polyleven 0.7__tar.gz → 0.9.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,5 +1,8 @@
1
1
  Copyright (c) 2021 Fujimoto Seiji <fujimoto@ceptord.net>
2
2
  Copyright (c) 2021 Max Bachmann <kontakt@maxbachmann.de>
3
+ Copyright (c) 2022 Nick Mazuk
4
+ Copyright (c) 2022 Michael Weiss <code@mweiss.ch>
5
+ Copyright (c) 2024 Alex Morgan <lexyym@gmail.com>
3
6
 
4
7
  Permission is hereby granted, free of charge, to any person obtaining a copy
5
8
  of this software and associated documentation files (the "Software"), to deal
@@ -0,0 +1,124 @@
1
+ Metadata-Version: 2.2
2
+ Name: polyleven
3
+ Version: 0.9.0
4
+ Summary: A fast C-implemented library for Levenshtein distance
5
+ Maintainer-email: Fujimoto Seiji <fujimoto@ceptord.net>
6
+ Project-URL: github, https://github.com/fujimotos/polyleven
7
+ Keywords: Levenshtein distance
8
+ Classifier: Development Status :: 5 - Production/Stable
9
+ Classifier: Operating System :: OS Independent
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Programming Language :: C
12
+ Requires-Python: >=3.8
13
+ Description-Content-Type: text/x-rst
14
+ License-File: LICENSE
15
+
16
+ ==============================================
17
+ Polyleven -- Fast Pythonic Levenshtein Library
18
+ ==============================================
19
+
20
+ :License: MIT License
21
+
22
+ 1. Introduction
23
+ ===============
24
+
25
+ polyleven is a Pythonic Levenshtein distance library that:
26
+
27
+ - Is *fast* independent of input types, and hence can be used for
28
+ both short (like English words) and long input types (like DNA
29
+ sequences).
30
+
31
+ - Is *stand-alone* depending only on core Python packages (such as
32
+ ``setuptools`` for installation).
33
+
34
+ - Can be used readily in a manner not covered by restrictive
35
+ licenses such as GPL, hence can be used freely in private codes.
36
+
37
+ 2. How to install
38
+ =================
39
+
40
+ The official package is available on PyPI::
41
+
42
+ $ pip install polyleven
43
+
44
+ 3. How to use
45
+ =============
46
+
47
+ Polyleven provides a single interface function ``levenshtein()``. You
48
+ can use this function to measure the similarity of two strings.
49
+
50
+ >>> from polyleven import levenshtein
51
+ >>> levenshtein('aaa', 'ccc')
52
+ 3
53
+
54
+ If you only care about distances under a certain threshold, you can
55
+ pass the max threshold to the third argument.
56
+
57
+ >>> levenshtein('acc', 'ccc', 1)
58
+ 1
59
+ >>> levenshtein('aaa', 'ccc', 1)
60
+ 2
61
+
62
+ In general, you can gain a noticeable speed boost with threshold
63
+ :math:`k < 3`.
64
+
65
+ 4. Benchmark
66
+ ============
67
+
68
+ 4.1 English Words
69
+ ------------------
70
+
71
+ To compare Polyleven with other Pythonic edit distance libraries,
72
+ a million word pairs was generated from `SCOWL`_.
73
+
74
+ .. _SCOWL: http://wordlist.aspell.net/
75
+
76
+ Each library was measured how long it takes to evaluate all of
77
+ these words. The following table summarises the result:
78
+
79
+ ============================== ============ ================
80
+ Function Name TIME[sec] SPEED[pairs/s]
81
+ ============================== ============ ================
82
+ edlib 4.763 208216
83
+ editdistance 1.943 510450
84
+ jellyfish.levenshtein_distance 0.722 1374081
85
+ distance.levenshtein 0.623 1591396
86
+ Levenshtein.distance 0.500 1982764
87
+ polyleven.levenshtein 0.431 2303420
88
+ ============================== ============ ================
89
+
90
+ 4.2. Longer Inputs
91
+ ------------------
92
+
93
+ To evaluate the efficiency for longer inputs, I created 5000 pairs
94
+ of random strings of size 16, 32, 64, 128, 256, 512 and 1024.
