pearmut 0.3.2__tar.gz → 1.0.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. {pearmut-0.3.2 → pearmut-1.0.0}/PKG-INFO +56 -27
  2. {pearmut-0.3.2 → pearmut-1.0.0}/README.md +54 -26
  3. {pearmut-0.3.2 → pearmut-1.0.0}/pearmut.egg-info/PKG-INFO +56 -27
  4. {pearmut-0.3.2 → pearmut-1.0.0}/pearmut.egg-info/SOURCES.txt +2 -0
  5. {pearmut-0.3.2 → pearmut-1.0.0}/pearmut.egg-info/requires.txt +1 -0
  6. {pearmut-0.3.2 → pearmut-1.0.0}/pyproject.toml +2 -1
  7. {pearmut-0.3.2 → pearmut-1.0.0}/server/app.py +52 -29
  8. pearmut-1.0.0/server/assignment.py +552 -0
  9. {pearmut-0.3.2 → pearmut-1.0.0}/server/cli.py +104 -25
  10. pearmut-1.0.0/server/results_export.py +210 -0
  11. pearmut-1.0.0/server/static/basic.bundle.js +1 -0
  12. pearmut-1.0.0/server/static/basic.html +97 -0
  13. pearmut-1.0.0/server/static/dashboard.bundle.js +1 -0
  14. pearmut-1.0.0/server/static/dashboard.html +96 -0
  15. pearmut-1.0.0/server/static/index.bundle.js +1 -0
  16. pearmut-1.0.0/server/static/index.html +1 -0
  17. {pearmut-0.3.2 → pearmut-1.0.0}/server/static/style.css +1 -1
  18. {pearmut-0.3.2 → pearmut-1.0.0}/server/utils.py +16 -2
  19. pearmut-0.3.2/server/assignment.py +0 -342
  20. pearmut-0.3.2/server/static/basic.bundle.js +0 -1
  21. pearmut-0.3.2/server/static/basic.html +0 -74
  22. pearmut-0.3.2/server/static/dashboard.bundle.js +0 -1
  23. pearmut-0.3.2/server/static/dashboard.html +0 -81
  24. pearmut-0.3.2/server/static/index.html +0 -1
  25. {pearmut-0.3.2 → pearmut-1.0.0}/LICENSE +0 -0
  26. {pearmut-0.3.2 → pearmut-1.0.0}/pearmut.egg-info/dependency_links.txt +0 -0
  27. {pearmut-0.3.2 → pearmut-1.0.0}/pearmut.egg-info/entry_points.txt +0 -0
  28. {pearmut-0.3.2 → pearmut-1.0.0}/pearmut.egg-info/top_level.txt +0 -0
  29. {pearmut-0.3.2 → pearmut-1.0.0}/server/static/favicon.svg +0 -0
  30. {pearmut-0.3.2 → pearmut-1.0.0}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pearmut
3
- Version: 0.3.2
3
+ Version: 1.0.0
4
4
  Summary: A tool for evaluation of model outputs, primarily MT.
5
5
  Author-email: Vilém Zouhar <vilem.zouhar@gmail.com>
6
6
  License: MIT
@@ -14,6 +14,7 @@ Requires-Dist: fastapi>=0.110.0
14
14
  Requires-Dist: uvicorn>=0.29.0
15
15
  Requires-Dist: wonderwords>=3.0.0
16
16
  Requires-Dist: psutil>=7.1.0
17
+ Requires-Dist: typst>=0.14.4
17
18
  Provides-Extra: dev
18
19
  Requires-Dist: pytest; extra == "dev"
19
20
  Dynamic: license-file
@@ -30,7 +31,8 @@ Dynamic: license-file
30
31
  &nbsp;
31
32
  [![build status](https://github.com/zouharvi/pearmut/actions/workflows/test.yml/badge.svg)](https://github.com/zouharvi/pearmut/actions/workflows/test.yml)
32
33
 
