piegy 1.1.4__tar.gz → 1.1.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: piegy
3
- Version: 1.1.4
3
+ Version: 1.1.5
4
4
  Summary: Payoff-Driven Stochastic Spatial Model for Evolutionary Game Theory
5
5
  Author-email: Chenning Xu <cxu7@caltech.edu>
6
6
  License: BSD 3-Clause License
@@ -87,16 +87,16 @@ The *piegy* package also provides a wide range of analytic and supportive tools
87
87
  To get started, simply get our demo model and run simulation:
88
88
 
89
89
  ```python
90
- from piegy import model, figures
90
+ from piegy import simulation, figures
91
91
  import matplotlib.pyplot as plt
92
92
 
93
- sim = model.demo_model()
94
- model.run(sim)
93
+ mod = simulation.demo_model()
94
+ simulation.run(mod)
95
95
 
96
96
  fig1, ax1 = plt.subplots()
97
- figures.UV_dyna(sim, ax1)
97
+ figures.UV_dyna(mod, ax1)
98
98
  fig2, ax2 = plt.subplots(1, 2, figsize = (12.8, 4.8))
99
- U_hmap, V_hmap = figures.UV_heatmap(sim, ax2[0], ax2[1])
99
+ U_hmap, V_hmap = figures.UV_heatmap(mod, ax2[0], ax2[1])
100
100
  ```
101
101
 
102
102
  The figures reveal population dynamics and steady state population distribution.
@@ -32,16 +32,16 @@ The *piegy* package also provides a wide range of analytic and supportive tools
32
32
  To get started, simply get our demo model and run simulation:
33
33
 
34
34
  ```python
35
- from piegy import model, figures
35
+ from piegy import simulation, figures
36
36
  import matplotlib.pyplot as plt
37
37
 
38
- sim = model.demo_model()
39
- model.run(sim)
38
+ mod = simulation.demo_model()
39
+ simulation.run(mod)
40
40
 
41
41
  fig1, ax1 = plt.subplots()
42
- figures.UV_dyna(sim, ax1)
42
+ figures.UV_dyna(mod, ax1)
43
43
  fig2, ax2 = plt.subplots(1, 2, figsize = (12.8, 4.8))
44
- U_hmap, V_hmap = figures.UV_heatmap(sim, ax2[0], ax2[1])
44
+ U_hmap, V_hmap = figures.UV_heatmap(mod, ax2[0], ax2[1])
45
45
  ```
46
46
 
47
47
  The figures reveal population dynamics and steady state population distribution.
@@ -4,7 +4,7 @@ build-backend = 'setuptools.build_meta'
4
4
 
5
5
  [project]
6
6
  name = 'piegy'
7
- version = '1.1.4'
7
+ version = '1.1.5'
8
8
  description = 'Payoff-Driven Stochastic Spatial Model for Evolutionary Game Theory'
9
9
  readme = 'README.md'
10
10
  requires-python = '>=3.6'
@@ -18,5 +18,6 @@ version history:
18
18
  1.1.2: fix text bad location in figure_tools, update labeling and titling in figures and test_var. Add dpi param to make_video in videos. Remove reset_data function in model.
19
19
  1.1.3: update README.
20
20
  1.1.4: changed name: ``model`` module to ``simulation``, and ``model.simulation`` class to ``simulation.model``. Bug fix in videos.
21
+ 1.1.5: update README.
21
22
 
22
23
  '''
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: piegy
3
- Version: 1.1.4
3
+ Version: 1.1.5
4
4
  Summary: Payoff-Driven Stochastic Spatial Model for Evolutionary Game Theory
5
5
  Author-email: Chenning Xu <cxu7@caltech.edu>
6
6
  License: BSD 3-Clause License
@@ -87,16 +87,16 @@ The *piegy* package also provides a wide range of analytic and supportive tools
87
87
  To get started, simply get our demo model and run simulation:
88
88
 
89
89
  ```python
90
- from piegy import model, figures
90
+ from piegy import simulation, figures
91
91
  import matplotlib.pyplot as plt
92
92
 
93
- sim = model.demo_model()
94
- model.run(sim)
93
+ mod = simulation.demo_model()
94
+ simulation.run(mod)
95
95
 
96
96
  fig1, ax1 = plt.subplots()
97
- figures.UV_dyna(sim, ax1)
97
+ figures.UV_dyna(mod, ax1)
98
98
  fig2, ax2 = plt.subplots(1, 2, figsize = (12.8, 4.8))
99
- U_hmap, V_hmap = figures.UV_heatmap(sim, ax2[0], ax2[1])
99
+ U_hmap, V_hmap = figures.UV_heatmap(mod, ax2[0], ax2[1])
100
100
  ```
101
101
 
102
102
  The figures reveal population dynamics and steady state population distribution.
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes