phylogenie 2.0.5__tar.gz → 2.0.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {phylogenie-2.0.5 → phylogenie-2.0.6}/PKG-INFO +2 -2
- {phylogenie-2.0.5 → phylogenie-2.0.6}/README.md +1 -1
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/generators/alisim.py +4 -3
- phylogenie-2.0.6/phylogenie/generators/configs.py +39 -0
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/generators/dataset.py +3 -3
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/generators/factories.py +9 -9
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/generators/trees.py +62 -48
- phylogenie-2.0.6/phylogenie/generators/typeguards.py +28 -0
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/main.py +4 -0
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/skyline/matrix.py +3 -3
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/skyline/parameter.py +4 -4
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/skyline/vector.py +7 -9
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/tree.py +19 -10
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/treesimulator/__init__.py +2 -0
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/treesimulator/events.py +89 -73
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/treesimulator/gillespie.py +29 -12
- phylogenie-2.0.6/phylogenie/treesimulator/model.py +154 -0
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/typeguards.py +10 -10
- {phylogenie-2.0.5 → phylogenie-2.0.6}/pyproject.toml +1 -1
- phylogenie-2.0.5/phylogenie/generators/configs.py +0 -43
- phylogenie-2.0.5/phylogenie/generators/typeguards.py +0 -32
- phylogenie-2.0.5/phylogenie/treesimulator/model.py +0 -100
- {phylogenie-2.0.5 → phylogenie-2.0.6}/LICENSE.txt +0 -0
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/__init__.py +0 -0
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/generators/__init__.py +0 -0
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/io.py +0 -0
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/msa.py +0 -0
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/py.typed +0 -0
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/skyline/__init__.py +0 -0
- {phylogenie-2.0.5 → phylogenie-2.0.6}/phylogenie/typings.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: phylogenie
|
|
3
|
-
Version: 2.0.
|
|
3
|
+
Version: 2.0.6
|
|
4
4
|
Summary: Generate phylogenetic datasets with minimal setup effort
|
|
5
5
|
Author: Gabriele Marino
|
|
6
6
|
Author-email: gabmarino.8601@gmail.com
|
|
@@ -45,7 +45,7 @@ Phylogenie comes packed with useful features, including:
|
|
|
45
45
|
Simply specify the number of cores to use, and Phylogenie handles multiprocessing automatically.
|
|
46
46
|
|
|
47
47
|
- **Pre-implemented parameterizations** 🎯
|
|
48
|
-
Include canonical, fossilized birth-death, epidemiological, birth-death with exposed-infectious (BDEI), birth-death with superspreading (BDSS), and
|
|
48
|
+
Include canonical, fossilized birth-death, epidemiological, birth-death with exposed-infectious (BDEI), birth-death with superspreading (BDSS), and contact tracing (CT).
|
|
49
49
|
|
|
50
50
|
- **Skyline parameter support** 🪜
|
|
51
51
|
Support for piece-wise constant parameters.
|
|
@@ -27,7 +27,7 @@ Phylogenie comes packed with useful features, including:
|
|
|
27
27
|
Simply specify the number of cores to use, and Phylogenie handles multiprocessing automatically.
|
|
28
28
|
|
|
29
29
|
- **Pre-implemented parameterizations** 🎯
|
|
30
|
-
Include canonical, fossilized birth-death, epidemiological, birth-death with exposed-infectious (BDEI), birth-death with superspreading (BDSS), and
|
|
30
|
+
Include canonical, fossilized birth-death, epidemiological, birth-death with exposed-infectious (BDEI), birth-death with superspreading (BDSS), and contact tracing (CT).
|
|
31
31
|
|
|
32
32
|
- **Skyline parameter support** 🪜
|
|
33
33
|
Support for piece-wise constant parameters.