33
- <img width="1000" alt="Screenshot of ESA/MQM interface" src="https://github.com/user-attachments/assets/4fb9a1cb-78ac-47e0-99cd-0870a368a0ad" />
34
+ <img width="1000" alt="Screenshot of ESA/MQM interface" src="https://github.com/user-attachments/assets/71334238-300b-4ffc-b777-7f3c242b1630" />
35
+
34
36
 
35
37
  ## Table of Contents
36
38
 
@@ -45,6 +47,7 @@ Dynamic: license-file
45
47
  - [Multimodal Annotations](#multimodal-annotations)
46
48
  - [Hosting Assets](#hosting-assets)
47
49
  - [Campaign Management](#campaign-management)
50
+ - [Custom Completion Messages](#custom-completion-messages)
48
51
  - [CLI Commands](#cli-commands)
49
52
  - [Terminology](#terminology)
50
53
  - [Development](#development)
@@ -86,11 +89,13 @@ Campaigns are defined in JSON files (see [examples/](examples/)). The simplest c
86
89
  {
87
90
  "instructions": "Evaluate translation from en to cs_CZ", # message to show to users above the first item
88
91
  "src": "This will be the year that Guinness loses its cool. Cheers to that!",
89
- "tgt": {"modelA": "Nevím přesně, kdy jsem to poprvé zaznamenal. Možná to bylo ve chvíli, ..."}
92
+ "tgt": {"modelA": "Nevím přesně, kdy jsem to poprvé zaznamenal. Možná to bylo ve chvíli, ..."},
93
+ "item_id": "first item in first document"
90
94
  },
91
95
  {
92
96
  "src": "I'm not sure I can remember exactly when I sensed it. Maybe it was when some...",
93
- "tgt": {"modelA": "Tohle bude rok, kdy Guinness přijde o svůj „cool“ faktor. Na zdraví!"}
97
+ "tgt": {"modelA": "Tohle bude rok, kdy Guinness přijde o svůj „cool“ faktor. Na zdraví!"},
98
+ "item_id": "second item in first document"
94
99
  }
95
100
  ...
96
101
  ],
@@ -105,20 +110,10 @@ Campaigns are defined in JSON files (see [examples/](examples/)). The simplest c
105
110
  ]
106
111
  }
107
112
  ```
108
- Task items are protocol-specific. For ESA/DA/MQM protocols, each item is a dictionary representing a document unit:
109
- ```python
110
- [
111
- {
112
- "src": "A najednou se všechna tato voda naplnila dalšími lidmi a dalšími věcmi.", # required
113
- "tgt": {"modelA": "And suddenly all the water became full of other people and other people."} # required (dict)
114
- },
115
- {
116
- "src": "toto je pokračování stejného dokumentu",
117
- "tgt": {"modelA": "this is a continuation of the same document"}
118
- # Additional keys stored for analysis
119
- }
120
- ]
121
- ```
113
+
114
+ Each item has to have `src` (string) and `tgt` (dictionary from model names to strings, even for a single model evaluation).
115
+ For full Pearmut functionality (e.g. automatic statistical analysis), add `item_id` as well.
116
+ Any other keys that you add will simply be stored in the logs.
122
117
 
123
118
  Load campaigns and start the server:
124
119
  ```bash
@@ -130,7 +125,7 @@ pearmut run
130
125
 
131
126
  - **`task-based`**: Each user has predefined items
132
127
  - **`single-stream`**: All users draw from a shared pool (random assignment)
133
- - **`dynamic`**: work in progress ⚠️
128
+ - **`dynamic`**: Items are dynamically assigned based on current model performance (see [Dynamic Assignment](#dynamic-assignment))
134
129
 
135
130
  ## Advanced Features
136
131
 
@@ -223,7 +218,8 @@ The `validation` field is an array (one per candidate). Dashboard shows ✅/❌
223
218
  }
224
219
  ```
225
220
  The `score_greaterthan` field specifies the index of the candidate that must have a lower score than the current candidate.
226
- See [examples/tutorial_kway.json](examples/tutorial_kway.json).
221
+ See [examples/tutorial/esa_deen.json](examples/tutorial/esa_deen.json) for a mock campaign with a fully prepared ESA tutorial.
222
+ To use it, simply extract the `data` attribute and prefix it to each task in your campaign.
227
223
 
228
224
  ### Single-stream Assignment
229
225
 
@@ -243,6 +239,36 @@ All annotators draw from a shared pool with random assignment:
243
239
  }
244
240
  ```
245
241
 
242
+ ### Dynamic Assignment
243
+
244
+ The `dynamic` assignment type intelligently selects items based on current model performance to focus annotation effort on top-performing models using contrastive comparisons.
245
+ All items must contain outputs from all models for this assignment type to work properly.
246
+
247
+ ```python
248
+ {
249
+ "campaign_id": "my dynamic campaign",
250
+ "info": {
251
+ "assignment": "dynamic",
252
+ "protocol": "ESA",
253
+ "users": 10, # number of annotators
254
+ "dynamic_top": 3, # how many top models to consider (required)
255
+ "dynamic_contrastive_models": 2, # how many models to compare per item (optional, default: 1)
256
+ "dynamic_first": 5, # annotations per model before dynamic kicks in (optional, default: 5)
257
+ "dynamic_backoff": 0.1, # probability of uniform sampling (optional, default: 0)
258
+ },
259
+ "data": [...], # list of all items (shared among all annotators)
260
+ }
261
+ ```
262
+
263
+ **How it works:**
264
+ 1. Initial phase: Each model gets `dynamic_first` annotations with fully random contrastive evaluation
265
+ 2. Dynamic phase: After the initial phase, top `dynamic_top` models (by average score) are identified
266
+ 3. Contrastive evaluatoin: From the top N models, `dynamic_contrastive_models` models are randomly selected for each item
267
+ 4. Item prioritization: Items with the least annotations for the selected models are prioritized
268
+ 5. Backoff: With probability `dynamic_backoff`, uniform random selection is used instead to maintain exploration
269
+
270
+ This approach efficiently focuses annotation resources on distinguishing between the best-performing models while ensuring all models get adequate baseline coverage. The contrastive evaluation allows for direct comparison of multiple models simultaneously.
271
+ For an example, see [examples/dynamic.json](examples/dynamic.json).
246
272
 
247
273
  ### Pre-defined User IDs and Tokens
248
274
 
@@ -316,6 +342,10 @@ Completion tokens are shown at annotation end for verification (download correct
316
342
 
317
343
  When tokens are supplied, the dashboard will try to show model rankings based on the names in the dictionaries.
318
344
 
345
+ ### Custom Completion Messages
346
+
347
+ Customize the goodbye message shown to users when they complete all annotations using the `instructions_goodbye` field in campaign info. Supports arbitrary HTML for styling and formatting with variable replacement: `${TOKEN}` (completion token) and `${USER_ID}` (user ID). Default: `"If someone asks you for a token of completion, show them: ${TOKEN}"`.
348
+
319
349
  ## Terminology
320
350
 
321
351
  - **Campaign**: An annotation project that contains configuration, data, and user assignments. Each campaign has a unique identifier and is defined in a JSON file.
@@ -343,7 +373,7 @@ When tokens are supplied, the dashboard will try to show model rankings based on
343
373
  - **Assignment**: The method for distributing items to users:
344
374
  - **Task-based**: Each user has predefined items
345
375
  - **Single-stream**: Users draw from a shared pool with random assignment
346
- - **Dynamic**: Work in progress
376
+ - **Dynamic**: Items are intelligently assigned based on model performance to focus on top models
347
377
 
348
378
  ## Development
349
379
 
@@ -376,15 +406,14 @@ See [web/src/basic.ts](web/src/basic.ts) for example.
376
406
 
377
407
  Run on public server or tunnel local port to public IP/domain and run locally.
378
408
 
379
- ## Misc.
409
+ ## Citation
380
410
 
381
411
  If you use this work in your paper, please cite as following.
382
412
  ```bibtex
383
- @misc{zouhar2025pearmut,
384
- author={Vilém Zouhar},
385
- title={Pearmut: Platform for Evaluating and Reviewing of Multilingual Tasks},
386
- url={https://github.com/zouharvi/pearmut/},
387
- year={2026},
413
+ @misc{zouhar2026pearmut,
414
+ author = {Zouhar, Vilém},
415
+ title = {Pearmut: Human Evaluation of Translation Made Trivial},
416
+ year = {2026}
388
417
  }
389
418
  ```
390
419
 
@@ -10,7 +10,8 @@
10
10
  &nbsp;
11
11
  [![build status](https://github.com/zouharvi/pearmut/actions/workflows/test.yml/badge.svg)](https://github.com/zouharvi/pearmut/actions/workflows/test.yml)
12
12
 
13
- <img width="1000" alt="Screenshot of ESA/MQM interface" src="https://github.com/user-attachments/assets/4fb9a1cb-78ac-47e0-99cd-0870a368a0ad" />
13
+ <img width="1000" alt="Screenshot of ESA/MQM interface" src="https://github.com/user-attachments/assets/71334238-300b-4ffc-b777-7f3c242b1630" />
14
+
14
15
 
15
16
  ## Table of Contents
16
17
 
@@ -25,6 +26,7 @@
25
26
  - [Multimodal Annotations](#multimodal-annotations)
26
27
  - [Hosting Assets](#hosting-assets)
27
28
  - [Campaign Management](#campaign-management)
29
+ - [Custom Completion Messages](#custom-completion-messages)
28
30
  - [CLI Commands](#cli-commands)
29
31
  - [Terminology](#terminology)
30
32
  - [Development](#development)
@@ -66,11 +68,13 @@ Campaigns are defined in JSON files (see [examples/](examples/)). The simplest c
66
68
  {
67
69
  "instructions": "Evaluate translation from en to cs_CZ", # message to show to users above the first item
68
70
  "src": "This will be the year that Guinness loses its cool. Cheers to that!",
69
- "tgt": {"modelA": "Nevím přesně, kdy jsem to poprvé zaznamenal. Možná to bylo ve chvíli, ..."}
71
+ "tgt": {"modelA": "Nevím přesně, kdy jsem to poprvé zaznamenal. Možná to bylo ve chvíli, ..."},
72
+ "item_id": "first item in first document"
70
73
  },
71
74
  {
72
75
  "src": "I'm not sure I can remember exactly when I sensed it. Maybe it was when some...",
73
- "tgt": {"modelA": "Tohle bude rok, kdy Guinness přijde o svůj „cool“ faktor. Na zdraví!"}
76
+ "tgt": {"modelA": "Tohle bude rok, kdy Guinness přijde o svůj „cool“ faktor. Na zdraví!"},
77
+ "item_id": "second item in first document"
74
78
  }
75
79
  ...
76
80
  ],
@@ -85,20 +89,10 @@ Campaigns are defined in JSON files (see [examples/](examples/)). The simplest c
85
89
  ]
86
90
  }
87
91
  ```
88
- Task items are protocol-specific. For ESA/DA/MQM protocols, each item is a dictionary representing a document unit:
89
- ```python
90
- [
91
- {
92
- "src": "A najednou se všechna tato voda naplnila dalšími lidmi a dalšími věcmi.", # required
93
- "tgt": {"modelA": "And suddenly all the water became full of other people and other people."} # required (dict)
94
- },
95
- {
96
- "src": "toto je pokračování stejného dokumentu",
97
- "tgt": {"modelA": "this is a continuation of the same document"}
98
- # Additional keys stored for analysis
99
- }
100
- ]
101
- ```
92
+
93
+ Each item has to have `src` (string) and `tgt` (dictionary from model names to strings, even for a single model evaluation).
94
+ For full Pearmut functionality (e.g. automatic statistical analysis), add `item_id` as well.
95
+ Any other keys that you add will simply be stored in the logs.
102
96
 
103
97
  Load campaigns and start the server:
104
98
  ```bash
@@ -110,7 +104,7 @@ pearmut run
110
104
 
111
105
  - **`task-based`**: Each user has predefined items
112
106
  - **`single-stream`**: All users draw from a shared pool (random assignment)
113
- - **`dynamic`**: work in progress ⚠️
107
+ - **`dynamic`**: Items are dynamically assigned based on current model performance (see [Dynamic Assignment](#dynamic-assignment))
114
108
 
115
109
  ## Advanced Features
116
110
 
@@ -203,7 +197,8 @@ The `validation` field is an array (one per candidate). Dashboard shows ✅/❌
203
197
  }
204
198
  ```
205
199
  The `score_greaterthan` field specifies the index of the candidate that must have a lower score than the current candidate.
206
- See [examples/tutorial_kway.json](examples/tutorial_kway.json).
200
+ See [examples/tutorial/esa_deen.json](examples/tutorial/esa_deen.json) for a mock campaign with a fully prepared ESA tutorial.
201
+ To use it, simply extract the `data` attribute and prefix it to each task in your campaign.
207
202
 
208
203
  ### Single-stream Assignment
209
204
 
@@ -223,6 +218,36 @@ All annotators draw from a shared pool with random assignment:
223
218
  }
224
219
  ```
225
220
 
221
+ ### Dynamic Assignment
222
+
223
+ The `dynamic` assignment type intelligently selects items based on current model performance to focus annotation effort on top-performing models using contrastive comparisons.
224
+ All items must contain outputs from all models for this assignment type to work properly.
225
+
226
+ ```python
227
+ {
228
+ "campaign_id": "my dynamic campaign",
229
+ "info": {
230
+ "assignment": "dynamic",
231
+ "protocol": "ESA",
232
+ "users": 10, # number of annotators
233
+ "dynamic_top": 3, # how many top models to consider (required)
234
+ "dynamic_contrastive_models": 2, # how many models to compare per item (optional, default: 1)
235
+ "dynamic_first": 5, # annotations per model before dynamic kicks in (optional, default: 5)
236
+ "dynamic_backoff": 0.1, # probability of uniform sampling (optional, default: 0)
237
+ },
238
+ "data": [...], # list of all items (shared among all annotators)
239
+ }
240
+ ```
241
+
242
+ **How it works:**
243
+ 1. Initial phase: Each model gets `dynamic_first` annotations with fully random contrastive evaluation
244
+ 2. Dynamic phase: After the initial phase, top `dynamic_top` models (by average score) are identified
245
+ 3. Contrastive evaluatoin: From the top N models, `dynamic_contrastive_models` models are randomly selected for each item
246
+ 4. Item prioritization: Items with the least annotations for the selected models are prioritized
247
+ 5. Backoff: With probability `dynamic_backoff`, uniform random selection is used instead to maintain exploration
248
+
249
+ This approach efficiently focuses annotation resources on distinguishing between the best-performing models while ensuring all models get adequate baseline coverage. The contrastive evaluation allows for direct comparison of multiple models simultaneously.
250
+ For an example, see [examples/dynamic.json](examples/dynamic.json).
226
251
 
227
252
  ### Pre-defined User IDs and Tokens
228
253
 
@@ -296,6 +321,10 @@ Completion tokens are shown at annotation end for verification (download correct
296
321
 
297
322
  When tokens are supplied, the dashboard will try to show model rankings based on the names in the dictionaries.
298
323
 
324
+ ### Custom Completion Messages
325
+
326
+ Customize the goodbye message shown to users when they complete all annotations using the `instructions_goodbye` field in campaign info. Supports arbitrary HTML for styling and formatting with variable replacement: `${TOKEN}` (completion token) and `${USER_ID}` (user ID). Default: `"If someone asks you for a token of completion, show them: ${TOKEN}"`.
327
+
299
328
  ## Terminology
300
329
 
301
330
  - **Campaign**: An annotation project that contains configuration, data, and user assignments. Each campaign has a unique identifier and is defined in a JSON file.
@@ -323,7 +352,7 @@ When tokens are supplied, the dashboard will try to show model rankings based on
323
352
  - **Assignment**: The method for distributing items to users:
324
353
  - **Task-based**: Each user has predefined items
325
354
  - **Single-stream**: Users draw from a shared pool with random assignment
326
- - **Dynamic**: Work in progress
355
+ - **Dynamic**: Items are intelligently assigned based on model performance to focus on top models
327
356
 
328
357
  ## Development
329
358
 
@@ -356,15 +385,14 @@ See [web/src/basic.ts](web/src/basic.ts) for example.
356
385
 
357
386
  Run on public server or tunnel local port to public IP/domain and run locally.
358
387
 
359
- ## Misc.
388
+ ## Citation
360
389
 
361
390
  If you use this work in your paper, please cite as following.
362
391
  ```bibtex
363
- @misc{zouhar2025pearmut,
364
- author={Vilém Zouhar},
365
- title={Pearmut: Platform for Evaluating and Reviewing of Multilingual Tasks},
366
- url={https://github.com/zouharvi/pearmut/},
367
- year={2026},
392
+ @misc{zouhar2026pearmut,
393
+ author = {Zouhar, Vilém},
394
+ title = {Pearmut: Human Evaluation of Translation Made Trivial},
395
+ year = {2026}
368
396
  }
369
397
  ```
370
398
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pearmut
3
- Version: 0.3.2
3
+ Version: 1.0.0
4
4
  Summary: A tool for evaluation of model outputs, primarily MT.
5
5
  Author-email: Vilém Zouhar <vilem.zouhar@gmail.com>
6
6
  License: MIT
@@ -14,6 +14,7 @@ Requires-Dist: fastapi>=0.110.0
14
14
  Requires-Dist: uvicorn>=0.29.0
15
15
  Requires-Dist: wonderwords>=3.0.0
16
16
  Requires-Dist: psutil>=7.1.0
17
+ Requires-Dist: typst>=0.14.4
17
18
  Provides-Extra: dev
18
19
  Requires-Dist: pytest; extra == "dev"
19
20
  Dynamic: license-file
@@ -30,7 +31,8 @@ Dynamic: license-file
30
31
  &nbsp;
31
32
  [![build status](https://github.com/zouharvi/pearmut/actions/workflows/test.yml/badge.svg)](https://github.com/zouharvi/pearmut/actions/workflows/test.yml)
32
33
 
33
- <img width="1000" alt="Screenshot of ESA/MQM interface" src="https://github.com/user-attachments/assets/4fb9a1cb-78ac-47e0-99cd-0870a368a0ad" />
34
+ <img width="1000" alt="Screenshot of ESA/MQM interface" src="https://github.com/user-attachments/assets/71334238-300b-4ffc-b777-7f3c242b1630" />
35
+
34
36
 
