physiomodeler 1.0.0rc1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- physiomodeler-1.0.0rc1/LICENSE +21 -0
- physiomodeler-1.0.0rc1/PKG-INFO +46 -0
- physiomodeler-1.0.0rc1/examples/equilibrium.ipynb +155 -0
- physiomodeler-1.0.0rc1/examples/kt3405_model.py +591 -0
- physiomodeler-1.0.0rc1/examples/kt3405_model_new.py +597 -0
- physiomodeler-1.0.0rc1/examples/model.py +80 -0
- physiomodeler-1.0.0rc1/examples/no_state_model.py +77 -0
- physiomodeler-1.0.0rc1/examples/pendulum.ipynb +191 -0
- physiomodeler-1.0.0rc1/examples/simple.py +71 -0
- physiomodeler-1.0.0rc1/physiomodeler/.DS_Store +0 -0
- physiomodeler-1.0.0rc1/physiomodeler/__init__.py +6 -0
- physiomodeler-1.0.0rc1/physiomodeler/_converters.py +155 -0
- physiomodeler-1.0.0rc1/physiomodeler/_helpers.py +170 -0
- physiomodeler-1.0.0rc1/physiomodeler/_validators.py +488 -0
- physiomodeler-1.0.0rc1/physiomodeler/events.py +41 -0
- physiomodeler-1.0.0rc1/physiomodeler/graph.py +329 -0
- physiomodeler-1.0.0rc1/physiomodeler/model.py +801 -0
- physiomodeler-1.0.0rc1/physiomodeler/post_analysis.py +36 -0
- physiomodeler-1.0.0rc1/physiomodeler/settings/__init__.py +96 -0
- physiomodeler-1.0.0rc1/physiomodeler/settings/registry.py +74 -0
- physiomodeler-1.0.0rc1/physiomodeler/settings/settings.py +22 -0
- physiomodeler-1.0.0rc1/physiomodeler/settings/settings_base.py +39 -0
- physiomodeler-1.0.0rc1/pyproject.toml +93 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
The MIT License (MIT)
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2023 Peter Somhorst
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in
|
|
13
|
+
all copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
21
|
+
THE SOFTWARE.
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
Metadata-Version: 2.3
|
|
2
|
+
Name: physiomodeler
|
|
3
|
+
Version: 1.0.0rc1
|
|
4
|
+
Summary: Create physiological models for educational purposes.
|
|
5
|
+
Keywords: simulation,physiology,education,respiration,modelling
|
|
6
|
+
Author: Peter Somhorst
|
|
7
|
+
Author-email: Peter Somhorst <p.somhorst@tudelft.nl>
|
|
8
|
+
License: The MIT License (MIT)
|
|
9
|
+
|
|
10
|
+
Copyright (c) 2023 Peter Somhorst
|
|
11
|
+
|
|
12
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
13
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
14
|
+
in the Software without restriction, including without limitation the rights
|
|
15
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
16
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
17
|
+
furnished to do so, subject to the following conditions:
|
|
18
|
+
|
|
19
|
+
The above copyright notice and this permission notice shall be included in