95
+
96
+ Each library was measured how fast it can process these entries. [#fn1]_
97
+
98
+ ============ ===== ===== ===== ===== ===== ===== ======
99
+ Library N=16 N=32 N=64 N=128 N=256 N=512 N=1024
100
+ ============ ===== ===== ===== ===== ===== ===== ======
101
+ edlib 0.040 0.063 0.094 0.205 0.432 0.908 2.089
102
+ editdistance 0.027 0.049 0.086 0.178 0.336 0.740 58.139
103
+ jellyfish 0.009 0.032 0.118 0.470 1.874 8.877 42.848
104
+ distance 0.007 0.029 0.109 0.431 1.726 6.950 27.998
105
+ Levenshtein 0.006 0.022 0.085 0.336 1.328 5.286 21.097
106
+ polyleven 0.003 0.005 0.010 0.043 0.149 0.550 2.109
107
+ ============ ===== ===== ===== ===== ===== ===== ======
108
+
109
+ 3.3. List of Libraries
110
+ ----------------------
111
+
112
+ ============ ======= ==========================================
113
+ Library Version URL
114
+ ============ ======= ==========================================
115
+ edlib v1.2.1 https://github.com/Martinsos/edlib
116
+ editdistance v0.4 https://github.com/aflc/editdistance
117
+ jellyfish v0.5.6 https://github.com/jamesturk/jellyfish
118
+ distance v0.1.3 https://github.com/doukremt/distance
119
+ Levenshtein v0.12 https://github.com/ztane/python-Levenshtein
120
+ polyleven v0.3 https://github.com/fujimotos/polyleven
121
+ ============ ======= ==========================================
122
+
123
+ .. [#fn1] Measured using Python 3.5.3 on Debian Jessie with Intel Core
124
+ i3-4010U (1.70GHz)
@@ -0,0 +1,109 @@
1
+ ==============================================
2
+ Polyleven -- Fast Pythonic Levenshtein Library
3
+ ==============================================
4
+
5
+ :License: MIT License
6
+
7
+ 1. Introduction
8
+ ===============
9
+
10
+ polyleven is a Pythonic Levenshtein distance library that:
11
+
12
+ - Is *fast* independent of input types, and hence can be used for
13
+ both short (like English words) and long input types (like DNA
14
+ sequences).
15
+
16
+ - Is *stand-alone* depending only on core Python packages (such as
17
+ ``setuptools`` for installation).
18
+
19
+ - Can be used readily in a manner not covered by restrictive
20
+ licenses such as GPL, hence can be used freely in private codes.
21
+
22
+ 2. How to install
23
+ =================
24
+
25
+ The official package is available on PyPI::
26
+
27
+ $ pip install polyleven
28
+
29
+ 3. How to use
30
+ =============
31
+
32
+ Polyleven provides a single interface function ``levenshtein()``. You
33
+ can use this function to measure the similarity of two strings.
34
+
35
+ >>> from polyleven import levenshtein
36
+ >>> levenshtein('aaa', 'ccc')
37
+ 3
38
+
39
+ If you only care about distances under a certain threshold, you can
40
+ pass the max threshold to the third argument.
41
+
42
+ >>> levenshtein('acc', 'ccc', 1)
43
+ 1
44
+ >>> levenshtein('aaa', 'ccc', 1)
45
+ 2
46
+
47
+ In general, you can gain a noticeable speed boost with threshold
48
+ :math:`k < 3`.
49
+
50
+ 4. Benchmark
51
+ ============
52
+
53
+ 4.1 English Words
54
+ ------------------
55
+
56
+ To compare Polyleven with other Pythonic edit distance libraries,
57
+ a million word pairs was generated from `SCOWL`_.
58
+
59
+ .. _SCOWL: http://wordlist.aspell.net/
60
+
61
+ Each library was measured how long it takes to evaluate all of
62
+ these words. The following table summarises the result:
63
+
64
+ ============================== ============ ================
65
+ Function Name TIME[sec] SPEED[pairs/s]
66
+ ============================== ============ ================
67
+ edlib 4.763 208216
68
+ editdistance 1.943 510450
69
+ jellyfish.levenshtein_distance 0.722 1374081
70
+ distance.levenshtein 0.623 1591396
71
+ Levenshtein.distance 0.500 1982764
72
+ polyleven.levenshtein 0.431 2303420
73
+ ============================== ============ ================
74
+
75
+ 4.2. Longer Inputs
76
+ ------------------
77
+
78
+ To evaluate the efficiency for longer inputs, I created 5000 pairs
79
+ of random strings of size 16, 32, 64, 128, 256, 512 and 1024.
80
+
81
+ Each library was measured how fast it can process these entries. [#fn1]_
82
+
83
+ ============ ===== ===== ===== ===== ===== ===== ======
84
+ Library N=16 N=32 N=64 N=128 N=256 N=512 N=1024
85
+ ============ ===== ===== ===== ===== ===== ===== ======
86
+ edlib 0.040 0.063 0.094 0.205 0.432 0.908 2.089
87
+ editdistance 0.027 0.049 0.086 0.178 0.336 0.740 58.139
88
+ jellyfish 0.009 0.032 0.118 0.470 1.874 8.877 42.848
89
+ distance 0.007 0.029 0.109 0.431 1.726 6.950 27.998
90
+ Levenshtein 0.006 0.022 0.085 0.336 1.328 5.286 21.097
91
+ polyleven 0.003 0.005 0.010 0.043 0.149 0.550 2.109
92
+ ============ ===== ===== ===== ===== ===== ===== ======
93
+
94
+ 3.3. List of Libraries
95
+ ----------------------
96
+
97
+ ============ ======= ==========================================
98
+ Library Version URL
99
+ ============ ======= ==========================================
100
+ edlib v1.2.1 https://github.com/Martinsos/edlib
101
+ editdistance v0.4 https://github.com/aflc/editdistance
102
+ jellyfish v0.5.6 https://github.com/jamesturk/jellyfish
103
+ distance v0.1.3 https://github.com/doukremt/distance
104
+ Levenshtein v0.12 https://github.com/ztane/python-Levenshtein
105
+ polyleven v0.3 https://github.com/fujimotos/polyleven
106
+ ============ ======= ==========================================
107
+
108
+ .. [#fn1] Measured using Python 3.5.3 on Debian Jessie with Intel Core
109
+ i3-4010U (1.70GHz)
@@ -78,6 +78,9 @@ static int64_t mbleven_ascii(char *s1, int64_t len1,
78
78
  }
79
79
  c += (len1 - i) + (len2 - j);
80
80
  r = MIN(r, c);
81
+ if (r < 2) {
82
+ return r;
83
+ }
81
84
  }
82
85
  return r;
83
86
  }
@@ -124,6 +127,9 @@ static int64_t mbleven(PyObject *o1, PyObject *o2, int64_t k)
124
127
  }
125
128
  c += (s1.len - i) + (s2.len - j);
126
129
  r = MIN(r, c);
130
+ if (r < 2) {
131
+ return r;
132
+ }
127
133
  }
128
134
  return r;
129
135
  }
@@ -0,0 +1,124 @@
1
+ Metadata-Version: 2.2
2
+ Name: polyleven
3
+ Version: 0.9.0
4
+ Summary: A fast C-implemented library for Levenshtein distance
5
+ Maintainer-email: Fujimoto Seiji <fujimoto@ceptord.net>
6
+ Project-URL: github, https://github.com/fujimotos/polyleven
7
+ Keywords: Levenshtein distance
8
+ Classifier: Development Status :: 5 - Production/Stable
9
+ Classifier: Operating System :: OS Independent
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Programming Language :: C
12
+ Requires-Python: >=3.8
13
+ Description-Content-Type: text/x-rst
14
+ License-File: LICENSE
15
+
16
+ ==============================================
17
+ Polyleven -- Fast Pythonic Levenshtein Library
18
+ ==============================================
19
+
20
+ :License: MIT License
21
+
22
+ 1. Introduction
23
+ ===============
24
+
25
+ polyleven is a Pythonic Levenshtein distance library that:
26
+
27
+ - Is *fast* independent of input types, and hence can be used for
28
+ both short (like English words) and long input types (like DNA
29
+ sequences).
30
+
31
+ - Is *stand-alone* depending only on core Python packages (such as
32
+ ``setuptools`` for installation).
33
+
34
+ - Can be used readily in a manner not covered by restrictive
35
+ licenses such as GPL, hence can be used freely in private codes.
36
+
37
+ 2. How to install
38
+ =================
39
+
40
+ The official package is available on PyPI::
41
+
42
+ $ pip install polyleven
43
+
44
+ 3. How to use
45
+ =============
46
+
47
+ Polyleven provides a single interface function ``levenshtein()``. You
48
+ can use this function to measure the similarity of two strings.
49
+
50
+ >>> from polyleven import levenshtein
51
+ >>> levenshtein('aaa', 'ccc')
52
+ 3
53
+
54
+ If you only care about distances under a certain threshold, you can
55
+ pass the max threshold to the third argument.
56
+
57
+ >>> levenshtein('acc', 'ccc', 1)
58
+ 1
59
+ >>> levenshtein('aaa', 'ccc', 1)
60
+ 2
61
+
62
+ In general, you can gain a noticeable speed boost with threshold
63
+ :math:`k < 3`.
64
+
65
+ 4. Benchmark
66
+ ============
67
+
68
+ 4.1 English Words
69
+ ------------------
70
+
71
+ To compare Polyleven with other Pythonic edit distance libraries,
72
+ a million word pairs was generated from `SCOWL`_.
73
+
74
+ .. _SCOWL: http://wordlist.aspell.net/
75
+
76
+ Each library was measured how long it takes to evaluate all of
77
+ these words. The following table summarises the result:
78
+
79
+ ============================== ============ ================
80
+ Function Name TIME[sec] SPEED[pairs/s]
81
+ ============================== ============ ================
82
+ edlib 4.763 208216
83
+ editdistance 1.943 510450
84
+ jellyfish.levenshtein_distance 0.722 1374081
85
+ distance.levenshtein 0.623 1591396
86
+ Levenshtein.distance 0.500 1982764
87
+ polyleven.levenshtein 0.431 2303420
88
+ ============================== ============ ================
89
+
90
+ 4.2. Longer Inputs
91
+ ------------------
92
+
93
+ To evaluate the efficiency for longer inputs, I created 5000 pairs
94
+ of random strings of size 16, 32, 64, 128, 256, 512 and 1024.
95
+
96
+ Each library was measured how fast it can process these entries. [#fn1]_
97
+
98
+ ============ ===== ===== ===== ===== ===== ===== ======
99
+ Library N=16 N=32 N=64 N=128 N=256 N=512 N=1024
100
+ ============ ===== ===== ===== ===== ===== ===== ======
101
+ edlib 0.040 0.063 0.094 0.205 0.432 0.908 2.089
102
+ editdistance 0.027 0.049 0.086 0.178 0.336 0.740 58.139
103
+ jellyfish 0.009 0.032 0.118 0.470 1.874 8.877 42.848
104
+ distance 0.007 0.029 0.109 0.431 1.726 6.950 27.998
105
+ Levenshtein 0.006 0.022 0.085 0.336 1.328 5.286 21.097
106
+ polyleven 0.003 0.005 0.010 0.043 0.149 0.550 2.109
107
+ ============ ===== ===== ===== ===== ===== ===== ======
108
+
109
+ 3.3. List of Libraries
110
+ ----------------------
111
+
112
+ ============ ======= ==========================================
113
+ Library Version URL
114
+ ============ ======= ==========================================
115
+ edlib v1.2.1 https://github.com/Martinsos/edlib
116
+ editdistance v0.4 https://github.com/aflc/editdistance
117
+ jellyfish v0.5.6 https://github.com/jamesturk/jellyfish
118
+ distance v0.1.3 https://github.com/doukremt/distance
119
+ Levenshtein v0.12 https://github.com/ztane/python-Levenshtein
120
+ polyleven v0.3 https://github.com/fujimotos/polyleven
121
+ ============ ======= ==========================================
122
+
123
+ .. [#fn1] Measured using Python 3.5.3 on Debian Jessie with Intel Core
124
+ i3-4010U (1.70GHz)
@@ -1,10 +1,10 @@
1
1
  LICENSE
2
2
  MANIFEST.in
3
- README.md
3
+ README.rst
4
4
  polyleven.c
5
+ pyproject.toml
5
6
  setup.py
6
7
  polyleven.egg-info/PKG-INFO
7
8
  polyleven.egg-info/SOURCES.txt
8
9
  polyleven.egg-info/dependency_links.txt
9
- polyleven.egg-info/not-zip-safe
10
10
  polyleven.egg-info/top_level.txt
@@ -0,0 +1,26 @@
1
+ [build-system]
2
+ requires = ["setuptools"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "polyleven"
7
+ version = "0.9.0"
8
+ dependencies = []
9
+ requires-python = ">= 3.8"
10
+ maintainers = [
11
+ {name = "Fujimoto Seiji", email = "fujimoto@ceptord.net"}
12
+ ]
13
+ description = "A fast C-implemented library for Levenshtein distance"
14
+ readme = "README.rst"
15
+ keywords = [
16
+ "Levenshtein distance"
17
+ ]
18
+ classifiers = [
19
+ "Development Status :: 5 - Production/Stable",
20
+ "Operating System :: OS Independent",
21
+ "Programming Language :: Python :: 3",
22
+ "Programming Language :: C",
23
+ ]
24
+
25
+ [project.urls]
26
+ github = "https://github.com/fujimotos/polyleven"
@@ -0,0 +1,7 @@
1
+ import setuptools
2
+
3
+ setuptools.setup(
4
+ ext_modules=[
5
+ setuptools.Extension('polyleven', sources=['polyleven.c'])
6
+ ]
7
+ )
polyleven-0.7/PKG-INFO DELETED
@@ -1,67 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: polyleven
3
- Version: 0.7
4
- Summary: A fast C-implemented library for Levenshtein distance
5
- Home-page: http://ceptord.net/20181215-polyleven.html
6
- Author: Fujimoto Seiji
7
- Author-email: fujimoto@ceptord.net
8
- License: MIT License
9
- Project-URL: Documentation, http://ceptord.net/20181215-polyleven.html
10
- Project-URL: GitHub Mirror, https://github.com/fujimotos/polyleven
11
- Description: Polyleven
12
- =========
13
-
14
- Polyleven is a fast Levenshtein distance library for Python.
15
-
16
- Project page: http://ceptord.net/20181215-polyleven.html
17
-
18
- Install
19
- -------
20
-
21
- $ pip install polyleven
22
-
23
- Usage
24
- -----
25
-
26
- Polyleven provides a single interface function "levenshtein()". You
27
- can use this function to measure the similarity of two strings.
28
-
29
- >>> from polyleven import levenshtein
30
- >>> levenshtein('aaa', 'ccc')
31
- 3
32
-
33
- If you only care about distances under a certain threshold, you can
34
- pass the max threshold to the third argument.
35
-
36
- >>> levenshtein('acc', 'ccc', 1)
37
- 1
38
- >>> levenshtein('aaa', 'ccc', 1)
39
- 2
40
-
41
- In general, you can gain a noticeable speed boost with threshold
42
- k < 3.
43
-
44
- Source code
45
- -----------
46
-
47
- git clone http://ceptord.net/cgit/polyleven/
48
-
49
- GitHub Mirror: https://github.com/fujimotos/polyleven
50
-
51
- Send bug reports to fujimoto@ceptord.net.
52
-
53
- License
54
- -------
55
-
56
- From v0.7, polyleven is released under MIT License. See LICENSE for
57
- the full license text.
58
-
59
- Keywords: Levenshtein distance
60
- Platform: UNKNOWN
61
- Classifier: Development Status :: 4 - Beta
62
- Classifier: Operating System :: OS Independent
63
- Classifier: Programming Language :: Python :: 3
64
- Classifier: Programming Language :: C
65
- Classifier: License :: OSI Approved :: MIT License
66
- Requires-Python: >=3.4
67
- Description-Content-Type: text/markdown
polyleven-0.7/README.md DELETED
@@ -1,47 +0,0 @@
1
- Polyleven
2
- =========
3
-
4
- Polyleven is a fast Levenshtein distance library for Python.
5
-
6
- Project page: http://ceptord.net/20181215-polyleven.html
7
-
8
- Install
9
- -------
10
-
11
- $ pip install polyleven
12
-
13
- Usage
14
- -----
15
-
16
- Polyleven provides a single interface function "levenshtein()". You
17
- can use this function to measure the similarity of two strings.
18
-
19
- >>> from polyleven import levenshtein
20
- >>> levenshtein('aaa', 'ccc')
21
- 3
22
-
23
- If you only care about distances under a certain threshold, you can
24
- pass the max threshold to the third argument.
