pokerdf 1.0.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
pokerdf-1.0.0/LICENSE ADDED
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Murilo Amaral
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
pokerdf-1.0.0/PKG-INFO ADDED
@@ -0,0 +1,113 @@
1
+ Metadata-Version: 2.3
2
+ Name: pokerdf
3
+ Version: 1.0.0
4
+ Summary: Converts poker hand history files to pandas DataFrames.
5
+ Author: Murilo Amaral
6
+ Author-email: murilogmamaral@gmail.com
7
+ Requires-Python: >=3.11.5
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: Programming Language :: Python :: 3.12
10
+ Classifier: Programming Language :: Python :: 3.13
11
+ Requires-Dist: joblib (==1.3.2)
12
+ Requires-Dist: mypy (>=0.0.0)
13
+ Requires-Dist: pandas (>=2.0.0)
14
+ Requires-Dist: pyarrow (>=16.1.0)
15
+ Requires-Dist: pydantic (>=2.8.0)
16
+ Requires-Dist: ruff (>=0.0.0)
17
+ Project-URL: homepage, https://gitlab.com/murilogmamaral/pokerdf
18
+ Project-URL: repository, https://gitlab.com/murilogmamaral/pokerdf
19
+ Description-Content-Type: text/markdown
20
+
21
+ # PokerDF
22
+
23
+ Converts poker hand history files into structured Pandas DataFrames, making it easier to analyze your games.
24
+
25
+ Fast and reliable, PokerDF is able to process 3,000 hand history files into _.parquet_ per minute, in a MacBook Air M2 with 8-core CPU.
26
+
27
+ Currently supports PokerStars. Make sure hand histories are saved in English.
28
+
29
+ ## Introduction
30
+
31
+ Converting raw hand histories into structured data is the first step toward building a solid poker strategy and maximizing ROI. What are the optimal VPIP, PFR, and C-BET frequencies for No Limit Hold'em 6-Max? In which specific situations is a 3-Bet most profitable? When is bluffing a clear mistake? Once your data is organized in a Pandas DataFrame, the analytical explorations become unlimited, opening new possibilities to fine-tune your decision-making.
32
+
33
+ ## Installation
34
+ ```
35
+ pip install pokerdf
36
+ ```
37
+
38
+ ## Usage
39
+ Navigate to the folder where you want to save the output:
40
+ ```
41
+ cd output_directory
42
+ ```
43
+ Then, run the package like this:
44
+ ```
45
+ pokerdf convert /path/to/handhistory/folder
46
+ ```
47
+
48
+ Once the process is concluded, you will find something like this:
49
+ ```
50
+ output_directory/
51
+ └── output/
52
+ └── 20250510-105423/
53
+ ├── 20200607-T2928873630.parquet
54
+ ├── 20200607-T2928880893.parquet
55
+ ├── 20200607-T2928925240.parquet
56
+ ├── 20200607-T2928950825.parquet
57
+ ├── 20200607-T2928996127.parquet
58
+ ├── 20200607-T2929005994.parquet
59
+ ├── ...
60
+ ├── fail.txt
61
+ └── success.txt
62
+ ```
63
+ #### Details
64
+ 1. Inside `output` you’ll find a subfolder named with the session ID, in this case, `20250510-105423`, containing all _.parquet_ files.
65
+ 2. Each hand history file is converted into a _.parquet_ file with the exact same structure, allowing you to concatenate them seamlessly.
66
+ 3. Each _.parquet_ file follows the naming convention _{DATE_OF_TOURNAMENT}-T{TOURNAMENT_ID}.parquet_.
67
+ 4. The file `fail.txt` provides detailed information about any files that failed to process. This file is only generated if there are failures.
68
+ 5. The file `success.txt` lists all successfully converted files.
69
+
70
+ ## DataFrame structure
71
+ | Column | Description | Example | Data Type |
72
+ |-------------------|--------------------------------------------------------------|-----------------------------------|-----------------|
73
+ | Modality | The type of game being played | Hold'em No Limit | string |
74
+ | TableSize | Maximum number of players | 6 | int |
75
+ | BuyIn | The buy-in amount for the tournament | $4.60+$0.40 | string |
76
+ | TournID | Unique identifier for the tournament | 2928882649 | string |
77
+ | TableID | Unique identifier for the table inside a tournament | 10 | int |
78
+ | HandID | Unique identifier for the hand inside a tournament | 215024616736 | string |
79
+ | LocalTime | Local time when the hand was played | 2020-06-07 07:44:35 | datetime |
80
+ | Level | Level of the tournament | IV | string |
81
+ | Ante | Ante amount posted in the hand | 10.00 | float |
82
+ | Blinds | Big blind and small blind amounts | [10.0, 20.0] | list[float] |
83
+ | Owner | Owner of the hand history files | ownername | string |
84
+ | OwnersHand | Cards held by the owner in a specific hand | [9d, Js] | list[string] |
85
+ | Playing | Number of players active during the hand | 5 | int |
86
+ | Player | Player involved in the hand | playername | string |
87
+ | Seat | Seat number of the player | 3 | int |
88
+ | PostedAnte | Amount the player paid for the ante | 5.00 | float |
89
+ | PostedBlind | Amount the player paid for the blinds | 50.00 | float |
90
+ | Position | Player's position at the table | big blind | string |
91
+ | Stack | Current stack size of the player | 2500.00 | float |
92
+ | PreflopAction | Actions taken during the preflop stage | [[checks, ]] | list[list[str]] |
93
+ | FlopAction | Actions taken during the flop stage | [[bets, 840], [calls, 220]] | list[list[str]] |
94
+ | TurnAction | Actions taken during the turn stage | [[raises, 400], [calls, 500]] | list[list[str]] |
95
+ | RiverAction | Actions taken during the river stage | [[folds, ]] | list[list[str]] |
96
+ | AnteAllIn | Whether the player went all-in during the ante | True | bool |
97
+ | PreflopAllIn | Whether the player went all-in during preflop | False | bool |
98
+ | FlopAllIn | Whether the player went all-in during the flop | False | bool |
99
+ | TurnAllIn | Whether the player went all-in during the turn | False | bool |
100
+ | RiverAllIn | Whether the player went all-in during the river | False | bool |
101
+ | BoardFlop | Cards dealt on the flop | [4d, Qs, Ad] | list[string] |
102
+ | BoardTurn | Card dealt on the turn | [4d, Qs, Ad, 7d] | list[string] |
103
+ | BoardRiver | Card dealt on the river | [4d, Qs, Ad, 7d, 2d] | list[string] |
104
+ | ShowDown | Player's cards if went to showdown | [Ah, Ac] | list[string] |
105
+ | CardCombination | Card combination held by the player | three of a kind, Aces | string |
106
+ | Result | Result of the hand (folded, lost, mucked, non-sd win, won) | won | string |
107
+ | Balance | Total value won in a hand | 9150.25 | float |
108
+ | FinalRank | Player's final ranking in the tournament | 1 | int |
109
+ | Prize | Prize won by the player, if any | 30000.00 | float |
110
+
111
+ ## License
112
+ MIT Licence
113
+
@@ -0,0 +1,92 @@
1
+ # PokerDF
2
+
3
+ Converts poker hand history files into structured Pandas DataFrames, making it easier to analyze your games.
4
+
5
+ Fast and reliable, PokerDF is able to process 3,000 hand history files into _.parquet_ per minute, in a MacBook Air M2 with 8-core CPU.
6
+
7
+ Currently supports PokerStars. Make sure hand histories are saved in English.
8
+
9
+ ## Introduction
10
+
11
+ Converting raw hand histories into structured data is the first step toward building a solid poker strategy and maximizing ROI. What are the optimal VPIP, PFR, and C-BET frequencies for No Limit Hold'em 6-Max? In which specific situations is a 3-Bet most profitable? When is bluffing a clear mistake? Once your data is organized in a Pandas DataFrame, the analytical explorations become unlimited, opening new possibilities to fine-tune your decision-making.
12
+
13
+ ## Installation
14
+ ```
15
+ pip install pokerdf
16
+ ```
17
+
18
+ ## Usage
19
+ Navigate to the folder where you want to save the output:
20
+ ```
21
+ cd output_directory
22
+ ```
23
+ Then, run the package like this:
24
+ ```
25
+ pokerdf convert /path/to/handhistory/folder
26
+ ```
27
+
28
+ Once the process is concluded, you will find something like this:
29
+ ```
30
+ output_directory/
31
+ └── output/
32
+ └── 20250510-105423/
33
+ ├── 20200607-T2928873630.parquet
34
+ ├── 20200607-T2928880893.parquet
35
+ ├── 20200607-T2928925240.parquet
36
+ ├── 20200607-T2928950825.parquet
37
+ ├── 20200607-T2928996127.parquet
38
+ ├── 20200607-T2929005994.parquet
39
+ ├── ...
40
+ ├── fail.txt
41
+ └── success.txt
42
+ ```
43
+ #### Details
44
+ 1. Inside `output` you’ll find a subfolder named with the session ID, in this case, `20250510-105423`, containing all _.parquet_ files.
45
+ 2. Each hand history file is converted into a _.parquet_ file with the exact same structure, allowing you to concatenate them seamlessly.
46
+ 3. Each _.parquet_ file follows the naming convention _{DATE_OF_TOURNAMENT}-T{TOURNAMENT_ID}.parquet_.
47
+ 4. The file `fail.txt` provides detailed information about any files that failed to process. This file is only generated if there are failures.
48
+ 5. The file `success.txt` lists all successfully converted files.
49
+
50
+ ## DataFrame structure
51
+ | Column | Description | Example | Data Type |
52
+ |-------------------|--------------------------------------------------------------|-----------------------------------|-----------------|
53
+ | Modality | The type of game being played | Hold'em No Limit | string |
54
+ | TableSize | Maximum number of players | 6 | int |
55
+ | BuyIn | The buy-in amount for the tournament | $4.60+$0.40 | string |
56
+ | TournID | Unique identifier for the tournament | 2928882649 | string |
57
+ | TableID | Unique identifier for the table inside a tournament | 10 | int |
58
+ | HandID | Unique identifier for the hand inside a tournament | 215024616736 | string |
59
+ | LocalTime | Local time when the hand was played | 2020-06-07 07:44:35 | datetime |
60
+ | Level | Level of the tournament | IV | string |
61
+ | Ante | Ante amount posted in the hand | 10.00 | float |
62
+ | Blinds | Big blind and small blind amounts | [10.0, 20.0] | list[float] |
63
+ | Owner | Owner of the hand history files | ownername | string |
64
+ | OwnersHand | Cards held by the owner in a specific hand | [9d, Js] | list[string] |
65
+ | Playing | Number of players active during the hand | 5 | int |
66
+ | Player | Player involved in the hand | playername | string |
67
+ | Seat | Seat number of the player | 3 | int |
68
+ | PostedAnte | Amount the player paid for the ante | 5.00 | float |
69
+ | PostedBlind | Amount the player paid for the blinds | 50.00 | float |
70
+ | Position | Player's position at the table | big blind | string |
71
+ | Stack | Current stack size of the player | 2500.00 | float |
72
+ | PreflopAction | Actions taken during the preflop stage | [[checks, ]] | list[list[str]] |
73
+ | FlopAction | Actions taken during the flop stage | [[bets, 840], [calls, 220]] | list[list[str]] |
74
+ | TurnAction | Actions taken during the turn stage | [[raises, 400], [calls, 500]] | list[list[str]] |
75
+ | RiverAction | Actions taken during the river stage | [[folds, ]] | list[list[str]] |
76
+ | AnteAllIn | Whether the player went all-in during the ante | True | bool |
77
+ | PreflopAllIn | Whether the player went all-in during preflop | False | bool |
78