|
|
20
|
+
all copies or substantial portions of the Software.
|
|
21
|
+
|
|
22
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
23
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
24
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
25
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
26
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
27
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
28
|
+
THE SOFTWARE.
|
|
29
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
30
|
+
Requires-Dist: attrs>=25.1.0
|
|
31
|
+
Requires-Dist: camel-converter>=5.0.0
|
|
32
|
+
Requires-Dist: dataclass-wizard[toml]>=0.38.0
|
|
33
|
+
Requires-Dist: frozendict>=2.4.6
|
|
34
|
+
Requires-Dist: jupyter>=1.1.1
|
|
35
|
+
Requires-Dist: markdown-exec>=1.12.1
|
|
36
|
+
Requires-Dist: matplotlib>=3.10.0
|
|
37
|
+
Requires-Dist: numpy>=2.2.2
|
|
38
|
+
Requires-Dist: pandas>=2.2.3
|
|
39
|
+
Requires-Dist: scipy>=1.15.1
|
|
40
|
+
Requires-Dist: playwright>=1.55.0 ; extra == 'diagrams'
|
|
41
|
+
Requires-Dist: ipykernel>=6.29.5 ; extra == 'notebooks'
|
|
42
|
+
Requires-Dist: ipympl>=0.9.7 ; extra == 'notebooks'
|
|
43
|
+
Requires-Dist: jupyter>=1.1.1 ; extra == 'notebooks'
|
|
44
|
+
Requires-Python: >=3.11
|
|
45
|
+
Provides-Extra: diagrams
|
|
46
|
+
Provides-Extra: notebooks
|
|
@@ -0,0 +1,155 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "code",
|
|
5
|
+
"execution_count": 3,
|
|
6
|
+
"metadata": {},
|
|
7
|
+
"outputs": [
|
|
8
|
+
{
|
|
9
|
+
"name": "stdout",
|
|
10
|
+
"output_type": "stream",
|
|
11
|
+
"text": [
|
|
12
|
+
"1.8 ms ± 42.2 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n",
|
|
13
|
+
"3.88 ms ± 39.8 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
|
14
|
+
"6.3 ms ± 89.9 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
|
15
|
+
"7.77 ms ± 305 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
|
16
|
+
"8.92 ms ± 283 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
|
17
|
+
"11.1 ms ± 572 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
|
18
|
+
"11.9 ms ± 461 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
|
19
|
+
"12.8 ms ± 249 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
|
20
|
+
"13.5 ms ± 183 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
|
21
|
+
"15.3 ms ± 415 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
|
22
|
+
"15.9 ms ± 173 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
|
23
|
+
"17.7 ms ± 32.9 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
|
24
|
+
"21.3 ms ± 1.7 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
|
|
25
|
+