|
|
@@ -46,11 +46,12 @@ class AliSimDatasetGenerator(DatasetGenerator):
|
|
|
46
46
|
self, filename: str, rng: Generator, data: dict[str, Any]
|
|
47
47
|
) -> None:
|
|
48
48
|
if self.keep_trees:
|
|
49
|
-
base_dir = Path(filename).parent
|
|
50
|
-
|
|
51
|
-
tree_filename = os.path.join(base_dir, TREES_DIRNAME, file_id)
|
|
49
|
+
base_dir, file_id = Path(filename).parent, Path(filename).stem
|
|
50
|
+
trees_dir = os.path.join(base_dir, TREES_DIRNAME)
|
|
52
51
|
msas_dir = os.path.join(base_dir, MSAS_DIRNAME)
|
|
52
|
+
os.makedirs(trees_dir, exist_ok=True)
|
|
53
53
|
os.makedirs(msas_dir, exist_ok=True)
|
|
54
|
+
tree_filename = os.path.join(trees_dir, file_id)
|
|
54
55
|
msa_filename = os.path.join(msas_dir, file_id)
|
|
55
56
|
else:
|
|
56
57
|
tree_filename = f"{filename}.temp-tree"
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
from pydantic import BaseModel, ConfigDict
|
|
2
|
+
|
|
3
|
+
import phylogenie.typings as pgt
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class Distribution(BaseModel):
|
|
7
|
+
type: str
|
|
8
|
+
model_config = ConfigDict(extra="allow")
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
Integer = str | int
|
|
12
|
+
Scalar = str | pgt.Scalar
|
|
13
|
+
ManyScalars = str | list[Scalar]
|
|
14
|
+
OneOrManyScalars = Scalar | list[Scalar]
|
|
15
|
+
OneOrMany2DScalars = Scalar | list[list[Scalar]]
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class StrictBaseModel(BaseModel):
|
|
19
|
+
model_config = ConfigDict(extra="forbid")
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class SkylineParameterModel(StrictBaseModel):
|
|
23
|
+
value: ManyScalars
|
|
24
|
+
change_times: ManyScalars
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class SkylineVectorModel(StrictBaseModel):
|
|
28
|
+
value: str | list[OneOrManyScalars]
|
|
29
|
+
change_times: ManyScalars
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class SkylineMatrixModel(StrictBaseModel):
|
|
33
|
+
value: str | list[OneOrMany2DScalars]
|
|
34
|
+
change_times: ManyScalars
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
SkylineParameter = Scalar | SkylineParameterModel
|
|
38
|
+
SkylineVector = str | pgt.Scalar | list[SkylineParameter] | SkylineVectorModel
|
|
39
|
+
SkylineMatrix = str | pgt.Scalar | list[SkylineVector] | SkylineMatrixModel | None
|
|
@@ -10,7 +10,7 @@ import pandas as pd
|
|
|
10
10
|
from numpy.random import Generator, default_rng
|
|
11
11
|
from tqdm import tqdm
|
|
12
12
|
|
|
13
|
-
|
|
13
|
+
import phylogenie.generators.configs as cfg
|
|
14
14
|
|
|
15
15
|
|
|
16
16
|
class DataType(str, Enum):
|
|
@@ -22,12 +22,12 @@ DATA_DIRNAME = "data"
|
|
|
22
22
|
METADATA_FILENAME = "metadata.csv"
|
|
23
23
|
|
|
24
24
|
|
|
25
|
-
class DatasetGenerator(ABC, StrictBaseModel):
|
|
25
|
+
class DatasetGenerator(ABC, cfg.StrictBaseModel):
|
|
26
26
|
output_dir: str = "phylogenie-outputs"
|
|
27
27
|
n_samples: int | dict[str, int] = 1
|
|
28
28
|
n_jobs: int = -1
|
|
29
29
|
seed: int | None = None
|
|
30
|
-
context: dict[str,
|
|
30
|
+
context: dict[str, cfg.Distribution] | None = None
|
|
31
31
|
|
|
32
32
|
@abstractmethod
|
|
33
33
|
def _generate_one(
|
|
@@ -29,7 +29,7 @@ def _eval_expression(expression: str, data: dict[str, Any]) -> Any:
|
|
|
29
29
|
).tolist()
|
|
30
30
|
|
|
31
31
|
|
|
32
|
-
def integer(x: cfg.
|
|
32
|
+
def integer(x: cfg.Integer, data: dict[str, Any]) -> int:
|
|
33
33
|
if isinstance(x, str):
|
|
34
34
|
e = _eval_expression(x, data)
|
|
35
35
|
if isinstance(e, int):
|
|
@@ -40,7 +40,7 @@ def integer(x: cfg.IntegerConfig, data: dict[str, Any]) -> int:
|
|
|
40
40
|
return x
|
|
41
41
|
|
|
42
42
|
|
|
43
|
-
def scalar(x: cfg.
|
|
43
|
+
def scalar(x: cfg.Scalar, data: dict[str, Any]) -> pgt.Scalar:
|
|
44
44
|
if isinstance(x, str):
|
|
45
45
|
e = _eval_expression(x, data)
|
|
46
46
|
if isinstance(e, pgt.Scalar):
|
|
@@ -51,7 +51,7 @@ def scalar(x: cfg.ScalarConfig, data: dict[str, Any]) -> pgt.Scalar:
|
|
|
51
51
|
return x
|
|
52
52
|
|
|
53
53
|
|
|
54
|
-
def many_scalars(x: cfg.