+ | FlopAllIn | Whether the player went all-in during the flop | False | bool |
79
+ | TurnAllIn | Whether the player went all-in during the turn | False | bool |
80
+ | RiverAllIn | Whether the player went all-in during the river | False | bool |
81
+ | BoardFlop | Cards dealt on the flop | [4d, Qs, Ad] | list[string] |
82
+ | BoardTurn | Card dealt on the turn | [4d, Qs, Ad, 7d] | list[string] |
83
+ | BoardRiver | Card dealt on the river | [4d, Qs, Ad, 7d, 2d] | list[string] |
84
+ | ShowDown | Player's cards if went to showdown | [Ah, Ac] | list[string] |
85
+ | CardCombination | Card combination held by the player | three of a kind, Aces | string |
86
+ | Result | Result of the hand (folded, lost, mucked, non-sd win, won) | won | string |
87
+ | Balance | Total value won in a hand | 9150.25 | float |
88
+ | FinalRank | Player's final ranking in the tournament | 1 | int |
89
+ | Prize | Prize won by the player, if any | 30000.00 | float |
90
+
91
+ ## License
92
+ MIT Licence
File without changes
@@ -0,0 +1,254 @@
1
+ import os
2
+ import pandas as pd
3
+ from typing import List
4
+ from joblib import Parallel, delayed
5
+ from pokerdf.validation.pydantic_modules import ValidateInput
6
+ from pokerdf.utils.strings import PLATFORM
7
+ from pokerdf.regex.regex_execution import (
8
+ capture_common_data,
9
+ capture_general_data_of_the_hand,
10
+ capture_specific_data_of_the_player,
11
+ r,
12
+ )
13
+ import warnings
14
+
15
+ warnings.simplefilter(action="ignore", category=FutureWarning)
16
+
17
+
18
+ def get_files_paths(path: str) -> List[str]:
19
+ """
20
+ Retrieve the paths of relevant files in the specified directory.
21
+
22
+ Args:
23
+ path (str): The directory path to search for files.
24
+
25
+ Returns:
26
+ List[str]: A list of file paths that match the criteria.
27
+ """
28
+ # Get files names
29
+ list_of_all_files_names = os.listdir(path)
30
+
31
+ # Order by ID
32
+ list_of_all_files_names.sort()
33
+
34
+ # Keep relevant files only
35
+ list_of_selected_files = [
36
+ file_name
37
+ for file_name in list_of_all_files_names
38
+ if file_name.startswith("HH") and file_name.endswith(".txt")
39
+ ]
40
+
41
+ # Compose the final path for each file
42
+ paths = [os.path.join(path, file_name) for file_name in list_of_selected_files]
43
+
44
+ return paths
45
+
46
+
47
+ def compose_dataframe() -> pd.DataFrame:
48
+ """
49
+ Create an empty DataFrame with predefined columns to hold poker data.
50
+
51
+ Returns:
52
+ pd.DataFrame: An empty DataFrame with predefined columns.
53
+ """
54
+ # Compose default dataframe
55
+ df = pd.DataFrame(
56
+ columns=[
57
+ "Modality",
58
+ "TableSize",
59
+ "BuyIn",
60
+ "TournID",
61
+ "TableID",
62
+ "HandID",
63
+ "LocalTime",
64
+ "Level",
65
+ "Ante",
66
+ "Blinds",
67
+ "Owner",
68
+ "OwnersHand",
69
+ "Playing",
70
+ "Player",
71
+ "Seat",
72
+ "PostedAnte",
73
+ "Position",
74
+ "PostedBlind",
75
+ "Stack",
76
+ "PreflopAction",
77
+ "FlopAction",
78
+ "TurnAction",
79
+ "RiverAction",
80
+ "AnteAllIn",
81
+ "PreflopAllIn",
82
+ "FlopAllIn",
83
+ "TurnAllIn",
84
+ "RiverAllIn",
85
+ "BoardFlop",
86
+ "BoardTurn",
87
+ "BoardRiver",
88
+ "ShowDown",
89
+ "CardCombination",
90
+ "Result",
91
+ "Balance",
92
+ "FinalRank",
93
+ "Prize",
94
+ ],
95
+ data=None,
96
+ )
97
+ return df
98
+
99
+
100
+ def apply_regex(txt: str) -> pd.DataFrame:
101
+ """
102
+ Apply regex functions to parse the hand history text and collect relevant data.
103
+
104
+ Args:
105
+ txt (str): The text content of the poker hand history file.
106
+
107
+ Returns:
108
+ pd.DataFrame: A DataFrame containing the parsed data from the hand history.