]
|
|
26
|
+
}
|
|
27
|
+
],
|
|
28
|
+
"source": [
|
|
29
|
+
"from physiomodeler import Model\n",
|
|
30
|
+
"\n",
|
|
31
|
+
"parameters = {\"R\": 5, \"V0\": 3, \"E\": 5}\n",
|
|
32
|
+
"inputs = {\"P\": 10}\n",
|
|
33
|
+
"\n",
|
|
34
|
+
"\n",
|
|
35
|
+
"def update_model(time, state, inputs, parameters):\n",
|
|
36
|
+
" return {\n",
|
|
37
|
+
" \"dV\": (inputs[\"P\"] - parameters[\"E\"] * (state[\"V\"] - parameters[\"V0\"]))\n",
|
|
38
|
+
" / parameters[\"R\"]\n",
|
|
39
|
+
" }\n",
|
|
40
|
+
"\n",
|
|
41
|
+
"\n",
|
|
42
|
+
"model = Model(\n",
|
|
43
|
+
" update_model,\n",
|
|
44
|
+
" state_labels=[\"V\"],\n",
|
|
45
|
+
" inputs=inputs,\n",
|
|
46
|
+
" parameters=parameters,\n",
|
|
47
|
+
" time_units=\"s\",\n",
|
|
48
|
+
")\n",
|
|
49
|
+
"\n",
|
|
50
|
+
"timings = []\n",
|
|
51
|
+
"for e in range(0, 13):\n",
|
|
52
|
+
" t = %timeit -o model.run_to_equilibrium(period=1, relative_tolerance_equilibrium=10 ** (-e), absolute_tolerance_equilibrium=10 ** (-e - 2))\n",
|
|
53
|
+
" timings.append((e, t))"
|
|
54
|
+
]
|
|
55
|
+
},
|
|
56
|
+
{
|
|
57
|
+
"cell_type": "code",
|
|
58
|
+
"execution_count": 4,
|
|
59
|
+
"metadata": {},
|
|
60
|
+
"outputs": [],
|
|
61
|
+
"source": [
|
|
62
|
+
"t = timings[0]"
|
|
63
|
+
]
|
|
64
|
+
},
|
|
65
|
+
{
|
|
66
|
+
"cell_type": "code",
|
|
67
|
+
"execution_count": 5,
|
|
68
|
+
"metadata": {},
|
|
69
|
+
"outputs": [
|
|
70
|
+
{
|
|
71
|
+
"data": {
|
|
72
|
+
"text/plain": [
|
|
73
|
+
"[(0.0, 0.02401308498975751)]"
|
|
74
|
+
]
|
|
75
|
+
},
|
|
76
|
+
"execution_count": 5,
|
|
77
|
+
"metadata": {},
|
|
78
|
+
"output_type": "execute_result"
|
|
79
|
+
},
|
|
80
|
+
{
|
|
81
|
+
"data": {
|
|
82
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJFFJREFUeJzt3X1wVNX9x/HvJjEEUolClPAUkzrpREwEDQmEMsYOGbFmylCwBorCICPtjCKCVkLKg7SWIA6UUag0/aPO/EZKyhgpUspvABmYDmh4bA0KRZsYkMcdSiKJEEn2N9/T3667sInZEHJ3z75fM7e79+7Zu4fbuPnkPF2Xx+PxCAAAQISLcboCAAAAXYFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwQpxEidbWVjl16pTceuut4nK5nK4OAADoAF0j+Msvv5QBAwZITEz7bTFRE2o00AwePNjpagAAgE44ceKEDBo0qN0yURNqtIXGe1F69+7tdHUAAEAHNDQ0mEYJ7+/x9kRNqPF2OWmgIdQAABBZOjJ0hIHCAADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAADekqfmqpJX81Wz63CmEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAQJc5U39ZnEKoAQAAN+SdAyd9zwtX7pKKfXXiBEINAADotNP1X8niTUd8+60ekdLKanO8uxFqAABAp9W4G02Q8dfi8Uitu0m6G6EGAAB0WnpyosS4Ao/FulySltxLuhuhBgAAdFr/pJ6yZNy9vn0NOEsnZJnj3Y1QAwAAbsjEnEG+59vnFkhxbqo4gVADAAC6TEpSgjiFUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAA0Rtq1qxZI2lpaZKQkCAjRoyQqqqqdstv2LBBMjMzTfns7GzZsmWL77Wvv/5a5s2bZ44nJibKgAEDZOrUqXLq1KmAc1y4cEGmTJkivXv3lttuu01mzJghly5d6kz1AQCAhUIONRUVFTJ37lxZvHixHDx4UIYOHSpjx46Vc+fOBS2/Z88emTx5sgkhhw4dkvHjx5uturravN7U1GTOs3DhQvNYWVkpx44dk3HjxgWcRwPNkSNHZNu2bbJ582bZvXu3zJw5s7P/bgAAYBmXx+PxhPIGbZnJzc2V1atXm/3W1lYZPHiwzJo1S0pKSq4rX1xcLI2NjSaIeI0cOVKGDRsma9euDfoZ+/btk7y8PPn8888lNTVVPvnkExkyZIg5Pnz4cFNm69at8uijj8rJkydN6863aWhokKSkJKmvrzetPQAAoGs0NV+VIYv+1zz/+FdjpVd8XBedObTf3yG11DQ3N8uBAweksLDwmxPExJj9vXv3Bn2PHvcvr7Rlp63ySivucrlMN5P3HPrcG2iUnlM/+8MPPwx6jitXrpgL4b8BAAB7hRRq3G63tLS0SL9+/QKO6/6ZM2eCvkePh1L+8uXLZoyNdll5E5mWvfPOOwPKxcXFSZ8+fdo8T1lZmUl23k1bkwAAgL3CavaTDhp+/PHHRXvE3nzzzRs61/z5802Lj3c7ceJEl9UTAACEn5A6vZKTkyU2NlbOnj0bcFz3U1JSgr5Hj3ekvDfQ6Dia999/P6DfTMteOxD56tWrZkZUW5/bo0cPswEAgOgQUktNfHy85OTkyI4dO3zHdKCw7ufn5wd9jx73L690BpN/eW+gOX78uGzfvl369u173TkuXrxoxvN4afDRz9aBywAAACEPT9bp3NOmTTODdnWG0qpVq8zspunTp5vXdY2ZgQMHmjEtavbs2VJQUCArVqyQoqIiWb9+vezfv1/Ky8t9geaxxx4z07l1hpSO2fGOk9ExMxqk7rnnHnnkkUfk6aefNjOm9D3PPvusTJo0qUMznwAAgP1CDjU6Rfv8+fOyaNEiEz50arZOr/YOBq6rqzOzkrxGjRol69atkwULFkhpaalkZGTIxo0bJSsry7z+xRdfyKZNm8xzPZe/nTt3ykMPPWSev/322ybIjBkzxpx/4sSJ8vrrr9/Yvx4AAETvOjWRinVqAACwe52arvtUAAAQlXrFx0ntsiKnqxFeU7oBAAA6i1ADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAEAEOV3/lez5zG0eESjumn0AABCmKvbVyfzKj6TVIxLjEimbkC3FualOVyts0FIDAEAE0JYZb6BR+lhaWU2LjR9CDQAAEaDG3egLNF4tHo/UupucqlLYIdQAABAB0pMTTZeTv1iXS9KSezlVpbBDqAEAIAL0T+ppxtBokFH6uHRCljmO/2KgMAAAEUIHBT/4vTtMl5O20BBoAhFqAACIIBpkCDPB0f0EAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAABow+n6r2TPZ27ziPAX53QFAAAIR/+zt1YW/uWIeR7jEimbkC3FualOVwvtoKUGAIBraMvM4k3/DTSq1SNSWllNi02YI9QAAHCNGnejCTL+WjweqXU3OVUldAChBgCAa6QnJ5ouJ3+xLpekJfdyqkroAEINAADX6J/UU5aMu9e3rwFn6YQscxzhi4HCAABHNTVflSGL/tc8//hXY6VXfHj8anoyP00Kh/QzXU7aQkOgCX/h8ZMDAEAY0iBDmIkcdD8BAAArEGoAAIAVCDUAgLBxpv6y01VABCPUAAAc9c6Bk77nhSt3ScW+Okfrg8hFqAEAOIaVe+F4qFmzZo2kpaVJQkKCjBgxQqqqqtotv2HDBsnMzDTls7OzZcuWLQGvV1ZWysMPPyx9+/YVl8slhw8fvu4cDz30kHnNf/v5z3/emeoDAMIEK/fC0VBTUVEhc+fOlcWLF8vBgwdl6NChMnbsWDl37lzQ8nv27JHJkyfLjBkz5NChQzJ+/HizVVdX+8o0NjbK6NGj5dVXX233s59++mk5ffq0b1u+fHmo1QcAhBFW7kVXcnk8nmsycvu0ZSY3N1dWr15t9ltbW2Xw4MEya9YsKSkpua58cXGxCS2bN2/2HRs5cqQMGzZM1q5dG1C2trZW0tPTTfjR169tqdFjq1atks5oaGiQpKQkqa+vl969e3fqHACArsfdsNFVv79Daqlpbm6WAwcOSGFh4TcniIkx+3v37g36Hj3uX15py05b5dvz9ttvS3JysmRlZcn8+fOlqant5skrV66YC+G/AQDCz8ScQb7n2+cWEGjQPSsKu91uaWlpkX79+gUc1/2jR48Gfc+ZM2eCltfjofjpT38qd911lwwYMED++c9/yrx58+TYsWNmPE4wZWVlsmTJkpA+AwDgrJSkBKergAgWMbdJmDlzpu+5Djbu37+/jBkzRj777DO5++67ryuvLTk69sdLW2q0mwwAANgppFCjXT+xsbFy9uzZgOO6n5KSEvQ9ejyU8qGM7VGffvpp0FDTo0cPswEAwpvewLJ2WZHT1YAFQhpTEx8fLzk5ObJjxw7fMR0orPv5+flB36PH/curbdu2tVm+o7zTvrXFBgAAIOTuJ+3SmTZtmgwfPlzy8vLMbCSd3TR9+nTz+tSpU2XgwIFmTIuaPXu2FBQUyIoVK6SoqEjWr18v+/fvl/Lyct85L1y4IHV1dXLq1Cmzr2NllLbm6KZdTOvWrZNHH33UrGWjY2rmzJkjDz74oNx3331ddS0AAEA0hRqdon3+/HlZtGiRGeyr06y3bt3qGwys4URnRHmNGjXKBJIFCxZIaWmpZGRkyMaNG80MJq9Nmzb5QpGaNGmSedS1cF5++WXTQrR9+3ZfgNKxMRMnTjTnBAAA6NQ6NZGKdWoAAIg8N22dGgAAgHBFqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAIgSTc1XJa3kr2b79/lLTlcH6HKEGgCIEu8cOOl7Xrhyl1Tsq3O0PkBXI9QAQBQ4Xf+VLN50xLff6hEpraw2xwFbEGoAIArUuBtNkPHX4vFIrbvJqSoBXY5QAwBRID05UWJcgcdiXS5JS+7lVJWALkeoAYAo0D+ppywZd69vXwPO0glZ5jhgizinKwAA6B5P5qdJ4ZB+pstJW2gINLANoQYAoogGGcIMbEX3EwAAsAKhBgAAWIFQAwA3efVefQ7g5iPUAMBNdqb+stNVAKICoQYAbgJuSQB0P0INAHQxbkkAOINQAwBdjFsSAM4g1ABAF+OWBIAzCDUA0MW4JQHgDEINANwEE3MG+Z5vn1sgxbmpjtYHiAbcJgEAboJe8XFSu6zI6WoAUYWWGgAAYAVCDYCIxsq9ALwINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQA8Aa3A0biG6EGgARjbthA/Ai1ACIWNwNG4A/Qg2AiMXdsAH4I9QAiFjcDRuAP0INgIjF3bAB+CPUAIho3A0bgBehBoA191lKSUpwugoAHESoAQAAViDUAAAAK8Q5XQEAuBG94uOkdlmR09UAEAZoqQEAAFYg1ADoFO6zBCDcEGoAdBj3WQIQzgg1ADqE+ywBCHeEGgAdwn2WAIQ7Qg2ADuE+SwDCHaEGQIdwnyUA4Y5QA6DDuM8SgHBGqAHQKdxnCUC4IdQAAAArEGoAAIAVCDUAAMAKhBoAAGAF7tINoMO4IzaAcEZLDQAAsAKhBgAAWIFQAwAAojfUrFmzRtLS0iQhIUFGjBghVVVV7ZbfsGGDZGZmmvLZ2dmyZcuWgNcrKyvl4Ycflr59+4rL5ZLDhw9fd47Lly/LM888Y8p85zvfkYkTJ8rZs2c7U30AAGChkENNRUWFzJ07VxYvXiwHDx6UoUOHytixY+XcuXNBy+/Zs0cmT54sM2bMkEOHDsn48ePNVl1d7SvT2Ngoo0ePlldffbXNz50zZ4689957JiDt2rVLTp06JRMmTAi1+gAAwFIuj8fjCeUN2jKTm5srq1evNvutra0yePBgmTVrlpSUlFxXvri42ISWzZs3+46NHDlShg0bJmvXrg0oW1tbK+np6Sb86Ote9fX1cscdd8i6devkscceM8eOHj0q99xzj+zdu9ec79s0NDRIUlKSOVfv3r1D+ScDAACHhPL7O6SWmubmZjlw4IAUFhZ+c4KYGLOv4SIYPe5fXmnLTlvlg9HP/PrrrwPOo91ZqampbZ7nypUr5kL4bwAAwF4hhRq32y0tLS3Sr1+/gOO6f+bMmaDv0eOhlG/rHPHx8XLbbbd1+DxlZWUm2Xk3bU0CAAD2snb20/z5801TlXc7ceKE01UCAADhsqJwcnKyxMbGXjfrSPdTUlKCvkePh1K+rXNo19fFixcDWmvaO0+PHj3MBgAAokNILTXaBZSTkyM7duzwHdOBwrqfn58f9D163L+82rZtW5vlg9HPvOWWWwLOc+zYMamrqwvpPAAAwF4h3/tJp3NPmzZNhg8fLnl5ebJq1Sozu2n69Onm9alTp8rAgQPNmBY1e/ZsKSgokBUrVkhRUZGsX79e9u/fL+Xl5b5zXrhwwQQUnabtDSxKW2F00zExOiVcP7tPnz5m9LPOttJA05GZTwAAwH4hhxqdon3+/HlZtGiRGaSrU6+3bt3qGwys4URnRHmNGjXKTMVesGCBlJaWSkZGhmzcuFGysrJ8ZTZt2uQLRWrSpEnmUdfCefnll83z3/72t+a8uuiezmzSGVS/+93vbuxfDwAAonedmkjFOjUAAESem7ZODQAAQLgi1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBghDTc1XJa3kr2bT5wCAb0eoAcLcmfrLTlcBACICoQYIQ+8cOOl7Xrhyl1Tsq3O0PgAQCQg1QJg5Xf+VLN50xLff6hEpraw2xwEAbSPUAGGmxt1ogoy/Fo9Hat1NTlUJACICoQYIM+nJiRLjCjwW63JJWnIvp6oEABGBUAOEmf5JPWXJuHt9+xpwlk7IMscBAG0j1ABhaGLOIN/z7XMLpDg31dH6AEAkiHO6AgCu1ys+TmqXFTldDQCIKLTUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQgqjU1X5W0kr+aTZ8DACIXoQYAAFiBUAP8vzP1l52uAgDgBhBqENXeOXDS97xw5S6p2FfnaH0AAJ1HqEHUOl3/lSzedMS33+oRKa2sNscBAJGHUIOoVeNuNEHGX4vHI7XuJqeqBAC4AYQaRK305ESJcQUei3W5JC25l1NVAgDcAEINolb/pJ6yZNy9vn0NOEsnZJnjAIDIQ6hBVJuYM8j3fPvcAinOTXW0PgCAzou7gfcCEa9XfJzULityuhoAgC5ASw0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg16Fan67+SPZ+5zSMAAF0prkvPBrSjYl+dzK/8SFo9IjEukbIJ2VKcm+p0tQAAlqClBt1CW2a8gUbpY2llNS02AIAuQ6hBt6hxN/oCjVeLxyO17ianqgQAsAyhBt0iPTnRdDn5i3W5JC25l1NVAgBYhlCDbtE/qacZQ6NBRunj0glZ5jgAAF2BgcLoNjoo+MHv3WG6nLSFhkADAOhKhBp0Kw0yhBkAwM1A9xMAALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAAojfUrFmzRtLS0iQhIUFGjBghVVVV7ZbfsGGDZGZmmvLZ2dmyZcuWgNc9Ho8sWrRI+vfvLz179pTCwkI5fvx4QBn9PJfLFbAtW7asM9UHAAAWCjnUVFRUyNy5c2Xx4sVy8OBBGTp0qIwdO1bOnTsXtPyePXtk8uTJMmPGDDl06JCMHz/ebNXV1b4yy5cvl9dff13Wrl0rH374oSQmJppzXr58OeBcv/rVr+T06dO+bdasWZ35NwMAAAu5PNpMEgJtmcnNzZXVq1eb/dbWVhk8eLAJGCUlJdeVLy4ulsbGRtm8ebPv2MiRI2XYsGEmxOjHDxgwQF544QV58cUXzev19fXSr18/eeutt2TSpEm+lprnn3/ebJ3R0NAgSUlJ5ty9e/fu1DkAAED3CuX3d0gtNc3NzXLgwAHTPeQ7QUyM2d+7d2/Q9+hx//JKW2G85WtqauTMmTMBZbTyGp6uPad2N/Xt21fuv/9+ee211+Tq1att1vXKlSvmQvhvAADAXnGhFHa73dLS0mJaUfzp/tGjR4O+RwNLsPJ63Pu691hbZdRzzz0nDzzwgPTp08d0ac2fP990Qa1cuTLo55aVlcmSJUtC+ecBAIBoCTVO0nE8Xvfdd5/Ex8fLz372MxNeevTocV15DT3+79GWGu0mAwAAdgqp+yk5OVliY2Pl7NmzAcd1PyUlJeh79Hh75b2PoZxTafeUdj/V1tYGfV2Djva9+W8AAMBeIYUabR3JycmRHTt2+I7pQGHdz8/PD/oePe5fXm3bts1XPj093YQX/zLaqqKzoNo6pzp8+LAZz3PnnXeG8k8AAACWCrn7Sbt0pk2bJsOHD5e8vDxZtWqVmd00ffp08/rUqVNl4MCBpltIzZ49WwoKCmTFihVSVFQk69evl/3790t5ebl5Xdeb0RlNr7zyimRkZJiQs3DhQjMjSqd+Kx0wrCHnBz/4gdx6661mf86cOfLEE0/I7bff3rVXBAAAREeo0Sna58+fN4vl6UBenZq9detW30Dfuro604LiNWrUKFm3bp0sWLBASktLTXDZuHGjZGVl+cq89NJLJhjNnDlTLl68KKNHjzbn1MX6vF1JGoZefvllM6tJg4+GGv8xMwAAILqFvE5NpGKdGgAAIs9NW6cGAAAgXBFqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINRY6nT9V7LnM7d5BAAgGoR8mwSEv4p9dTK/8iNp9YjEuETKJmRLcW6q09UCAOCmoqXGMtoy4w00Sh9LK6tpsQEAWI9QY5kad6Mv0Hi1eDxS625yqkoAAHQLQo1l0pMTTZeTv1iXS9KSezlVJQAAugWhxjL9k3qaMTQaZJQ+Lp2QZY4DAGAzBgpbSAcFP/i9O0yXk7bQEGgAANGAUGMpDTKEGQBANKH7CQAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhpgucrv9K9nzmNo8AAMAZcQ59rjUq9tXJ/MqPpNUjEuMSKZuQLcW5qU5XCwCAqENLzQ3QlhlvoFH6WFpZTYsNAAAOINTcgBp3oy/QeLV4PFLrbnKqSgAARC1CzQ1IT040XU7+Yl0uSUvu5VSVAACIWoSaG9A/qacZQ6NBRunj0glZ5jgAAOheDBS+QToo+MHv3WG6nLSFhkADAIAzCDVdQIMMYQYAAGfR/QQAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAADRG2rWrFkjaWlpkpCQICNGjJCqqqp2y2/YsEEyMzNN+ezsbNmyZUvA6x6PRxYtWiT9+/eXnj17SmFhoRw/fjygzIULF2TKlCnSu3dvue2222TGjBly6dKlzlQfAABYKORQU1FRIXPnzpXFixfLwYMHZejQoTJ27Fg5d+5c0PJ79uyRyZMnmxBy6NAhGT9+vNmqq6t9ZZYvXy6vv/66rF27Vj788ENJTEw057x8+bKvjAaaI0eOyLZt22Tz5s2ye/dumTlzZmf/3QAAwDIujzaThEBbZnJzc2X16tVmv7W1VQYPHiyzZs2SkpKS68oXFxdLY2OjCSJeI0eOlGHDhpkQox8/YMAAeeGFF+TFF180r9fX10u/fv3krbfekkmTJsknn3wiQ4YMkX379snw4cNNma1bt8qjjz4qJ0+eNO//Ng0NDZKUlGTOra09AAAg/IXy+zsulBM3NzfLgQMHZP78+b5jMTExprto7969Qd+jx7Vlx5+2wmzcuNE8r6mpkTNnzphzeGnlNTzpezXU6KN2OXkDjdLy+tnasvPjH//4us+9cuWK2bz0YngvDgAAiAze39sdaYMJKdS43W5paWkxrSj+dP/o0aNB36OBJVh5Pe593XusvTJ33nlnYMXj4qRPnz6+MtcqKyuTJUuWXHdcW5UAAEBk+fLLL02jR5eFmkiirUn+LUTaTaaDjfv27Ssul6vLU6SGpRMnTtC19S24Vh3Hteo4rlXHca1Cw/Vy/lppC40Gmo4MNQkp1CQnJ0tsbKycPXs24Ljup6SkBH2PHm+vvPdRj+nsJ/8yOu7GW+bagchXr141IaWtz+3Ro4fZ/GkX1s2k/yfyQ98xXKuO41p1HNeq47hWoeF6OXutvq2FplOzn+Lj4yUnJ0d27NgR0AKi+/n5+UHfo8f9yyudweQtn56eboKJfxlNezpWxltGHy9evGjG83i9//775rN17A0AAEDI3U/apTNt2jQzaDcvL09WrVplZjdNnz7dvD516lQZOHCgGdOiZs+eLQUFBbJixQopKiqS9evXy/79+6W8vNy8rl1Bzz//vLzyyiuSkZFhQs7ChQtNM5NO/Vb33HOPPPLII/L000+bGVNff/21PPvss2YQcUeaowAAgP1CDjU6Rfv8+fNmsTwdpKtdRDq92jvQt66uzsxK8ho1apSsW7dOFixYIKWlpSa46MynrKwsX5mXXnrJBCNdd0ZbZEaPHm3OqYv1eb399tsmyIwZM8acf+LEiWZtm3Cg3Vy6bs+13V24Hteq47hWHce16jiuVWi4XpF1rUJepwYAACAcce8nAABgBUINAACwAqEGAABYgVADAACsQKi5QWvWrJG0tDQzU0vXzKmqqnK6SmFJp/jrjVBvvfVWc8sLna5/7Ngxp6sV9pYtW+Zb9gDBffHFF/LEE0+Y1cJ79uwp2dnZZtkIBNJb3OhyGbpshl6nu+++W37961936H46ttu9e7f86Ec/MkuE6H9v3nsTeuk10hm/ukCsXju99+Dx48clGu1u51rpcivz5s0z/w0mJiaaMrrMy6lTp7qtfoSaG1BRUWHW7dEpbAcPHpShQ4eam3Veu/oxRHbt2iXPPPOMfPDBB2bxRf3hf/jhh81UfgSnd6X//e9/L/fdd5/TVQlb//nPf+T73/++3HLLLfK3v/1NPv74Y7Mm1u233+501cLOq6++Km+++aasXr1aPvnkE7O/fPlyeeONNyTa6feQfn/rH6nB6HXSJUR0nTRdGFZ/Yet3/eXLlyXaNLZzrZqamszvQg3P+lhZWWn+eB03blz3VVCndKNz8vLyPM8884xvv6WlxTNgwABPWVmZo/WKBOfOndM/Dz27du1yuiph6csvv/RkZGR4tm3b5ikoKPDMnj3b6SqFpXnz5nlGjx7tdDUiQlFRkeepp54KODZhwgTPlClTHKtTONLvpXfffde339ra6klJSfG89tprvmMXL1709OjRw/OnP/3JE83kmmsVTFVVlSn3+eefd0udaKnppObmZnPbBm2G9NJFAXV/7969jtYtEtTX15tHvdM6rqetWroCt//PF663adMms7r5T37yE9Otef/998sf/vAHp6sVlnQhVL0dzb/+9S+z/49//EP+/ve/yw9/+EOnqxbWampqzEKz/v8t6n2IdLgB3/Ud+67Xbqqbfe9F6+/SfbO53W7TR+1dSdlL948ePepYvSKB3rNLx4hot4H/ytL4L72ViDbdavcT2vfvf//bdKloN7CuWK7X7LnnnjP3qdPbueAbJSUl5r56mZmZ5sbE+v31m9/8RqZMmeJ01cKaBhoV7Lve+xqC0+45HWMzefLkbrsZKKEGjrRCVFdXm78SEejEiRPmfmk67sj/NiFoOyBrS83SpUvNvrbU6M+Wjn0g1AT685//bG43o7etuffee+Xw4cPmjwsdzMm1QlfTcZOPP/64GWStf3h0F7qfOik5Odn8tXP27NmA47qvdx1HcHr/rs2bN8vOnTtl0KBBTlcn7GiXpg40f+CBByQuLs5sOshaBynqc/3rGt/Q2ShDhgwJOKY3wNV70CHQL37xC9NaozcC1tkpTz75pMyZM8d382EE5/0+57s+9EDz+eefmz/QuquVRhFqOkmbt3Nyckwftf9fjbqfn5/vaN3CkaZ1DTTvvvuuvP/++2ZaKa6nN2z96KOPzF/R3k1bIrSLQJ9rkMY3tAvz2qUBdMzIXXfd5VidwpXOTPG/2bDSnyf93kLb9LtKw4v/d7124+ksKL7r2w40OuV9+/btZqmF7kT30w3QfnxtttVfOnl5ebJq1Soz3W369OlOVy0su5y02fsvf/mLWavG2xetA+503Qf8l16ba8cZ6fRR/WJg/NH1tKVBB8Bq95N+keo6UeXl5WZDIF1bRMfQpKammu6nQ4cOycqVK+Wpp56SaHfp0iX59NNPAwYH6x8ROpFBr5d2073yyiuSkZFhQo5OWdZuO11vK9pcaudaacvpY489ZsYEaou8tix7v+v1dW0MuOm6ZY6Vxd544w1PamqqJz4+3kzx/uCDD5yuUljSH7Vg2x//+Eenqxb2mNLdvvfee8+TlZVlpthmZmZ6ysvLna5SWGpoaDA/R/p9lZCQ4Pnud7/r+eUvf+m5cuWKJ9rt3Lkz6PfTtGnTfNO6Fy5c6OnXr5/5ORszZozn2LFjnmi0s51rVVNT0+Z3vb6vO7j0f25+dAIAALi5GFMDAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgNjg/wAxa3e4tKrIDAAAAABJRU5ErkJggg==",
