phylogenie 1.0.1__tar.gz → 1.0.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (44) hide show
  1. {phylogenie-1.0.1 → phylogenie-1.0.3}/PKG-INFO +2 -2
  2. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/backend/remaster/generate.py +3 -4
  3. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/backend/remaster/reactions.py +23 -23
  4. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/backend/treesimulator.py +6 -6
  5. phylogenie-1.0.3/phylogenie/core/configs.py +40 -0
  6. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/core/context/factories.py +5 -8
  7. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/core/dataset.py +3 -3
  8. phylogenie-1.0.3/phylogenie/core/factories.py +251 -0
  9. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/core/msas/alisim.py +2 -2
  10. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/core/msas/base.py +3 -3
  11. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/core/trees/remaster/configs.py +3 -3
  12. phylogenie-1.0.3/phylogenie/core/trees/remaster/factories.py +26 -0
  13. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/core/trees/remaster/generator.py +55 -47
  14. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/core/trees/treesimulator.py +17 -15
  15. phylogenie-1.0.3/phylogenie/core/typeguards.py +27 -0
  16. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/skyline/__init__.py +14 -4
  17. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/skyline/matrix.py +45 -55
  18. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/skyline/parameter.py +29 -20
  19. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/skyline/vector.py +42 -51
  20. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/typeguards.py +10 -8
  21. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/typings.py +8 -7
  22. {phylogenie-1.0.1 → phylogenie-1.0.3}/pyproject.toml +2 -2
  23. phylogenie-1.0.1/phylogenie/core/configs.py +0 -35
  24. phylogenie-1.0.1/phylogenie/core/factories.py +0 -178
  25. phylogenie-1.0.1/phylogenie/core/trees/remaster/factories.py +0 -30
  26. phylogenie-1.0.1/phylogenie/core/typeguards.py +0 -35
  27. phylogenie-1.0.1/phylogenie/core/typings.py +0 -10
  28. phylogenie-1.0.1/phylogenie/utils.py +0 -20
  29. {phylogenie-1.0.1 → phylogenie-1.0.3}/LICENSE.txt +0 -0
  30. {phylogenie-1.0.1 → phylogenie-1.0.3}/README.md +0 -0
  31. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/__init__.py +0 -0
  32. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/backend/__init__.py +0 -0
  33. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/backend/remaster/__init__.py +0 -0
  34. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/configs.py +0 -0
  35. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/core/__init__.py +0 -0
  36. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/core/context/__init__.py +0 -0
  37. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/core/context/configs.py +0 -0
  38. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/core/context/distributions.py +0 -0
  39. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/core/msas/__init__.py +0 -0
  40. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/core/trees/__init__.py +0 -0
  41. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/core/trees/base.py +0 -0
  42. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/core/trees/remaster/__init__.py +0 -0
  43. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/main.py +0 -0
  44. {phylogenie-1.0.1 → phylogenie-1.0.3}/phylogenie/py.typed +0 -0
@@ -1,8 +1,8 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: phylogenie
3
- Version: 1.0.1
3
+ Version: 1.0.3
4
4
  Summary: Generate phylogenetic datasets with minimal setup effort
5
- Author: gabriele-marino
5
+ Author: Gabriele Marino
6
6
  Author-email: gabmarino.8601@gmail.com
7
7
  Requires-Python: >=3.10,<4.0
8
8
  Classifier: Programming Language :: Python :: 3
@@ -11,7 +11,6 @@ from phylogenie.backend.remaster.reactions import (
11
11
  Reaction,
12
12
  )
13
13
  from phylogenie.skyline import skyline_parameter
14
- from phylogenie.utils import vectorify1D
15
14
 
16
15
  TREE_ID = "Tree"
17
16
 
@@ -75,12 +74,12 @@ def _generate_config_file(
75
74
  attrs = {
76
75
  "spec": "PunctualReaction",
77
76
  "value": punctual_reaction.value,
78
- "times": " ".join(map(str, vectorify1D(punctual_reaction.times))),
77
+ "times": " ".join(map(str, punctual_reaction.times)),
79
78
  }
80
79
  if punctual_reaction.p is not None:
81
- attrs["p"] = " ".join(map(str, vectorify1D(punctual_reaction.p)))
80
+ attrs["p"] = " ".join(map(str, punctual_reaction.p))
82
81
  if punctual_reaction.n is not None:
83
- attrs["n"] = " ".join(map(str, vectorify1D(punctual_reaction.n)))
82
+ attrs["n"] = " ".join(map(str, punctual_reaction.n))
84
83
  trajectory.append(Element("reaction", attrs))
85
84
 
86
85
  simulate.append(trajectory)
@@ -2,9 +2,9 @@ from dataclasses import dataclass
2
2
 
3
3
  import phylogenie.typings as pgt
4
4
  from phylogenie.skyline import (
5
- SkylineMatrixLike,
5
+ SkylineMatrixCoercible,
6
6
  SkylineParameterLike,
7
- SkylineVectorLike,
7
+ SkylineVectorCoercible,
8
8
  skyline_matrix,
9
9
  skyline_vector,
10
10
  )
@@ -21,21 +21,21 @@ class Reaction:
21
21
 
22
22
  @dataclass
23
23
  class PunctualReaction:
24
- times: pgt.OneOrManyScalars
24
+ times: pgt.ManyScalars
25
25
  value: str
26
- p: pgt.OneOrManyScalars | None = None
27
- n: pgt.OneOrMany[int] | None = None
26
+ p: pgt.ManyScalars | None = None
27
+ n: pgt.Many[int] | None = None
28
28
 
29
29
 
30
30
  def get_canonical_reactions(
31
31
  populations: str | list[str] = DEFAULT_POPULATION,
32
32
  sample_population: str = SAMPLE_POPULATION,
33
- birth_rates: SkylineVectorLike = 0,
34
- death_rates: SkylineVectorLike = 0,
35
- sampling_rates: SkylineVectorLike = 0,
36
- removal_probabilities: SkylineVectorLike = 0,
37
- migration_rates: SkylineMatrixLike = 0,
38
- birth_rates_among_demes: SkylineMatrixLike = 0,
33
+ birth_rates: SkylineVectorCoercible = 0,
34
+ death_rates: SkylineVectorCoercible = 0,
35
+ sampling_rates: SkylineVectorCoercible = 0,
36
+ removal_probabilities: SkylineVectorCoercible = 0,
37
+ migration_rates: SkylineMatrixCoercible = 0,
38
+ birth_rates_among_demes: SkylineMatrixCoercible = 0,
39
39
  ) -> list[Reaction]:
40
40
  if isinstance(populations, str):
41
41
  populations = [populations]
@@ -84,12 +84,12 @@ def get_canonical_reactions(
84
84
  def get_epidemiological_reactions(
85
85
  populations: str | list[str] = DEFAULT_POPULATION,
86
86
  sample_population: str = SAMPLE_POPULATION,
87
- reproduction_numbers: SkylineVectorLike = 0,
88
- become_uninfectious_rates: SkylineVectorLike = 0,
89
- sampling_proportions: SkylineVectorLike = 0,
90
- removal_probabilities: SkylineVectorLike = 0,
91
- migration_rates: SkylineMatrixLike = 0,
92
- reproduction_numbers_among_demes: SkylineMatrixLike = 0,
87
+ reproduction_numbers: SkylineVectorCoercible = 0,
88
+ become_uninfectious_rates: SkylineVectorCoercible = 0,
89
+ sampling_proportions: SkylineVectorCoercible = 0,
90
+ removal_probabilities: SkylineVectorCoercible = 0,
91
+ migration_rates: SkylineMatrixCoercible = 0,
92
+ reproduction_numbers_among_demes: SkylineMatrixCoercible = 0,
93
93
  ) -> list[Reaction]:
94
94
  if isinstance(populations, str):
95
95
  populations = [populations]
@@ -125,12 +125,12 @@ def get_epidemiological_reactions(
125
125
  def get_FBD_reactions(
126
126
  populations: str | list[str] = DEFAULT_POPULATION,
127
127
  sample_population: str = SAMPLE_POPULATION,
128
- diversification: SkylineVectorLike = 0,
129
- turnover: SkylineVectorLike = 0,
130
- sampling_proportions: SkylineVectorLike = 0,
131
- removal_probabilities: SkylineVectorLike = 0,
132
- migration_rates: SkylineMatrixLike = 0,
133
- diversification_between_types: SkylineMatrixLike = 0,
128
+ diversification: SkylineVectorCoercible = 0,
129
+ turnover: SkylineVectorCoercible = 0,
130
+ sampling_proportions: SkylineVectorCoercible = 0,
131
+ removal_probabilities: SkylineVectorCoercible = 0,
132
+ migration_rates: SkylineMatrixCoercible = 0,
133
+ diversification_between_types: SkylineMatrixCoercible = 0,
134
134
  ):
135
135
  if isinstance(populations, str):
136
136
  populations = [populations]
@@ -6,9 +6,9 @@ from treesimulator.generator import generate
6
6
  from treesimulator.mtbd_models import CTModel, Model
7
7
 
