio(x, x)) # 1
|
|
40
|
+
print(ratio([v * 2 for v in x], [v * 5 for v in y])) # 0.2
|
|
41
|
+
|
|
42
|
+
x = [0, 3, 6, 9, 12]
|
|
43
|
+
y = [0, 2, 4, 6, 8]
|
|
44
|
+
print(spread(x)) # 6
|
|
45
|
+
print(spread(y)) # 4
|
|
46
|
+
|
|
47
|
+
print(avg_spread(x, y)) # 5
|
|
48
|
+
print(avg_spread(x, x)) # 6
|
|
49
|
+
print(avg_spread([v * 2 for v in x], [v * 3 for v in x])) # 15
|
|
50
|
+
print(avg_spread(y, x)) # 5
|
|
51
|
+
print(avg_spread([v * 2 for v in x], [v * 2 for v in y])) # 10
|
|
52
|
+
|
|
53
|
+
print(shift(x, y)) # 2
|
|
54
|
+
print(avg_spread(x, y)) # 5
|
|
55
|
+
|
|
56
|
+
print(disparity(x, y)) # 0.4
|
|
57
|
+
print(disparity([v + 5 for v in x], [v + 5 for v in y])) # 0.4
|
|
58
|
+
print(disparity([v * 2 for v in x], [v * 2 for v in y])) # 0.4
|
|
59
|
+
print(disparity(y, x)) # -0.4
|
|
60
|
+
```
|
|
61
|
+
|
|
62
|
+
## The MIT License
|
|
63
|
+
|
|
64
|
+
Copyright (c) 2025 Andrey Akinshin
|
|
65
|
+
|
|
66
|
+
Permission is hereby granted, free of charge, to any person obtaining
|
|
67
|
+
a copy of this software and associated documentation files (the
|
|
68
|
+
"Software"), to deal in the Software without restriction, including
|
|
69
|
+
without limitation the rights to use, copy, modify, merge, publish,
|
|
70
|
+
distribute, sublicense, and/or sell copies of the Software, and to
|
|
71
|
+
permit persons to whom the Software is furnished to do so, subject to
|
|
72
|
+
the following conditions:
|
|
73
|
+
|
|
74
|
+
The above copyright notice and this permission notice shall be
|
|
75
|
+
included in all copies or substantial portions of the Software.
|
|
76
|
+
|
|
77
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
78
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
79
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
80
|
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
81
|
+
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
82
|
+
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
83
|
+
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
@@ -0,0 +1,98 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: pragmastat
|
|
3
|
+
Version: 3.1.7
|
|
4
|
+
Summary: Pragmastat: Pragmatic Statistical Toolkit
|
|
5
|
+
Author: Andrey Akinshin
|
|
6
|
+
License-Expression: MIT
|
|
7
|
+
Project-URL: Homepage, https://pragmastat.dev
|
|
8
|
+
Project-URL: Repository, https://github.com/AndreyAkinshin/pragmastat
|
|
9
|
+
Project-URL: DOI, https://doi.org/10.5281/zenodo.17236778
|
|
10
|
+
Requires-Python: >=3.8
|
|
11
|
+
Description-Content-Type: text/markdown
|
|
12
|
+
License-File: LICENSE
|
|
13
|
+
Requires-Dist: numpy>=1.20
|
|
14
|
+
Dynamic: license-file
|
|
15
|
+
|
|
16
|
+
# Pragmastat
|
|
17
|
+
|
|
18
|
+
A Python implementation of 'Pragmastat: Pragmatic Statistical Toolkit' - robust summary estimators designed for real-world data analysis.