109
+ """
110
+ # Generate dataframe
111
+ df = compose_dataframe()
112
+
113
+ # Spliting tournament's hands in a list
114
+ list_of_hands_as_text = txt.split(f"{PLATFORM} ")
115
+
116
+ # Cleaning list_of_hands_as_text
117
+ string_to_remove = "\ufeff"
118
+ if string_to_remove in list_of_hands_as_text:
119
+ list_of_hands_as_text.remove(string_to_remove)
120
+ list_of_hands_as_text = [hand for hand in list_of_hands_as_text if hand is not None]
121
+ list_of_hands_as_text = [hand for hand in list_of_hands_as_text if len(hand) > 0]
122
+
123
+ # Capture common info about the tournament
124
+ common = capture_common_data(list_of_hands_as_text[0].split("\n*** "))
125
+
126
+ for hand in list_of_hands_as_text:
127
+
128
+ # Split hand in stages (pre-flop/flop/turn/river)
129
+ splited_hand = hand.split("\n*** ")
130
+
131
+ # Capture general info of the hand
132
+ general = capture_general_data_of_the_hand(splited_hand)
133
+
134
+ # Get players
135
+ players = r.get_players(splited_hand)
136
+
137
+ # Iterate over players
138
+ for player in players:
139
+
140
+ # Capture specific info of players' actions
141
+ specific = capture_specific_data_of_the_player(splited_hand, player)
142
+
143
+ # Combine collected info
144
+ collected_data = {**common, **general, **specific}
145
+
146
+ # Validate
147
+ ValidateInput(**collected_data)
148
+
149
+ # Convert to dataframe
150
+ result = pd.DataFrame(collected_data)
151
+
152
+ # Concat to the final results
153
+ df = pd.concat([df, result])
154
+
155
+ return df
156
+
157
+
158
+ def convert_txt_to_tabular_data(path: str) -> pd.DataFrame:
159
+ """
160
+ Convert a poker hand history text file into a structured DataFrame.
161
+
162
+ Args:
163
+ path (str): The path to the .txt file containing the hand history.
164
+
165
+ Returns:
166
+ pd.DataFrame: A DataFrame with parsed data from the hand history.
167
+ """
168
+ with open(path, "r", encoding="utf-8", errors="replace") as file:
169
+ txt = file.read()
170
+ result = apply_regex(txt)
171
+
172
+ return result
173
+
174
+
175
+ def _save_log(msg: str, destination: str, file_name: str) -> None:
176
+ """
177
+ Save a log message to a file.
178
+
179
+ Args:
180
+ msg (str): The message to be logged.
181
+ destination (str): The folder where the log file will be saved.
182
+ file_name (str): The name of the log file.
183
+ """
184
+ # Compose path of the log
185
+ path = os.path.join(destination, file_name)
186
+
187
+ # Open the file
188
+ file = open(path, "a")
189
+
190
+ # Write content
191
+ file.write(msg + "\n")
192
+
193
+ # Close the writing process
194
+ file.close()
195
+
196
+
197
+ class DataProcessing:
198
+ """
199
+ Process and save a poker hand history file, logging the result.
200
+
201
+ Args:
202
+ path (str): The path to the hand history file.
203
+ destination (str): The directory where the processed data will be saved.
204
+ """
205
+
206
+ def __init__(self, path: str, destination: str) -> None:
207
+ self.path = path
208
+ self.destination = destination
209
+
210
+ def run(self) -> None:
211
+ """
212
+ Trigger the data processing.
213
+ """
214
+ try:
215
+
216
+ # Convert text to pd.DataFrame
217
+ df = convert_txt_to_tabular_data(self.path).reset_index(drop=True)
218
+
219
+ # Compose name of the .parquet file (the Tournament ID + the Local Time)
220
+ clean_datetime = str(df.LocalTime[0]).replace("-", "")[:8]
221
+ file_name = clean_datetime + "-T" + str(df.TournID[0]) + ".parquet"
222
+
223
+ # Path to save the file
224
+ destination_path = os.path.join(self.destination, file_name)
225
+
226
+ # Save the table
227
+ df.to_parquet(destination_path, index=False)
228
+
229
+ # Log / print DONE status
230
+ msg = " DONE: " + self.path.split("/")[-1]
231
+ _save_log(msg, self.destination, "success.txt")
232
+ print(msg)
233
+
234
+ except Exception as e:
235
+
236
+ # Log / print FAIL status
237
+ msg = " FAIL: " + self.path.split("/")[-1]
238
+ msg += " (" + str(e) + ")"
239
+ _save_log(msg, self.destination, "fail.txt")
240
+ print(msg)
241
+
242
+
243
+ def execute_in_parallel(source: str, destination: str) -> None:
244
+ """
245
+ Function to run the DataProcessing with multiple cores
246
+ """
247
+
248
+ # Get all paths
249
+ all_paths = get_files_paths(source)
250
+
251
+ # Run a DataProcessing in parallel.