|
|
83
|
+
"text/plain": [
|
|
84
|
+
"<Figure size 640x480 with 1 Axes>"
|
|
85
|
+
]
|
|
86
|
+
},
|
|
87
|
+
"metadata": {},
|
|
88
|
+
"output_type": "display_data"
|
|
89
|
+
}
|
|
90
|
+
],
|
|
91
|
+
"source": [
|
|
92
|
+
"from matplotlib import pyplot as plt\n",
|
|
93
|
+
"\n",
|
|
94
|
+
"fig, ax = plt.subplots(1)\n",
|
|
95
|
+
"ax.errorbar(\n",
|
|
96
|
+
" x=[t[0] for t in timings],\n",
|
|
97
|
+
" y=[t[1].average for t in timings],\n",
|
|
98
|
+
" yerr=[t[1].stdev for t in timings],\n",
|
|
99
|
+
" ls=\"\",\n",
|
|
100
|
+
" marker=\".\",\n",
|
|
101
|
+
")\n",
|
|
102
|
+
"ax.set(ylim=(0, None))"
|
|
103
|
+
]
|
|
104
|
+
},
|
|
105
|
+
{
|
|
106
|
+
"cell_type": "code",
|
|
107
|
+
"execution_count": 6,
|
|
108
|
+
"metadata": {},
|
|
109
|
+
"outputs": [
|
|
110
|
+
{
|
|
111
|
+
"ename": "AttributeError",
|
|
112
|
+
"evalue": "'tuple' object has no attribute 'stdev'",
|
|
113
|
+
"output_type": "error",
|
|
114
|
+
"traceback": [
|
|
115
|
+
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
|
|
116
|
+
"\u001b[31mAttributeError\u001b[39m Traceback (most recent call last)",
|
|
117
|
+
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[6]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[43mt\u001b[49m\u001b[43m.\u001b[49m\u001b[43mstdev\u001b[49m\n",
|
|
118
|
+
"\u001b[31mAttributeError\u001b[39m: 'tuple' object has no attribute 'stdev'"
|
|
119
|
+
]
|
|
120
|
+
}
|
|
121
|
+
],
|
|
122
|
+
"source": [
|
|
123
|
+
"t.stdev"
|
|
124
|
+
]
|
|
125
|
+
},
|
|
126
|
+
{
|
|
127
|
+
"cell_type": "code",
|
|
128
|
+
"execution_count": null,
|
|
129
|
+
"metadata": {},
|
|
130
|
+
"outputs": [],
|
|
131
|
+
"source": []
|
|
132
|
+
}
|
|
133
|
+
],
|
|
134
|
+
"metadata": {
|
|
135
|
+
"kernelspec": {
|
|
136
|
+
"display_name": "physiomodeler (3.11.14)",
|
|
137
|
+
"language": "python",
|
|
138
|
+
"name": "python3"
|
|
139
|
+
},
|
|
140
|
+
"language_info": {
|
|
141
|
+
"codemirror_mode": {
|
|
142
|
+
"name": "ipython",
|
|
143
|
+
"version": 3
|
|
144
|
+
},
|
|
145
|
+
"file_extension": ".py",
|
|
146
|
+
"mimetype": "text/x-python",
|
|
147
|
+
"name": "python",
|
|
148
|
+
"nbconvert_exporter": "python",
|
|
149
|
+
"pygments_lexer": "ipython3",
|
|
150
|
+
"version": "3.11.14"
|
|
151
|
+
}
|
|
152
|
+
},
|
|
153
|
+
"nbformat": 4,
|
|
154
|
+
"nbformat_minor": 2
|
|
155
|
+
}
|