|
|
19
|
+
Online manual: https://pragmastat.dev
|
|
20
|
+
|
|
21
|
+
## Installation
|
|
22
|
+
|
|
23
|
+
```bash
|
|
24
|
+
pip install pragmastat
|
|
25
|
+
```
|
|
26
|
+
|
|
27
|
+
## Demo
|
|
28
|
+
|
|
29
|
+
```python
|
|
30
|
+
from pragmastat import center, spread, rel_spread, shift, ratio, avg_spread, disparity
|
|
31
|
+
|
|
32
|
+
x = [0, 2, 4, 6, 8]
|
|
33
|
+
print(center(x)) # 4
|
|
34
|
+
print(center([v + 10 for v in x])) # 14
|
|
35
|
+
print(center([v * 3 for v in x])) # 12
|
|
36
|
+
|
|
37
|
+
print(spread(x)) # 4
|
|
38
|
+
print(spread([v + 10 for v in x])) # 4
|
|
39
|
+
print(spread([v * 2 for v in x])) # 8
|
|
40
|
+
|
|
41
|
+
print(rel_spread(x)) # 1
|
|
42
|
+
print(rel_spread([v * 5 for v in x])) # 1
|
|
43
|
+
|
|
44
|
+
y = [10, 12, 14, 16, 18]
|
|
45
|
+
print(shift(x, y)) # -10
|
|
46
|
+
print(shift(x, x)) # 0
|
|
47
|
+
print(shift([v + 7 for v in x], [v + 3 for v in y])) # -6
|
|
48
|
+
print(shift([v * 2 for v in x], [v * 2 for v in y])) # -20
|
|
49
|
+
print(shift(y, x)) # 10
|
|
50
|
+
|
|
51
|
+
x = [1, 2, 4, 8, 16]
|
|
52
|
+
y = [2, 4, 8, 16, 32]
|
|
53
|
+
print(ratio(x, y)) # 0.5
|
|
54
|
+
print(ratio(x, x)) # 1
|
|
55
|
+
print(ratio([v * 2 for v in x], [v * 5 for v in y])) # 0.2
|
|
56
|
+
|
|
57
|
+
x = [0, 3, 6, 9, 12]
|
|
58
|
+
y = [0, 2, 4, 6, 8]
|
|
59
|
+
print(spread(x)) # 6
|
|
60
|
+
print(spread(y)) # 4
|
|
61
|
+
|
|
62
|
+
print(avg_spread(x, y)) # 5
|
|
63
|
+
print(avg_spread(x, x)) # 6
|
|
64
|
+
print(avg_spread([v * 2 for v in x], [v * 3 for v in x])) # 15
|
|
65
|
+
print(avg_spread(y, x)) # 5
|
|
66
|
+
print(avg_spread([v * 2 for v in x], [v * 2 for v in y])) # 10
|
|
67
|
+
|
|
68
|
+
print(shift(x, y)) # 2
|
|
69
|
+
print(avg_spread(x, y)) # 5
|
|
70
|
+
|
|
71
|
+
print(disparity(x, y)) # 0.4
|
|
72
|
+
print(disparity([v + 5 for v in x], [v + 5 for v in y])) # 0.4
|
|
73
|
+
print(disparity([v * 2 for v in x], [v * 2 for v in y])) # 0.4
|
|
74
|
+
print(disparity(y, x)) # -0.4
|
|
75
|
+
```
|
|
76
|
+
|
|
77
|
+
## The MIT License
|
|
78
|
+
|
|
79
|
+
Copyright (c) 2025 Andrey Akinshin
|
|
80
|
+
|
|
81
|
+
Permission is hereby granted, free of charge, to any person obtaining
|
|
82
|
+
a copy of this software and associated documentation files (the
|
|
83
|
+
"Software"), to deal in the Software without restriction, including
|
|
84
|
+
without limitation the rights to use, copy, modify, merge, publish,
|
|
85
|
+
distribute, sublicense, and/or sell copies of the Software, and to
|
|
86
|
+
permit persons to whom the Software is furnished to do so, subject to
|
|
87
|
+
the following conditions:
|
|
88
|
+
|
|
89
|
+
The above copyright notice and this permission notice shall be
|
|
90
|
+
included in all copies or substantial portions of the Software.