35
37
  ## Table of Contents
36
38
 
@@ -45,6 +47,7 @@ Dynamic: license-file
45
47
  - [Multimodal Annotations](#multimodal-annotations)
46
48
  - [Hosting Assets](#hosting-assets)
47
49
  - [Campaign Management](#campaign-management)
50
+ - [Custom Completion Messages](#custom-completion-messages)
48
51
  - [CLI Commands](#cli-commands)
49
52
  - [Terminology](#terminology)
50
53
  - [Development](#development)
@@ -86,11 +89,13 @@ Campaigns are defined in JSON files (see [examples/](examples/)). The simplest c
86
89
  {
87
90
  "instructions": "Evaluate translation from en to cs_CZ", # message to show to users above the first item
88
91
  "src": "This will be the year that Guinness loses its cool. Cheers to that!",
89
- "tgt": {"modelA": "Nevím přesně, kdy jsem to poprvé zaznamenal. Možná to bylo ve chvíli, ..."}
92
+ "tgt": {"modelA": "Nevím přesně, kdy jsem to poprvé zaznamenal. Možná to bylo ve chvíli, ..."},
93
+ "item_id": "first item in first document"
90
94
  },
91
95
  {
92
96
  "src": "I'm not sure I can remember exactly when I sensed it. Maybe it was when some...",
93
- "tgt": {"modelA": "Tohle bude rok, kdy Guinness přijde o svůj „cool“ faktor. Na zdraví!"}
97
+ "tgt": {"modelA": "Tohle bude rok, kdy Guinness přijde o svůj „cool“ faktor. Na zdraví!"},
98
+ "item_id": "second item in first document"
94
99
  }
95
100
  ...
96
101
  ],
@@ -105,20 +110,10 @@ Campaigns are defined in JSON files (see [examples/](examples/)). The simplest c
105
110
  ]
106
111
  }
107
112
  ```
108
- Task items are protocol-specific. For ESA/DA/MQM protocols, each item is a dictionary representing a document unit:
109
- ```python
110
- [
111
- {
112
- "src": "A najednou se všechna tato voda naplnila dalšími lidmi a dalšími věcmi.", # required
113
- "tgt": {"modelA": "And suddenly all the water became full of other people and other people."} # required (dict)
114
- },
115
- {
116
- "src": "toto je pokračování stejného dokumentu",
117
- "tgt": {"modelA": "this is a continuation of the same document"}
118
- # Additional keys stored for analysis
119
- }
120
- ]
121
- ```
113
+
114
+ Each item has to have `src` (string) and `tgt` (dictionary from model names to strings, even for a single model evaluation).
115
+ For full Pearmut functionality (e.g. automatic statistical analysis), add `item_id` as well.
116
+ Any other keys that you add will simply be stored in the logs.
122
117
 
123
118
  Load campaigns and start the server:
124
119
  ```bash
@@ -130,7 +125,7 @@ pearmut run
130
125
 
131
126
  - **`task-based`**: Each user has predefined items
132
127
  - **`single-stream`**: All users draw from a shared pool (random assignment)
133
- - **`dynamic`**: work in progress ⚠️
128
+ - **`dynamic`**: Items are dynamically assigned based on current model performance (see [Dynamic Assignment](#dynamic-assignment))
134
129
 
135
130
  ## Advanced Features
136
131
 
@@ -223,7 +218,8 @@ The `validation` field is an array (one per candidate). Dashboard shows ✅/❌
223
218
  }
224
219
  ```
225
220
  The `score_greaterthan` field specifies the index of the candidate that must have a lower score than the current candidate.
226
- See [examples/tutorial_kway.json](examples/tutorial_kway.json).
221
+ See [examples/tutorial/esa_deen.json](examples/tutorial/esa_deen.json) for a mock campaign with a fully prepared ESA tutorial.
222
+ To use it, simply extract the `data` attribute and prefix it to each task in your campaign.
227
223
 
228
224
  ### Single-stream Assignment
229
225
 
@@ -243,6 +239,36 @@ All annotators draw from a shared pool with random assignment:
243
239
  }
244
240
  ```
245
241
 