252
+ Parallel(n_jobs=-1)(
253
+ delayed(DataProcessing(path, destination).run)() for path in all_paths
254
+ )
@@ -0,0 +1,79 @@
1
+ import os
2
+ import sys
3
+ import datetime
4
+
5
+ from pokerdf.core.read_and_convert import execute_in_parallel
6
+
7
+
8
+ def main() -> None:
9
+ """
10
+ Main function to process command line arguments and execute the 'convert' command.
11
+
12
+ - Checks if the command is 'convert'.
13
+ - If 'convert', generates a session ID and creates a destination path.
14
+ - Executes the pipeline function `execute_in_parallel` to process files from source to destination.
15
+
16
+ Raises:
17
+ SystemExit: If there are not enough arguments or if an invalid command is provided.
18
+ """
19
+
20
+ if len(sys.argv) < 3:
21
+ print("Usage: pokerdf convert <path>")
22
+ sys.exit(1)
23
+
24
+ command = sys.argv[1]
25
+ source_path = sys.argv[2]
26
+
27
+ if command == "convert":
28
+
29
+ # Check if the source path exists
30
+ if not os.path.exists(source_path):
31
+ print(f"The source path '{source_path}' does not exist.")
32
+ sys.exit(1)
33
+ # Check if the source path is a directory
34
+ if not os.path.isdir(source_path):
35
+ print(f"The source path '{source_path}' is not a directory.")
36
+ sys.exit(1)
37
+ # Check if the source path is empty
38
+ if not os.listdir(source_path):
39
+ print(f"The source path '{source_path}' is empty.")
40
+ sys.exit(1)
41
+ # Check if the source path is a valid poker hand history file
42
+ if not any(file.endswith(".txt") for file in os.listdir(source_path)):
43
+ print(
44
+ f"The source path '{source_path}' does not contain any poker hand history files."
45
+ )
46
+ sys.exit(1)
47
+
48
+ # Get start time
49
+ start_time = datetime.datetime.now()
50
+
51
+ # Generate session ID
52
+ session_id = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
53
+
54
+ # Generate destionation path
55
+ destination_path = f"./output/{session_id}"
56
+
57
+ # Create folder
58
+ os.makedirs(destination_path)
59
+
60
+ # Execute pipeline
61
+ execute_in_parallel(source=source_path, destination=destination_path)
62
+
63
+ # Get end time
64
+ end_time = datetime.datetime.now()
65
+ elapsed_time = end_time - start_time
66
+ # Get the completed time in hours, minutes, and seconds
67
+ hours, remainder = divmod(elapsed_time.total_seconds(), 3600)
68
+ minutes, seconds = divmod(remainder, 60)
69
+ # Print the completed time in a readable format
70
+ print(
71
+ f"Processing completed in {int(hours)} hours, {int(minutes)} minutes, and {int(seconds)} seconds."
72
+ )
73
+
74
+ else:
75
+ print(f"The command '{command}' does not exist.")
76
+
77
+
78
+ if __name__ == "__main__":
79
+ main()
@@ -0,0 +1,89 @@
1
+ from typing import Any
2
+ from pokerdf.regex.regex_patterns import RegexPatterns
3
+
4
+ r = RegexPatterns()
5
+
6
+
7
+ def capture_common_data(hand: list[str]) -> dict[str, Any]:
8
+ """
9
+ Captures the common data of the tournament
10
+
11
+ Args:
12
+ hand (list): List of texts from a specific hand.