8
8
  from phylogenie.skyline import (
9
- SkylineMatrixLike,
9
+ SkylineMatrixCoercible,
10
10
  SkylineParameterLike,
11
- SkylineVectorLike,
11
+ SkylineVectorCoercible,
12
12
  skyline_matrix,
13
13
  skyline_parameter,
14
14
  skyline_vector,
@@ -22,10 +22,10 @@ EXPOSED_POPULATION = "E"
22
22
  @dataclass
23
23
  class TreeParams:
24
24
  populations: str | list[str] = DEFAULT_POPULATION
25
- transition_rates: SkylineMatrixLike = 0
26
- transmission_rates: SkylineMatrixLike = 0
27
- removal_rates: SkylineVectorLike = 0
28
- sampling_proportions: SkylineVectorLike = 0
25
+ transition_rates: SkylineMatrixCoercible = 0
26
+ transmission_rates: SkylineMatrixCoercible = 0
27
+ removal_rates: SkylineVectorCoercible = 0
28
+ sampling_proportions: SkylineVectorCoercible = 0
29
29
 
30
30
 
31
31
  def generate_tree(
@@ -0,0 +1,40 @@
1
+ import phylogenie.typings as pgt
2
+ from phylogenie.configs import StrictBaseModel
3
+
4
+ IntConfig = str | int
5
+ ScalarConfig = str | pgt.Scalar
6
+ ManyIntsConfig = str | list[IntConfig]
7
+ ManyScalarsConfig = str | list[ScalarConfig]
8
+ OneOrManyScalarsConfig = ScalarConfig | list[ScalarConfig]
9
+ OneOrMany2DScalarsConfig = ScalarConfig | list[list[ScalarConfig]]
10
+
11
+
12
+ class SkylineParameterValueModel(StrictBaseModel):
13
+ value: ManyScalarsConfig
14
+ change_times: ManyScalarsConfig
15
+
16
+
17
+ SkylineParameterLikeConfig = ScalarConfig | SkylineParameterValueModel
18
+
19
+
20
+ class SkylineVectorValueModel(StrictBaseModel):
21
+ value: str | list[OneOrManyScalarsConfig]
22
+ change_times: ManyScalarsConfig
23
+
24
+
25
+ SkylineVectorCoercibleConfig = (
26
+ str | pgt.Scalar | list[SkylineParameterLikeConfig] | SkylineVectorValueModel
27
+ )
28
+ SkylineVectorLikeConfig = (
29
+ str | list[SkylineParameterLikeConfig] | SkylineVectorValueModel
30
+ )
31
+
32
+
33
+ class SkylineMatrixValueModel(StrictBaseModel):
34
+ value: str | list[OneOrMany2DScalarsConfig]
35
+ change_times: ManyScalarsConfig
36
+
37
+
38
+ SkylineMatrixCoercibleConfig = (
39
+ str | pgt.Scalar | list[SkylineVectorLikeConfig] | SkylineMatrixValueModel
40
+ )
@@ -3,18 +3,15 @@ from numpy.random import Generator
3
3
  import phylogenie.core.context.configs as cfg
4
4
  import phylogenie.typings as pgt
5
5
  from phylogenie.core.context import distributions
6
- from phylogenie.core.typings import Data
7
6
 
8
7
 
9
- def _sample_vector1D(
10
- x: distributions.Scalar, N: int, rng: Generator
11
- ) -> list[pgt.Scalar]:
8
+ def _sample_vector1D(x: distributions.Scalar, N: int, rng: Generator) -> pgt.Vector1D:
12
9
  return [x.sample(rng) for _ in range(N)]
13
10
 
14
11
 
15
12
  def _sample_vector2D(
16
13
  x: distributions.Scalar, N: int, zero_diagonal: bool, rng: Generator
17
- ) -> list[list[pgt.Scalar]]:
14
+ ) -> pgt.Vector2D:
18
15
  v = [_sample_vector1D(x, N, rng) for _ in range(N)]
19
16
  if zero_diagonal:
20
17
  for i in range(N):
@@ -24,12 +21,12 @@ def _sample_vector2D(
24
21
 