|
|
91
|
+
|
|
92
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
93
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
94
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
95
|
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
96
|
+
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
97
|
+
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
98
|
+
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
pragmastat-3.1.6/PKG-INFO
DELETED
|
@@ -1,76 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: pragmastat
|
|
3
|
-
Version: 3.1.6
|
|
4
|
-
Summary: Pragmastat: Pragmatic Statistical Toolkit
|
|
5
|
-
Author: Andrey Akinshin
|
|
6
|
-
License-Expression: MIT
|
|
7
|
-
Project-URL: Homepage, https://pragmastat.dev
|
|
8
|
-
Project-URL: Repository, https://github.com/AndreyAkinshin/pragmastat
|
|
9
|
-
Project-URL: DOI, https://doi.org/10.5281/zenodo.17236778
|
|
10
|
-
Requires-Python: >=3.8
|
|
11
|
-
Description-Content-Type: text/markdown
|
|
12
|
-
License-File: LICENSE
|
|
13
|
-
Requires-Dist: numpy>=1.20
|
|
14
|
-
Dynamic: license-file
|
|
15
|
-
|
|
16
|
-
# Pragmastat Python Implementation
|
|
17
|
-
|
|
18
|
-
[](https://doi.org/10.5281/zenodo.17236778)
|
|
19
|
-
|
|
20
|
-
A Python implementation of the Pragmastat statistical toolkit, providing robust statistical estimators for reliable analysis of real-world data.
|
|
21
|
-
|
|
22
|
-
## Installation
|
|
23
|
-
|
|
24
|
-
```bash
|
|
25
|
-
pip install pragmastat
|
|
26
|
-
```
|
|
27
|
-
|
|
28
|
-
## Requirements
|
|
29
|
-
|
|
30
|
-
- Python >= 3.8
|
|
31
|
-
- NumPy >= 1.20
|
|
32
|
-
|
|
33
|
-
## Usage
|
|
34
|
-
|
|
35
|
-
```python
|
|
36
|
-
from pragmastat import center, spread, rel_spread, shift, ratio, avg_spread, disparity
|
|
37
|
-
|
|
38
|
-
# Basic estimators
|
|
39
|
-
x = [1, 2, 3, 4, 5]
|
|
40
|
-
print(f"Center: {center(x)}")
|
|
41
|
-
print(f"Spread: {spread(x)}")
|
|
42
|
-
print(f"RelSpread: {rel_spread(x)}")
|
|
43
|
-
|
|
44
|
-
# Comparison estimators
|
|
45
|
-
y = [3, 4, 5, 6, 7]
|
|
46
|
-
print(f"Shift: {shift(x, y)}")
|
|
47
|
-
print(f"Ratio: {ratio(x, y)}")
|
|
48
|
-
print(f"AvgSpread: {avg_spread(x, y)}")
|
|
49
|
-
print(f"Disparity: {disparity(x, y)}")
|
|
50
|
-
```
|
|
51
|
-
|
|
52
|
-
## Estimators
|
|
53
|
-
|
|
54
|
-
### Single-sample estimators
|
|
55
|
-
|
|
56
|
-
- `center(x)`: Hodges-Lehmann estimator - median of all pairwise averages
|
|
57
|
-
- `spread(x)`: Shamos estimator - median of all pairwise absolute differences
|
|
58
|
-
- `rel_spread(x)`: Relative spread - spread divided by absolute center
|
|
59
|
-
|
|
60
|
-
### Two-sample estimators
|
|
61
|
-
|
|
62
|
-
- `shift(x, y)`: Hodges-Lehmann shift estimator - median of all pairwise differences
|
|
63
|
-
- `ratio(x, y)`: Median of all pairwise ratios
|
|
64
|
-
- `avg_spread(x, y)`: Weighted average of spreads
|
|
65
|
-
- `disparity(x, y)`: Normalized shift - shift divided by average spread
|
|
66
|
-
|
|
67
|
-
## Features
|
|
68
|
-
|
|
69
|
-
- Robust to outliers
|
|
70
|
-
- Supports both Python lists and NumPy arrays
|
|
71
|
-
- Type hints with numpy.typing
|
|
72
|
-
- Efficient vectorized NumPy operations
|
|
73
|
-
|
|
74
|
-
## License
|
|
75
|
-
|
|
76
|
-
MIT
|
pragmastat-3.1.6/README.md
DELETED
|
@@ -1,61 +0,0 @@
|
|
|
1
|
-
# Pragmastat Python Implementation
|
|
2
|
-
|
|
3
|
-
[](https://doi.org/10.5281/zenodo.17236778)
|
|
4
|
-
|
|
5
|
-
A Python implementation of the Pragmastat statistical toolkit, providing robust statistical estimators for reliable analysis of real-world data.
|
|
6
|
-
|
|
7
|
-
## Installation
|
|
8
|
-
|
|
9
|
-
```bash
|
|
10
|
-
pip install pragmastat
|
|
11
|
-
```
|
|
12
|
-
|
|
13
|
-
## Requirements
|
|
14
|
-
|
|
15
|
-
- Python >= 3.8
|
|
16
|
-
- NumPy >= 1.20
|
|
17
|
-
|
|
18
|
-
## Usage
|
|
19
|
-
|
|
20
|
-
```python
|
|
21
|
-
from pragmastat import center, spread, rel_spread, shift, ratio, avg_spread, disparity
|
|
22
|
-
|
|
23
|
-
# Basic estimators
|
|
24
|
-
x = [1, 2, 3, 4, 5]
|
|
25
|
-
print(f"Center: {center(x)}")
|
|
26
|
-
print(f"Spread: {spread(x)}")
|
|
27
|
-
print(f"RelSpread: {rel_spread(x)}")
|
|
28
|
-
|
|
29
|
-
# Comparison estimators
|
|
30
|
-
y = [3, 4, 5, 6, 7]
|
|
31
|
-
print(f"Shift: {shift(x, y)}")
|
|
32
|
-
print(f"Ratio: {ratio(x, y)}")
|
|
33
|
-
print(f"AvgSpread: {avg_spread(x, y)}")
|
|
34
|
-
print(f"Disparity: {disparity(x, y)}")
|
|
35
|
-
```
|
|
36
|
-
|
|
37
|
-
## Estimators
|
|
38
|
-
|
|
39
|
-
### Single-sample estimators
|
|
40
|
-
|
|
41
|
-
- `center(x)`: Hodges-Lehmann estimator - median of all pairwise averages
|
|
42
|
-
- `spread(x)`: Shamos estimator - median of all pairwise absolute differences
|
|
43
|
-
- `rel_spread(x)`: Relative spread - spread divided by absolute center
|
|
44
|
-
|
|
45
|
-
### Two-sample estimators
|
|
46
|
-
|
|
47
|
-
- `shift(x, y)`: Hodges-Lehmann shift estimator - median of all pairwise differences
|
|
48
|
-
- `ratio(x, y)`: Median of all pairwise ratios
|
|
49
|
-
- `avg_spread(x, y)`: Weighted average of spreads
|
|
50
|
-
- `disparity(x, y)`: Normalized shift - shift divided by average spread
|
|
51
|
-
|
|
52
|
-
## Features
|
|
53
|
-
|
|
54
|
-
- Robust to outliers
|
|
55
|
-
- Supports both Python lists and NumPy arrays
|
|
56
|
-
- Type hints with numpy.typing
|
|
57
|
-
- Efficient vectorized NumPy operations
|
|
58
|
-
|
|
59
|
-
## License
|
|
60
|
-
|
|
61
|
-
MIT
|
|
@@ -1,76 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: pragmastat
|
|
3
|
-
Version: 3.1.6
|
|
4
|
-
Summary: Pragmastat: Pragmatic Statistical Toolkit
|
|
5
|
-
Author: Andrey Akinshin
|
|
6
|
-
License-Expression: MIT
|
|
7
|
-
Project-URL: Homepage, https://pragmastat.dev
|
|
8
|
-
Project-URL: Repository, https://github.com/AndreyAkinshin/pragmastat
|
|
9
|
-
Project-URL: DOI, https://doi.org/10.5281/zenodo.17236778
|
|
10
|
-
Requires-Python: >=3.8
|
|
11
|
-
Description-Content-Type: text/markdown
|
|
12
|
-
License-File: LICENSE
|
|
13
|
-
Requires-Dist: numpy>=1.20
|
|
14
|
-
Dynamic: license-file
|
|
15
|
-
|
|
16
|
-
# Pragmastat Python Implementation
|
|
17
|
-
|
|
18
|
-
[](https://doi.org/10.5281/zenodo.17236778)
|
|
19
|
-
|
|
20
|
-
A Python implementation of the Pragmastat statistical toolkit, providing robust statistical estimators for reliable analysis of real-world data.