|
|
54
|
+
def many_scalars(x: cfg.ManyScalars, data: dict[str, Any]) -> pgt.ManyScalars:
|
|
55
55
|
if isinstance(x, str):
|
|
56
56
|
e = _eval_expression(x, data)
|
|
57
57
|
if tg.is_many_scalars(e):
|
|
@@ -63,7 +63,7 @@ def many_scalars(x: cfg.ManyScalarsConfig, data: dict[str, Any]) -> pgt.ManyScal
|
|
|
63
63
|
|
|
64
64
|
|
|
65
65
|
def one_or_many_scalars(
|
|
66
|
-
x: cfg.
|
|
66
|
+
x: cfg.OneOrManyScalars, data: dict[str, Any]
|
|
67
67
|
) -> pgt.OneOrManyScalars:
|
|
68
68
|
if isinstance(x, str):
|
|
69
69
|
e = _eval_expression(x, data)
|
|
@@ -78,9 +78,9 @@ def one_or_many_scalars(
|
|
|
78
78
|
|
|
79
79
|
|
|
80
80
|
def skyline_parameter(
|
|
81
|
-
x: cfg.
|
|
81
|
+
x: cfg.SkylineParameter, data: dict[str, Any]
|
|
82
82
|
) -> SkylineParameterLike:
|
|
83
|
-
if isinstance(x, cfg.
|
|
83
|
+
if isinstance(x, cfg.Scalar):
|
|
84
84
|
return scalar(x, data)
|
|
85
85
|
return SkylineParameter(
|
|
86
86
|
value=many_scalars(x.value, data),
|
|
@@ -89,7 +89,7 @@ def skyline_parameter(
|
|
|
89
89
|
|
|
90
90
|
|
|
91
91
|
def skyline_vector(
|
|
92
|
-
x: cfg.
|
|
92
|
+
x: cfg.SkylineVector, data: dict[str, Any]
|
|
93
93
|
) -> SkylineVectorCoercible:
|
|
94
94
|
if isinstance(x, str):
|
|
95
95
|
e = _eval_expression(x, data)
|
|
@@ -132,7 +132,7 @@ def skyline_vector(
|
|
|
132
132
|
|
|
133
133
|
|
|
134
134
|
def one_or_many_2D_scalars(
|
|
135
|
-
x: cfg.
|
|
135
|
+
x: cfg.OneOrMany2DScalars, data: dict[str, Any]
|
|
136
136
|
) -> pgt.OneOrMany2DScalars:
|
|
137
137
|
if isinstance(x, str):
|
|
138
138
|
e = _eval_expression(x, data)
|
|
@@ -147,7 +147,7 @@ def one_or_many_2D_scalars(
|
|
|
147
147
|
|
|
148
148
|
|
|
149
149
|
def skyline_matrix(
|
|
150
|
-
x: cfg.
|
|
150
|
+
x: cfg.SkylineMatrix, data: dict[str, Any]
|
|
151
151
|
) -> SkylineMatrixCoercible | None:
|
|
152
152
|
if x is None:
|
|
153
153
|
return None
|
|
@@ -40,15 +40,20 @@ class ParameterizationType(str, Enum):
|
|
|
40
40
|
|
|
41
41
|
class TreeDatasetGenerator(DatasetGenerator):
|
|
42
42
|
data_type: Literal[DataType.TREES] = DataType.TREES
|
|
43
|
-
min_tips: cfg.
|
|
44
|
-
max_tips: cfg.
|
|
45
|
-
max_time: cfg.
|
|
43
|
+
min_tips: cfg.Integer = 1
|
|
44
|
+
max_tips: cfg.Integer | None = None
|
|
45
|
+
max_time: cfg.Scalar = np.inf
|
|
46
46
|
init_state: str | None = None
|
|
47
|
-
sampling_probability_at_present: cfg.