13
+
14
+ Returns:
15
+ dict: Dictionary of captured values.
16
+ """
17
+ row: dict[str, Any] = {}
18
+ row["Modality"] = r.get_modality(hand)
19
+ row["TableSize"] = r.get_table_size(hand)
20
+ row["BuyIn"] = r.get_buyin(hand)
21
+ row["TournID"] = r.get_tourn_id(hand)
22
+ row["Owner"] = r.get_owner(hand)
23
+
24
+ return row
25
+
26
+
27
+ def capture_general_data_of_the_hand(splitted_hand: list[str]) -> dict[str, Any]:
28
+ """
29
+ Captures the general data of the hand
30
+
31
+ Args:
32
+ hand (list): List of texts from a specific hand.
33
+
34
+ Returns:
35
+ dict: Dictionary of captured values.
36
+ """
37
+ row: dict[str, Any] = {}
38
+ row["HandID"] = r.get_hand_id(splitted_hand)
39
+ row["TableID"] = r.get_table_id(splitted_hand)
40
+ row["LocalTime"] = r.get_time(splitted_hand)
41
+ row["Level"] = r.get_level(splitted_hand)
42
+ row["Ante"] = r.get_ante(splitted_hand)
43
+ row["Blinds"] = r.get_blinds(splitted_hand)
44
+ row["OwnersHand"] = r.get_owner_cards(splitted_hand)
45
+ row["Playing"] = r.get_number_of_active_players(splitted_hand)
46
+ row["BoardFlop"] = r.get_board(splitted_hand, stage="FLOP ***")
47
+ row["BoardTurn"] = r.get_board(splitted_hand, stage="TURN ***")
48
+ row["BoardRiver"] = r.get_board(splitted_hand, stage="RIVER ***")
49
+
50
+ return row
51
+
52
+
53
+ def capture_specific_data_of_the_player(
54
+ splitted_hand: list[str], player: str
55
+ ) -> dict[str, Any]:
56
+ """
57
+ Captures the specific data of a player
58
+
59
+ Args:
60
+ hand (list): List of texts from a specific hand.
61
+ player (str): Name of the player.
62
+
63
+ Returns:
64
+ dict: Dictionary of captured values.
65
+ """
66
+ row: dict[str, Any] = {}
67
+ row["Player"] = [player]
68
+ row["Seat"] = r.get_seat(player, splitted_hand)
69
+ row["PostedAnte"] = r.get_posted_ante(player, splitted_hand)
70
+ row["Position"] = r.get_position(player, splitted_hand)
71
+ row["PostedBlind"] = r.get_posted_blind(player, splitted_hand)
72
+ row["Stack"] = r.get_stack(player, splitted_hand)
73
+ row["PreflopAction"] = r.get_actions(player, splitted_hand, stage="HOLE CARDS ***")
74
+ row["FlopAction"] = r.get_actions(player, splitted_hand, stage="FLOP ***")
75
+ row["TurnAction"] = r.get_actions(player, splitted_hand, stage="TURN ***")
76
+ row["RiverAction"] = r.get_actions(player, splitted_hand, stage="RIVER ***")
77
+ row["AnteAllIn"] = r.get_allin(player, splitted_hand, stage=" posts the ante ")
78
+ row["PreflopAllIn"] = r.get_allin(player, splitted_hand, stage="HOLE CARDS ***")
79
+ row["FlopAllIn"] = r.get_allin(player, splitted_hand, stage="FLOP ***")
80
+ row["TurnAllIn"] = r.get_allin(player, splitted_hand, stage="TURN ***")
81
+ row["RiverAllIn"] = r.get_allin(player, splitted_hand, stage="RIVER ***")
82
+ row["ShowDown"] = r.get_showed_card(player, splitted_hand)
83
+ row["CardCombination"] = r.get_card_combination(player, splitted_hand)
84
+ row["Result"] = r.get_result(player, splitted_hand)
85
+ row["Balance"] = r.get_balance(player, splitted_hand)
86
+ row["FinalRank"] = r.get_final_rank(player, splitted_hand)
87
+ row["Prize"] = r.get_prize(player, splitted_hand)
88
+
89
+ return row