25
22
  def _sample_vector3D(
26
23
  x: distributions.Scalar, N: int, T: int, zero_diagonal: bool, rng: Generator
27
- ) -> list[list[list[pgt.Scalar]]]:
24
+ ) -> pgt.Vector3D:
28
25
  return [_sample_vector2D(x, N, zero_diagonal, rng) for _ in range(T)]
29
26
 
30
27
 
31
- def context_factory(x: cfg.ContextConfig, rng: Generator) -> Data:
32
- data: Data = {}
28
+ def context_factory(x: cfg.ContextConfig, rng: Generator) -> pgt.Data:
29
+ data: pgt.Data = {}
33
30
  for key, value in x.items():
34
31
  if isinstance(value, distributions.Distribution):
35
32
  data[key] = value.sample(rng)
@@ -7,9 +7,9 @@ import pandas as pd
7
7
  from numpy.random import Generator, default_rng
8
8
  from tqdm import tqdm
9
9
 
10
+ import phylogenie.typings as pgt
10
11
  from phylogenie.configs import StrictBaseModel
11
12
  from phylogenie.core.context import ContextConfig, context_factory
12
- from phylogenie.core.typings import Data
13
13
 
14
14
 
15
15
  class DataType(str, Enum):
@@ -27,10 +27,10 @@ class DatasetGenerator(ABC, StrictBaseModel):
27
27
  context: ContextConfig | None = None
28
28
 
29
29
  @abstractmethod
30
- def _generate_one(self, filename: str, rng: Generator, data: Data) -> None: ...
30
+ def _generate_one(self, filename: str, rng: Generator, data: pgt.Data) -> None: ...
31
31
 
32
32
  def generate_one(
33
- self, filename: str, data: Data | None = None, seed: int | None = None
33
+ self, filename: str, data: pgt.Data | None = None, seed: int | None = None
34
34
  ) -> None:
35
35
  data = {} if data is None else data
36
36
  self._generate_one(filename=filename, rng=default_rng(seed), data=data)
@@ -0,0 +1,251 @@
1
+ from typing import Any, Literal, overload
2
+
3
+ import numpy as np
4
+
5
+ import phylogenie.core.configs as cfg
6
+ import phylogenie.core.typeguards as ctg
7
+ import phylogenie.typeguards as tg
8
+ import phylogenie.typings as pgt
9
+ from phylogenie.skyline import (
10
+ SkylineMatrix,
11
+ SkylineMatrixCoercible,
12
+ SkylineParameter,
13
+ SkylineParameterLike,
14
+ SkylineVector,
15
+ SkylineVectorCoercible,
16
+ SkylineVectorLike,
17
+ )
18
+
19
+
20
+ def _eval_expression(expression: str, data: pgt.Data) -> Any:
21
+ return np.array(
22
+ eval(
23
+ expression,
24
+ {
25
+ "__builtins__": __builtins__,
26
+ "np": np,
27
+ **{k: np.array(v) for k, v in data.items()},
28
+ },
29
+ )
30
+ ).tolist()
31
+
32
+
33
+ def int_factory(x: cfg.IntConfig, data: pgt.Data) -> int:
34
+ if isinstance(x, str):
35
+ e = _eval_expression(x, data)
36
+ if isinstance(e, int):
37
+ return e
38
+ raise ValueError(
39
+ f"Expression '{x}' evaluated to {e} of type {type(e)}, expected an int."
40
+ )
41
+ return x
42
+
43
+
44
+ def scalar_factory(x: cfg.ScalarConfig, data: pgt.Data) -> pgt.Scalar:
45
+ if isinstance(x, str):
46
+ e = _eval_expression(x, data)
47
+ if isinstance(e, pgt.Scalar):
48
+ return e
49
+ raise ValueError(
50
+ f"Expression '{x}' evaluated to {e} of type {type(e)}, expected a scalar."
51
+ )
52
+ return x
53
+
54
+
55
+ def many_ints_factory(x: cfg.ManyIntsConfig, data: pgt.Data) -> pgt.Many[int]:
56
+ if isinstance(x, str):
57
+ e = _eval_expression(x, data)
58
+ if tg.is_many_ints(e):
59
+ return e
60
+ raise ValueError(
61
+ f"Expression '{x}' evaluated to {e} of type {type(e)}, expected a sequence of integers."
62
+ )
63
+ return [int_factory(v, data) for v in x]
64
+
65
+
66
+ def many_scalars_factory(x: cfg.ManyScalarsConfig, data: pgt.Data) -> pgt.ManyScalars:
67
+ if isinstance(x, str):
68
+ e = _eval_expression(x, data)
69
+ if tg.is_many_scalars(e):
70
+ return e
71
+ raise ValueError(
72
+ f"Expression '{x}' evaluated to {e} of type {type(e)}, expected a sequence of scalars."
73
+ )
74
+ return [scalar_factory(v, data) for v in x]
75
+
76
+
77
+ def one_or_many_scalars_factory(
78
+ x: cfg.OneOrManyScalarsConfig, data: pgt.Data
79
+ ) -> pgt.OneOrManyScalars:
80
+ if isinstance(x, str):
81
+ e = _eval_expression(x, data)
82
+ if tg.is_one_or_many_scalars(e):
83
+ return e
84
+ raise ValueError(
85
+ f"Expression '{x}' evaluated to {e} of type {type(e)}, expected a scalar or a sequence of them."
86
+ )
87
+ if isinstance(x, pgt.Scalar):
88
+ return x
89
+ return many_scalars_factory(x, data)
90
+
91
+
92
+ def skyline_parameter_like_factory(
93
+ x: cfg.SkylineParameterLikeConfig, data: pgt.Data
94
+ ) -> SkylineParameterLike:
95
+ if isinstance(x, cfg.ScalarConfig):
96
+ return scalar_factory(x, data)
97
+ return SkylineParameter(
98
+ value=many_scalars_factory(x.value, data),
99
+ change_times=many_scalars_factory(x.change_times, data),
100
+ )
101
+
102
+
103
+ @overload
104
+ def _parse_skyline_vector_value_model(
105
+ x: cfg.SkylineVectorValueModel, data: pgt.Data, coercible: Literal[True]
106
+ ) -> SkylineVectorCoercible: ...
107
+ @overload
108
+ def _parse_skyline_vector_value_model(
109
+ x: cfg.SkylineVectorValueModel, data: pgt.Data, coercible: Literal[False]
110
+ ) -> SkylineVectorLike: ...
111
+ def _parse_skyline_vector_value_model(
112
+ x: cfg.SkylineVectorValueModel, data: pgt.Data, coercible: bool
113
+ ) -> SkylineVectorCoercible:
114
+ change_times = many_scalars_factory(x.change_times, data)
115
+ if isinstance(x.value, str):
116
+ e = _eval_expression(x.value, data)
117
+ if tg.is_many_one_or_many_scalars(e):
118
+ value = e
119
+ else:
120
+ raise ValueError(
121
+ f"Expression '{x.value}' evaluated to {e} of type {type(e)}, which cannot be coerced to a valid value for a SkylineVector (expected a sequence composed of scalars and/or sequences of scalars)."
122
+ )
123
+ else:
124
+ value = [one_or_many_scalars_factory(v, data) for v in x.value]
125
+
126
+ if tg.is_many_scalars(value):
127
+ if coercible:
128
+ return SkylineParameter(value=value, change_times=change_times)
129
+ else:
130
+ raise ValueError(
131
+ f"Parsing SkylineVector config {x.value} yielded a sequence of scalars {value} when a nested (2D) sequence of scalars was expected."
132
+ )
133
+
134
+ Ns = {len(elem) for elem in value if tg.is_many(elem)}
135
+ if len(Ns) > 1:
136
+ raise ValueError(
137
+ f"All elements in the value of a SkylineVector config must be scalars or have the same length (config {x.value} yielded value={value} with inconsistent lengths {Ns})."
138
+ )
139
+ (N,) = Ns
140
+ value = [[p] * N if isinstance(p, pgt.Scalar) else p for p in value]
141
+
142
+ return SkylineVector(
143
+ value=value,
144
+ change_times=change_times,
145
+ )
146
+
147
+
148
+ def skyline_vector_coercible_factory(
149
+ x: cfg.SkylineVectorCoercibleConfig, data: pgt.Data
150
+ ) -> SkylineVectorCoercible:
151
+ if isinstance(x, str):
152
+ e = _eval_expression(x, data)
153
+ if tg.is_one_or_many_scalars(e):
154
+ return e
155
+ raise ValueError(
156
+ f"Expression '{x}' evaluated to {e} of type {type(e)}, expected a SkylineVectorCoercible object (e.g., a scalar or a sequence of them)."
157
+ )
158
+ if isinstance(x, pgt.Scalar):
159
+ return x
160
+ if ctg.is_list_of_skyline_parameter_like_configs(x):
161
+ return [skyline_parameter_like_factory(p, data) for p in x]
162
+
163
+ assert isinstance(x, cfg.SkylineVectorValueModel)
164
+ return _parse_skyline_vector_value_model(x, data, coercible=True)
165
+
166
+
167
+ def skyline_vector_like_factory(
168
+ x: cfg.SkylineVectorLikeConfig, data: pgt.Data
169
+ ) -> SkylineVectorLike:
170
+ if isinstance(x, str):
171
+ e = _eval_expression(x, data)
172
+ if tg.is_many_scalars(e):
173
+ return e
174
+ raise ValueError(
175
+ f"Expression '{x}' evaluated to {e} of type {type(e)}, expected a SkylineVectorLike object (e.g., a sequence of scalars)."
176
+ )
177
+ if ctg.is_list_of_skyline_parameter_like_configs(x):
178
+ return [skyline_parameter_like_factory(p, data) for p in x]
179
+
180
+ assert isinstance(x, cfg.SkylineVectorValueModel)
181
+ return _parse_skyline_vector_value_model(x, data, coercible=False)
182
+
183
+
184
+ def one_or_many_2D_scalars_factory(
185
+ x: cfg.OneOrMany2DScalarsConfig, data: pgt.Data
186
+ ) -> pgt.OneOrMany2DScalars:
187
+ if isinstance(x, str):
188
+ e = _eval_expression(x, data)
189
+ if tg.is_one_or_many_2D_scalars(e):
190
+ return e
191
+ raise ValueError(
192
+ f"Expression '{x}' evaluated to {e} of type {type(e)}, expected a nested (2D) sequence of scalars."
193
+ )
194
+ if isinstance(x, pgt.Scalar):
195
+ return x
196
+ return [many_scalars_factory(v, data) for v in x]
197
+
198
+
199
+ def skyline_matrix_coercible_factory(
200
+ x: cfg.SkylineMatrixCoercibleConfig, data: pgt.Data
201
+ ) -> SkylineMatrixCoercible:
202
+ if isinstance(x, str):
203
+ e = _eval_expression(x, data)
204
+ if tg.is_one_or_many_2D_scalars(e):
205
+ return e
206
+ raise ValueError(
207
+ f"Expression '{x}' evaluated to {e} of type {type(e)}, expected a SkylineMatrixCoercible object (e.g., a scalar or a nested (2D) sequence of them)."
208
+ )
209
+ if isinstance(x, pgt.Scalar):
210
+ return x
211
+ if ctg.is_list_of_skyline_vector_like_configs(x):
212
+ return [skyline_vector_like_factory(v, data) for v in x]
213
+
214
+ assert isinstance(x, cfg.SkylineMatrixValueModel)
215
+
216
+ change_times = many_scalars_factory(x.change_times, data)
217
+ if isinstance(x.value, str):
218
+ e = _eval_expression(x.value, data)
219
+ if tg.is_many_one_or_many_2D_scalars(e):
220
+ value = e
221
+ else:
222
+ raise ValueError(
223
+ f"Expression '{x.value}' evaluated to {e} of type {type(e)}, which cannot be coerced to a valid value for a SkylineMatrix (expected a sequence composed of scalars and/or nested (2D) sequences of scalars)."
224
+ )
225
+ else:
226
+ value = [one_or_many_2D_scalars_factory(v, data) for v in x.value]
227
+
228
+ if tg.is_many_scalars(value):
229
+ return SkylineParameter(value=value, change_times=change_times)
230
+
231
+ Ns: set[int] = set()
232
+ for elem in value:
233
+ if tg.is_many_2D_scalars(elem):
234
+ n_rows = len(elem)
235
+ if any(len(row) != n_rows for row in elem):
236
+ raise ValueError(
237
+ f"All elements in the value of a SkylineMatrix config must be scalars or square matrices (config {x.value} yeilded a non-square matrix: {elem})."
238
+ )
239
+ Ns.add(n_rows)
240
+
241
+ if len(Ns) > 1:
242
+ raise ValueError(
243
+ f"All elements in the value of a SkylineMatrix config must be scalars or have the same square shape (config {x.value} yielded value={value} with inconsistent lengths {Ns})."
244
+ )
245
+ (N,) = Ns
246
+ value = [[[p] * N] * N if isinstance(p, pgt.Scalar) else p for p in value]
247
+
248
+ return SkylineMatrix(
249
+ value=value,
250
+ change_times=change_times,
251
+ )
@@ -3,8 +3,8 @@ from typing import Literal
3
3
 