|
|
47
|
+
sampling_probability_at_present: cfg.Scalar = 0.0
|
|
48
48
|
max_tries: int | None = None
|
|
49
|
+
notification_probability: cfg.Scalar = 0.0
|
|
50
|
+
max_notified_contacts: cfg.Integer = 1
|
|
51
|
+
samplable_states_after_notification: list[str] | None = None
|
|
52
|
+
sampling_rate_after_notification: cfg.SkylineParameter = np.inf
|
|
53
|
+
contacts_removal_probability: cfg.SkylineParameter = 1
|
|
49
54
|
|
|
50
55
|
def simulate_one(self, rng: Generator, data: dict[str, Any]) -> Tree | None:
|
|
51
|
-
events = self._get_events(
|
|
56
|
+
events = self._get_events(data)
|
|
52
57
|
init_state = (
|
|
53
58
|
self.init_state
|
|
54
59
|
if self.init_state is None
|
|
@@ -66,12 +71,21 @@ class TreeDatasetGenerator(DatasetGenerator):
|
|
|
66
71
|
sampling_probability_at_present=scalar(
|
|
67
72
|
self.sampling_probability_at_present, data
|
|
68
73
|
),
|
|
74
|
+
notification_probability=scalar(self.notification_probability, data),
|
|
75
|
+
max_notified_contacts=integer(self.max_notified_contacts, data),
|
|
76
|
+
samplable_states_after_notification=self.samplable_states_after_notification,
|
|
77
|
+
sampling_rate_after_notification=skyline_parameter(
|
|
78
|
+
self.sampling_rate_after_notification, data
|
|
79
|
+
),
|
|
80
|
+
contacts_removal_probability=skyline_parameter(
|
|
81
|
+
self.contacts_removal_probability, data
|
|
82
|
+
),
|
|
69
83
|
max_tries=self.max_tries,
|
|
70
84
|
seed=int(rng.integers(2**32)),
|
|
71
85
|
)
|
|
72
86
|
|
|
73
87
|
@abstractmethod
|
|
74
|
-
def _get_events(self,
|
|
88
|
+
def _get_events(self, data: dict[str, Any]) -> list[Event]: ...
|
|
75
89
|
|
|
76
90
|
def _generate_one(
|
|
77
91
|
self, filename: str, rng: Generator, data: dict[str, Any]
|
|
@@ -85,15 +99,15 @@ class CanonicalTreeDatasetGenerator(TreeDatasetGenerator):
|
|
|
85
99
|
parameterization: Literal[ParameterizationType.CANONICAL] = (
|
|
86
100
|
ParameterizationType.CANONICAL
|
|
87
101
|
)
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
def _get_events(self,
|
|
102
|
+
states: list[str]
|
|
103
|
+
sampling_rates: cfg.SkylineVector
|
|
104
|
+
birth_rates: cfg.SkylineVector = 0
|
|
105
|
+
death_rates: cfg.SkylineVector = 0
|
|
106
|
+
removal_probabilities: cfg.SkylineVector = 0
|
|
107
|
+
migration_rates: cfg.SkylineMatrix = None
|
|
108
|
+
birth_rates_among_states: cfg.SkylineMatrix = None
|
|
109
|
+
|
|
110
|
+
def _get_events(self, data: dict[str, Any]) -> list[Event]:
|
|
97
111
|
return get_canonical_events(
|
|
98
112
|
states=self.states,
|
|
99
113
|
sampling_rates=skyline_vector(self.sampling_rates, data),
|
|
@@ -111,15 +125,15 @@ class EpidemiologicalTreeDatasetGenerator(TreeDatasetGenerator):
|
|
|
111
125
|
parameterization: Literal[ParameterizationType.EPIDEMIOLOGICAL] = (
|
|
112
126
|
ParameterizationType.EPIDEMIOLOGICAL
|
|
113
127
|
)
|
|
114
|
-
states: list[str]
|
|
115
|
-
reproduction_numbers: cfg.
|
|
116
|
-
become_uninfectious_rates: cfg.
|
|
117
|
-
sampling_proportions: cfg.
|
|
118
|
-
removal_probabilities: cfg.
|
|
119
|
-
migration_rates: cfg.
|
|
120
|
-
reproduction_numbers_among_states: cfg.
|
|
121
|
-
|
|
122
|
-
def _get_events(self,
|
|
128
|
+
states: list[str]
|
|
129
|
+
reproduction_numbers: cfg.SkylineVector = 0
|
|
130
|
+
become_uninfectious_rates: cfg.SkylineVector = 0
|
|
131
|
+
sampling_proportions: cfg.SkylineVector = 1
|
|
132
|
+
removal_probabilities: cfg.SkylineVector = 1
|
|
133
|
+
migration_rates: cfg.SkylineMatrix = None
|
|
134
|
+
reproduction_numbers_among_states: cfg.SkylineMatrix = None
|
|
135
|
+
|
|
136
|
+
def _get_events(self, data: dict[str, Any]) -> list[Event]:
|
|
123
137
|
return get_epidemiological_events(
|
|
124
138
|
states=self.states,
|
|
125
139
|
reproduction_numbers=skyline_vector(self.reproduction_numbers, data),
|
|
@@ -137,15 +151,15 @@ class EpidemiologicalTreeDatasetGenerator(TreeDatasetGenerator):
|
|
|
137
151
|
|
|
138
152
|
class FBDTreeDatasetGenerator(TreeDatasetGenerator):
|
|
139
153
|
parameterization: Literal[ParameterizationType.FBD] = ParameterizationType.FBD
|
|
140
|
-
states: list[str]
|
|
141
|
-
diversification: cfg.
|
|
142
|
-
turnover: cfg.
|
|
143
|
-
sampling_proportions: cfg.
|
|
144
|
-
removal_probabilities: cfg.
|
|
145
|
-
migration_rates: cfg.
|
|
146
|
-
diversification_between_types: cfg.
|
|
147
|
-
|
|
148
|
-
def _get_events(self,
|
|
154
|
+
states: list[str]
|
|
155
|
+
diversification: cfg.SkylineVector = 0
|
|
156
|
+
turnover: cfg.SkylineVector = 0
|
|
157
|
+
sampling_proportions: cfg.SkylineVector = 1
|
|
158
|
+
removal_probabilities: cfg.SkylineVector = 0
|
|
159
|
+
migration_rates: cfg.SkylineMatrix = None
|
|
160
|
+
diversification_between_types: cfg.SkylineMatrix = None
|
|
161
|
+
|
|
162
|
+
def _get_events(self, data: dict[str, Any]) -> list[Event]:
|
|
149
163
|
return get_FBD_events(
|
|
150
164
|
states=self.states,
|
|
151
165
|
diversification=skyline_vector(self.diversification, data),
|
|
@@ -161,11 +175,11 @@ class FBDTreeDatasetGenerator(TreeDatasetGenerator):
|
|
|
161
175
|
|
|
162
176
|
class BDTreeDatasetGenerator(TreeDatasetGenerator):
|
|
163
177
|
parameterization: Literal[ParameterizationType.BD] = ParameterizationType.BD
|
|
164
|
-
reproduction_number: cfg.
|
|
165
|
-
infectious_period: cfg.
|
|
166
|
-
sampling_proportion: cfg.
|
|
178
|
+
reproduction_number: cfg.SkylineParameter
|
|
179
|
+
infectious_period: cfg.SkylineParameter
|
|
180
|
+
sampling_proportion: cfg.SkylineParameter = 1
|
|
167
181
|
|
|
168
|
-
def _get_events(self,
|
|
182
|
+
def _get_events(self, data: dict[str, Any]) -> list[Event]:
|
|
169
183
|
return get_BD_events(
|
|
170
184
|
reproduction_number=skyline_parameter(self.reproduction_number, data),
|
|
171
185
|
infectious_period=skyline_parameter(self.infectious_period, data),
|
|
@@ -175,12 +189,12 @@ class BDTreeDatasetGenerator(TreeDatasetGenerator):
|
|
|
175
189
|
|
|
176
190
|
class BDEITreeDatasetGenerator(TreeDatasetGenerator):
|
|
177
191
|
parameterization: Literal[ParameterizationType.BDEI] = ParameterizationType.BDEI
|
|
178
|
-
reproduction_number: cfg.
|
|
179
|
-
infectious_period: cfg.
|
|
180
|
-
incubation_period: cfg.
|
|
181
|
-
sampling_proportion: cfg.
|
|
192
|
+
reproduction_number: cfg.SkylineParameter
|
|
193
|
+
infectious_period: cfg.SkylineParameter
|
|
194
|
+
incubation_period: cfg.SkylineParameter
|
|
195
|
+
sampling_proportion: cfg.SkylineParameter = 1
|
|
182
196
|
|
|
183
|
-
def _get_events(self,
|
|
197
|
+
def _get_events(self, data: dict[str, Any]) -> list[Event]:
|
|
184
198
|
return get_BDEI_events(
|
|
185
199
|
reproduction_number=skyline_parameter(self.reproduction_number, data),
|
|
186
200
|
infectious_period=skyline_parameter(self.infectious_period, data),
|
|
@@ -191,13 +205,13 @@ class BDEITreeDatasetGenerator(TreeDatasetGenerator):
|
|
|
191
205
|
|
|
192
206
|
class BDSSTreeDatasetGenerator(TreeDatasetGenerator):
|
|
193
207
|
parameterization: Literal[ParameterizationType.BDSS] = ParameterizationType.BDSS
|
|
194
|
-
reproduction_number: cfg.