|
|
21
|
-
|
|
22
|
-
## Installation
|
|
23
|
-
|
|
24
|
-
```bash
|
|
25
|
-
pip install pragmastat
|
|
26
|
-
```
|
|
27
|
-
|
|
28
|
-
## Requirements
|
|
29
|
-
|
|
30
|
-
- Python >= 3.8
|
|
31
|
-
- NumPy >= 1.20
|
|
32
|
-
|
|
33
|
-
## Usage
|
|
34
|
-
|
|
35
|
-
```python
|
|
36
|
-
from pragmastat import center, spread, rel_spread, shift, ratio, avg_spread, disparity
|
|
37
|
-
|
|
38
|
-
# Basic estimators
|
|
39
|
-
x = [1, 2, 3, 4, 5]
|
|
40
|
-
print(f"Center: {center(x)}")
|
|
41
|
-
print(f"Spread: {spread(x)}")
|
|
42
|
-
print(f"RelSpread: {rel_spread(x)}")
|
|
43
|
-
|
|
44
|
-
# Comparison estimators
|
|
45
|
-
y = [3, 4, 5, 6, 7]
|
|
46
|
-
print(f"Shift: {shift(x, y)}")
|
|
47
|
-
print(f"Ratio: {ratio(x, y)}")
|
|
48
|
-
print(f"AvgSpread: {avg_spread(x, y)}")
|
|
49
|
-
print(f"Disparity: {disparity(x, y)}")
|
|
50
|
-
```
|
|
51
|
-
|
|
52
|
-
## Estimators
|
|
53
|
-
|
|
54
|
-
### Single-sample estimators
|
|
55
|
-
|
|
56
|
-
- `center(x)`: Hodges-Lehmann estimator - median of all pairwise averages
|
|
57
|
-
- `spread(x)`: Shamos estimator - median of all pairwise absolute differences
|
|
58
|
-
- `rel_spread(x)`: Relative spread - spread divided by absolute center
|
|
59
|
-
|
|
60
|
-
### Two-sample estimators
|
|
61
|
-
|
|
62
|
-
- `shift(x, y)`: Hodges-Lehmann shift estimator - median of all pairwise differences
|
|
63
|
-
- `ratio(x, y)`: Median of all pairwise ratios
|
|
64
|
-
- `avg_spread(x, y)`: Weighted average of spreads
|
|
65
|
-
- `disparity(x, y)`: Normalized shift - shift divided by average spread
|
|
66
|
-
|
|
67
|
-
## Features
|
|
68
|
-
|
|
69
|
-
- Robust to outliers
|
|
70
|
-
- Supports both Python lists and NumPy arrays
|
|
71
|
-
- Type hints with numpy.typing
|
|
72
|
-
- Efficient vectorized NumPy operations
|
|
73
|
-
|
|
74
|
-
## License
|
|
75
|
-
|
|
76
|
-
MIT
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|