4
4
  from numpy.random import Generator
5
5
 
6
+ import phylogenie.typings as pgt
6
7
  from phylogenie.core.msas.base import BackendType, MSAsGenerator
7
- from phylogenie.core.typings import Data
8
8
 
9
9
 
10
10
  class AliSimGenerator(MSAsGenerator):
@@ -13,7 +13,7 @@ class AliSimGenerator(MSAsGenerator):
13
13
  args: dict[str, str | int | float]
14
14
 
15
15
  def _generate_one_from_tree(
16
- self, filename: str, tree_file: str, rng: Generator, data: Data
16
+ self, filename: str, tree_file: str, rng: Generator, data: pgt.Data
17
17
  ) -> None:
18
18
  command = [
19
19
  self.iqtree_path,
@@ -6,9 +6,9 @@ from typing import Literal
6
6
 
7
7
  from numpy.random import Generator
8
8
 
9
+ import phylogenie.typings as pgt
9
10
  from phylogenie.core.dataset import DatasetGenerator, DataType
10
11
  from phylogenie.core.trees import TreesGeneratorConfig
11
- from phylogenie.core.typings import Data
12
12
 
13
13
 
14
14
  class BackendType(str, Enum):
@@ -22,10 +22,10 @@ class MSAsGenerator(DatasetGenerator):
22
22
 
23
23
  @abstractmethod
24
24
  def _generate_one_from_tree(
25
- self, filename: str, tree_file: str, rng: Generator, data: Data
25
+ self, filename: str, tree_file: str, rng: Generator, data: pgt.Data
26
26
  ) -> None: ...
27
27
 
28
- def _generate_one(self, filename: str, rng: Generator, data: Data) -> None:
28
+ def _generate_one(self, filename: str, rng: Generator, data: pgt.Data) -> None:
29
29
  if isinstance(self.trees, str):
30
30
  tree_files = os.listdir(self.trees)
31
31
  tree_file = os.path.join(self.trees, str(rng.choice(tree_files)))
@@ -8,7 +8,7 @@ class ReactionConfig(StrictBaseModel):
8
8
 
9
9
 
10
10
  class PunctualReactionConfig(StrictBaseModel):
11
- times: cfg.OneOrManyScalarsConfig
11
+ times: cfg.ManyScalarsConfig
12
12
  value: str
13
- p: cfg.OneOrManyScalarsConfig | None = None
14
- n: cfg.OneOrManyIntsConfig | None = None
13
+ p: cfg.ManyScalarsConfig | None = None
14
+ n: cfg.ManyIntsConfig | None = None
@@ -0,0 +1,26 @@
1
+ import phylogenie.core.trees.remaster.configs as cfg
2
+ import phylogenie.typings as pgt
3
+ from phylogenie.backend.remaster import PunctualReaction, Reaction
4
+ from phylogenie.core.factories import (
5
+ many_ints_factory,
6
+ many_scalars_factory,
7
+ skyline_parameter_like_factory,
8
+ )
9
+
10
+
11
+ def reaction_factory(x: cfg.ReactionConfig, data: pgt.Data) -> Reaction:
12
+ return Reaction(
13
+ rate=skyline_parameter_like_factory(x.rate, data),
14
+ value=x.value,
15
+ )
16
+
17
+
18
+ def punctual_reaction_factory(
19
+ x: cfg.PunctualReactionConfig, data: pgt.Data
20
+ ) -> PunctualReaction:
21
+ return PunctualReaction(
22
+ times=many_scalars_factory(x.times, data),
23
+ value=x.value,
24
+ p=None if x.p is None else many_scalars_factory(x.p, data),
25
+ n=None if x.n is None else many_ints_factory(x.n, data),
26
+ )