|
|
195
|
-
infectious_period: cfg.
|
|
196
|
-
superspreading_ratio: cfg.
|
|
197
|
-
superspreaders_proportion: cfg.
|
|
198
|
-
sampling_proportion: cfg.
|
|
208
|
+
reproduction_number: cfg.SkylineParameter
|
|
209
|
+
infectious_period: cfg.SkylineParameter
|
|
210
|
+
superspreading_ratio: cfg.SkylineParameter
|
|
211
|
+
superspreaders_proportion: cfg.SkylineParameter
|
|
212
|
+
sampling_proportion: cfg.SkylineParameter = 1
|
|
199
213
|
|
|
200
|
-
def _get_events(self,
|
|
214
|
+
def _get_events(self, data: dict[str, Any]) -> list[Event]:
|
|
201
215
|
return get_BDSS_events(
|
|
202
216
|
reproduction_number=skyline_parameter(self.reproduction_number, data),
|
|
203
217
|
infectious_period=skyline_parameter(self.infectious_period, data),
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
from typing import Any, TypeGuard
|
|
2
|
+
|
|
3
|
+
import phylogenie.generators.configs as cfg
|
|
4
|
+
import phylogenie.typings as pgt
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def is_list(x: Any) -> TypeGuard[list[Any]]:
|
|
8
|
+
return isinstance(x, list)
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def is_list_of_scalar_configs(x: Any) -> TypeGuard[list[cfg.Scalar]]:
|
|
12
|
+
return is_list(x) and all(isinstance(v, cfg.Scalar) for v in x)
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def is_list_of_skyline_parameter_configs(
|
|
16
|
+
x: Any,
|
|
17
|
+
) -> TypeGuard[list[cfg.SkylineParameter]]:
|
|
18
|
+
return is_list(x) and all(isinstance(v, cfg.SkylineParameter) for v in x)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def is_skyline_vector_config(x: Any) -> TypeGuard[cfg.SkylineVector]:
|
|
22
|
+
return isinstance(
|
|
23
|
+
x, str | pgt.Scalar | cfg.SkylineVectorModel
|
|
24
|
+
) or is_list_of_skyline_parameter_configs(x)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def is_list_of_skyline_vector_configs(x: Any) -> TypeGuard[list[cfg.SkylineVector]]:
|
|
28
|
+
return is_list(x) and all(is_skyline_vector_config(v) for v in x)
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
from collections.abc import Callable, Iterator
|
|
2
|
-
from typing import TypeGuard, Union, overload
|
|
2
|
+
from typing import Any, TypeGuard, Union, overload
|
|
3
3
|
|
|
4
4
|
import phylogenie.typeguards as tg
|
|
5
5
|
import phylogenie.typings as pgt
|
|
@@ -20,7 +20,7 @@ SkylineMatrixOperand = Union[SkylineVectorOperand, "SkylineMatrix"]
|
|
|
20
20
|
SkylineMatrixCoercible = Union[pgt.OneOrMany[SkylineVectorCoercible], "SkylineMatrix"]
|
|
21
21
|
|
|
22
22
|
|
|
23
|
-
def is_skyline_matrix_operand(x:
|
|
23
|
+
def is_skyline_matrix_operand(x: Any) -> TypeGuard[SkylineMatrixOperand]:
|
|
24
24
|
return isinstance(x, SkylineMatrix) or is_skyline_vector_operand(x)
|
|
25
25
|
|
|
26
26
|
|
|
@@ -142,7 +142,7 @@ class SkylineMatrix:
|
|
|
142
142
|
def __bool__(self) -> bool:
|
|
143
143
|
return any(self.params)
|
|
144
144
|
|
|
145
|
-
def __eq__(self, other:
|
|
145
|
+
def __eq__(self, other: Any) -> bool:
|
|
146
146
|
return isinstance(other, SkylineMatrix) and self.params == other.params
|
|
147
147
|
|
|
148
148
|
def __repr__(self) -> str:
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
from bisect import bisect_right
|
|
2
2
|
from collections.abc import Callable
|
|
3
|
-
from typing import TypeGuard, Union
|
|
3
|
+
from typing import Any, TypeGuard, Union
|
|
4
4
|
|
|
5
5
|
import phylogenie.typeguards as tg
|
|
6
6
|
import phylogenie.typings as pgt
|
|
@@ -8,12 +8,12 @@ import phylogenie.typings as pgt
|
|
|
8
8
|
SkylineParameterLike = Union[pgt.Scalar, "SkylineParameter"]
|
|
9
9
|
|
|
10
10
|
|
|
11
|
-
def is_skyline_parameter_like(x:
|
|
11
|
+
def is_skyline_parameter_like(x: Any) -> TypeGuard[SkylineParameterLike]:
|
|
12
12
|
return isinstance(x, pgt.Scalar | SkylineParameter)
|
|
13
13
|
|
|
14
14
|
|
|
15
15
|
def is_many_skyline_parameters_like(
|
|
16
|
-
x:
|
|
16
|
+
x: Any,
|
|
17
17
|
) -> TypeGuard[pgt.Many[SkylineParameterLike]]:
|
|
18
18
|
return tg.is_many(x) and all(is_skyline_parameter_like(v) for v in x)
|
|
19
19
|
|
|
@@ -107,7 +107,7 @@ class SkylineParameter:
|
|
|
107
107
|
def __bool__(self) -> bool:
|
|
108
108
|
return any(self.value)
|
|
109
109
|
|
|
110
|
-
def __eq__(self, other:
|
|
110
|
+
def __eq__(self, other: Any) -> bool:
|
|
111
111
|
return isinstance(other, SkylineParameter) and (
|
|
112
112
|
self.value == other.value and self.change_times == other.change_times
|
|
113
113
|
)
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
from collections.abc import Callable, Iterator
|
|
2
|
-
from typing import TypeGuard, Union, overload
|
|
2
|
+
from typing import Any, TypeGuard, Union, overload
|
|
3
3
|
|
|
4
4
|
import phylogenie.typeguards as tg
|
|
5
5
|
import phylogenie.typings as pgt
|
|
@@ -16,26 +16,24 @@ SkylineVectorLike = Union[pgt.Many[SkylineParameterLike], "SkylineVector"]
|
|
|
16
16
|
SkylineVectorCoercible = Union[pgt.OneOrMany[SkylineParameterLike], "SkylineVector"]
|
|
17
17
|
|
|
18
18
|
|
|
19
|
-
def is_skyline_vector_operand(x:
|
|
19
|
+
def is_skyline_vector_operand(x: Any) -> TypeGuard[SkylineVectorOperand]:
|
|
20
20
|
return isinstance(x, SkylineVector) or is_skyline_parameter_like(x)
|
|
21
21
|
|
|
22
22
|
|
|
23
|
-
def is_skyline_vector_like(x:
|
|
23
|
+
def is_skyline_vector_like(x: Any) -> TypeGuard[SkylineVectorLike]:
|
|
24
24
|
return isinstance(x, SkylineVector) or is_many_skyline_parameters_like(x)
|
|
25
25
|
|
|
26
26
|
|
|
27
|
-
def is_skyline_vector_coercible(
|
|
28
|
-
x: object,
|
|
29
|
-
) -> TypeGuard[SkylineVectorCoercible]:
|
|
27
|
+
def is_skyline_vector_coercible(x: Any) -> TypeGuard[SkylineVectorCoercible]:
|
|
30
28
|
return is_skyline_parameter_like(x) or is_skyline_vector_like(x)
|
|
31
29
|
|
|
32
30
|
|
|
33
|
-
def is_many_skyline_vectors_like(x:
|
|
31
|
+
def is_many_skyline_vectors_like(x: Any) -> TypeGuard[pgt.Many[SkylineVectorLike]]:
|
|
34
32
|
return tg.is_many(x) and all(is_skyline_vector_like(v) for v in x)
|
|
35
33
|
|
|
36
34
|
|
|
37
35
|
def is_many_skyline_vectors_coercible(
|
|
38
|
-
x:
|
|
36
|
+
x: Any,
|
|
39
37
|
) -> TypeGuard[pgt.Many[SkylineVectorCoercible]]:
|
|
40
38
|
return tg.is_many(x) and all(is_skyline_vector_coercible(v) for v in x)
|
|
41
39
|
|
|
@@ -131,7 +129,7 @@ class SkylineVector:
|
|
|
131
129
|
def __bool__(self) -> bool:
|
|
132
130
|
return any(self.params)
|
|
133
131
|
|
|
134
|
-
def __eq__(self, other:
|
|
132
|
+