25
-
26
- >>> levenshtein('acc', 'ccc', 1)
27
- 1
28
- >>> levenshtein('aaa', 'ccc', 1)
29
- 2
30
-
31
- In general, you can gain a noticeable speed boost with threshold
32
- k < 3.
33
-
34
- Source code
35
- -----------
36
-
37
- git clone http://ceptord.net/cgit/polyleven/
38
-
39
- GitHub Mirror: https://github.com/fujimotos/polyleven
40
-
41
- Send bug reports to fujimoto@ceptord.net.
42
-
43
- License
44
- -------
45
-
46
- From v0.7, polyleven is released under MIT License. See LICENSE for
47
- the full license text.
@@ -1,67 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: polyleven
3
- Version: 0.7
4
- Summary: A fast C-implemented library for Levenshtein distance
5
- Home-page: http://ceptord.net/20181215-polyleven.html
6
- Author: Fujimoto Seiji
7
- Author-email: fujimoto@ceptord.net
8
- License: MIT License
9
- Project-URL: Documentation, http://ceptord.net/20181215-polyleven.html
10
- Project-URL: GitHub Mirror, https://github.com/fujimotos/polyleven
11
- Description: Polyleven
12
- =========
13
-
14
- Polyleven is a fast Levenshtein distance library for Python.
15
-
16
- Project page: http://ceptord.net/20181215-polyleven.html
17
-
18
- Install
19
- -------
20
-
21
- $ pip install polyleven
22
-
23
- Usage
24
- -----
25
-
26
- Polyleven provides a single interface function "levenshtein()". You
27
- can use this function to measure the similarity of two strings.
28
-
29
- >>> from polyleven import levenshtein
30
- >>> levenshtein('aaa', 'ccc')
31
- 3
32
-
33
- If you only care about distances under a certain threshold, you can
34
- pass the max threshold to the third argument.
35
-
36
- >>> levenshtein('acc', 'ccc', 1)
37
- 1
38
- >>> levenshtein('aaa', 'ccc', 1)
39
- 2
40
-
41
- In general, you can gain a noticeable speed boost with threshold
42
- k < 3.
43
-
44
- Source code
45
- -----------
46
-
47
- git clone http://ceptord.net/cgit/polyleven/
48
-
49
- GitHub Mirror: https://github.com/fujimotos/polyleven
50
-
51
- Send bug reports to fujimoto@ceptord.net.
52
-
53
- License
54
- -------
55
-
56
- From v0.7, polyleven is released under MIT License. See LICENSE for
57
- the full license text.
58
-
59
- Keywords: Levenshtein distance
60
- Platform: UNKNOWN
61
- Classifier: Development Status :: 4 - Beta
62
- Classifier: Operating System :: OS Independent
63
- Classifier: Programming Language :: Python :: 3
64
- Classifier: Programming Language :: C
65
- Classifier: License :: OSI Approved :: MIT License
66
- Requires-Python: >=3.4
67
- Description-Content-Type: text/markdown
@@ -1 +0,0 @@
1
-
polyleven-0.7/setup.py DELETED
@@ -1,33 +0,0 @@
1
- import setuptools
2
-
3
- with open('README.md') as fp:
4
- README = fp.read()
5
-
6
- setuptools.setup(
7
- name='polyleven',
8
- version='0.7',
9
- author='Fujimoto Seiji',
10
- author_email='fujimoto@ceptord.net',
11
- license='MIT License',
12
- description='A fast C-implemented library for Levenshtein distance',
13
- long_description=README,
14
- long_description_content_type='text/markdown',
15
- url='http://ceptord.net/20181215-polyleven.html',
16
- ext_modules=[
17
- setuptools.Extension('polyleven', sources=['polyleven.c'])
18
- ],
19
- project_urls={
20
- 'Documentation': 'http://ceptord.net/20181215-polyleven.html',
21
- 'GitHub Mirror': 'https://github.com/fujimotos/polyleven'
22
- },
23
- zip_safe=False,
24
- python_requires='>=3.4',
25
- keywords=['Levenshtein distance'],
26
- classifiers=[
27
- 'Development Status :: 4 - Beta',
28
- 'Operating System :: OS Independent',
29
- 'Programming Language :: Python :: 3',
30
- 'Programming Language :: C',
31
- 'License :: OSI Approved :: MIT License'
32
- ]
33
- )
File without changes
File without changes