def __eq__(self, other: Any) -> bool:
|
|
135
133
|
return isinstance(other, SkylineVector) and self.params == other.params
|
|
136
134
|
|
|
137
135
|
def __repr__(self) -> str:
|
|
@@ -1,6 +1,5 @@
|
|
|
1
|
-
from
|
|
2
|
-
|
|
3
|
-
from typing import Iterator
|
|
1
|
+
from collections.abc import Iterator
|
|
2
|
+
from typing import Any
|
|
4
3
|
|
|
5
4
|
|
|
6
5
|
class Tree:
|
|
@@ -9,29 +8,30 @@ class Tree:
|
|
|
9
8
|
self.branch_length = branch_length
|
|
10
9
|
self.parent: Tree | None = None
|
|
11
10
|
self.children: list[Tree] = []
|
|
11
|
+
self._features: dict[str, Any] = {}
|
|
12
12
|
|
|
13
|
-
def add_child(self, child: Tree) -> Tree:
|
|
13
|
+
def add_child(self, child: "Tree") -> "Tree":
|
|
14
14
|
child.parent = self
|
|
15
15
|
self.children.append(child)
|
|
16
16
|
return self
|
|
17
17
|
|
|
18
|
-
def preorder_traversal(self) -> Iterator[Tree]:
|
|
18
|
+
def preorder_traversal(self) -> Iterator["Tree"]:
|
|
19
19
|
yield self
|
|
20
20
|
for child in self.children:
|
|
21
21
|
yield from child.preorder_traversal()
|
|
22
22
|
|
|
23
|
-
def postorder_traversal(self) -> Iterator[Tree]:
|
|
23
|
+
def postorder_traversal(self) -> Iterator["Tree"]:
|
|
24
24
|
for child in self.children:
|
|
25
25
|
yield from child.postorder_traversal()
|
|
26
26
|
yield self
|
|
27
27
|
|
|
28
|
-
def get_node(self, id: str) -> Tree:
|
|
28
|
+
def get_node(self, id: str) -> "Tree":
|
|
29
29
|
for node in self:
|
|
30
30
|
if node.id == id:
|
|
31
31
|
return node
|
|
32
32
|
raise ValueError(f"Node with id {id} not found.")
|
|
33
33
|
|
|
34
|
-
def get_leaves(self) -> list[Tree]:
|
|
34
|
+
def get_leaves(self) -> list["Tree"]:
|
|
35
35
|
return [node for node in self if not node.children]
|
|
36
36
|
|
|
37
37
|
def get_time(self) -> float:
|
|
@@ -40,13 +40,22 @@ class Tree:
|
|
|
40
40
|
raise ValueError(f"Branch length of node {self.id} is not set.")
|
|
41
41
|
return self.branch_length + parent_time
|
|
42
42
|
|
|
43
|
-
def
|
|
43
|
+
def is_leaf(self) -> bool:
|
|
44
|
+
return not self.children
|
|
45
|
+
|
|
46
|
+
def copy(self) -> "Tree":
|
|
44
47
|
new_tree = Tree(self.id, self.branch_length)
|
|
45
48
|
for child in self.children:
|
|
46
49
|
new_tree.add_child(child.copy())
|
|
47
50
|
return new_tree
|
|
48
51
|
|
|
49
|
-
def
|
|
52
|
+
def get(self, key: str, default: Any = None) -> Any:
|
|
53
|
+
return self._features.get(key, default)
|
|
54
|
+
|
|
55
|
+
def set(self, key: str, value: Any) -> None:
|
|
56
|
+
self._features[key] = value
|
|
57
|
+
|
|
58
|
+
def __iter__(self) -> Iterator["Tree"]:
|
|
50
59
|
return self.preorder_traversal()
|
|
51
60
|
|
|
52
61
|
def __repr__(self) -> str:
|
|
@@ -4,6 +4,7 @@ from phylogenie.treesimulator.events import (
|
|
|
4
4
|
get_BDEI_events,
|
|
5
5
|
get_BDSS_events,
|
|
6
6
|
get_canonical_events,
|
|
7
|
+
get_contact_tracing_events,
|
|
7
8
|
get_epidemiological_events,
|
|
8
9
|
get_FBD_events,
|
|
9
10
|
)
|
|
@@ -15,6 +16,7 @@ __all__ = [
|
|
|
15
16
|
"get_BDEI_events",
|
|
16
17
|
"get_BDSS_events",
|
|
17
18
|
"get_canonical_events",
|
|
19
|
+
"get_contact_tracing_events",
|
|
18
20
|
"get_epidemiological_events",
|
|
19
21
|
"get_FBD_events",
|
|
20
22
|
"simulate_tree",
|