242
+ ### Dynamic Assignment
243
+
244
+ The `dynamic` assignment type intelligently selects items based on current model performance to focus annotation effort on top-performing models using contrastive comparisons.
245
+ All items must contain outputs from all models for this assignment type to work properly.
246
+
247
+ ```python
248
+ {
249
+ "campaign_id": "my dynamic campaign",
250
+ "info": {
251
+ "assignment": "dynamic",
252
+ "protocol": "ESA",
253
+ "users": 10, # number of annotators
254
+ "dynamic_top": 3, # how many top models to consider (required)
255
+ "dynamic_contrastive_models": 2, # how many models to compare per item (optional, default: 1)
256
+ "dynamic_first": 5, # annotations per model before dynamic kicks in (optional, default: 5)
257
+ "dynamic_backoff": 0.1, # probability of uniform sampling (optional, default: 0)
258
+ },
259
+ "data": [...], # list of all items (shared among all annotators)
260
+ }
261
+ ```
262
+
263
+ **How it works:**
264
+ 1. Initial phase: Each model gets `dynamic_first` annotations with fully random contrastive evaluation
265
+ 2. Dynamic phase: After the initial phase, top `dynamic_top` models (by average score) are identified
266
+ 3. Contrastive evaluatoin: From the top N models, `dynamic_contrastive_models` models are randomly selected for each item
267
+ 4. Item prioritization: Items with the least annotations for the selected models are prioritized
268
+ 5. Backoff: With probability `dynamic_backoff`, uniform random selection is used instead to maintain exploration
269
+
270
+ This approach efficiently focuses annotation resources on distinguishing between the best-performing models while ensuring all models get adequate baseline coverage. The contrastive evaluation allows for direct comparison of multiple models simultaneously.
271
+ For an example, see [examples/dynamic.json](examples/dynamic.json).
246
272
 
247
273
  ### Pre-defined User IDs and Tokens
248
274
 
@@ -316,6 +342,10 @@ Completion tokens are shown at annotation end for verification (download correct
316
342
 
317
343
  When tokens are supplied, the dashboard will try to show model rankings based on the names in the dictionaries.
318
344
 
345
+ ### Custom Completion Messages
346
+
347
+ Customize the goodbye message shown to users when they complete all annotations using the `instructions_goodbye` field in campaign info. Supports arbitrary HTML for styling and formatting with variable replacement: `${TOKEN}` (completion token) and `${USER_ID}` (user ID). Default: `"If someone asks you for a token of completion, show them: ${TOKEN}"`.
348
+
319
349
  ## Terminology
320
350
 
321
351
  - **Campaign**: An annotation project that contains configuration, data, and user assignments. Each campaign has a unique identifier and is defined in a JSON file.
@@ -343,7 +373,7 @@ When tokens are supplied, the dashboard will try to show model rankings based on
343
373
  - **Assignment**: The method for distributing items to users:
344
374
  - **Task-based**: Each user has predefined items
345
375
  - **Single-stream**: Users draw from a shared pool with random assignment
346
- - **Dynamic**: Work in progress
376
+ - **Dynamic**: Items are intelligently assigned based on model performance to focus on top models
347
377
 
348
378
  ## Development
349
379
 
@@ -376,15 +406,14 @@ See [web/src/basic.ts](web/src/basic.ts) for example.
376
406
 
377
407
  Run on public server or tunnel local port to public IP/domain and run locally.
378
408
 
379
- ## Misc.
409
+ ## Citation
380
410
 
381
411
  If you use this work in your paper, please cite as following.
382
412
  ```bibtex
383
- @misc{zouhar2025pearmut,
384
- author={Vilém Zouhar},
385
- title={Pearmut: Platform for Evaluating and Reviewing of Multilingual Tasks},
386
- url={https://github.com/zouharvi/pearmut/},
387
- year={2026},
413
+ @misc{zouhar2026pearmut,
414
+ author = {Zouhar, Vilém},
415
+ title = {Pearmut: Human Evaluation of Translation Made Trivial},
416
+ year = {2026}
388
417
  }
389
418
  ```
390
419
 
@@ -10,11 +10,13 @@ pearmut.egg-info/top_level.txt
10
10
  server/app.py
11
11
  server/assignment.py
12
12
  server/cli.py
13
+ server/results_export.py
13
14
  server/utils.py
14
15
  server/static/basic.bundle.js
15
16
  server/static/basic.html
16
17
  server/static/dashboard.bundle.js
17
18
  server/static/dashboard.html
18
19
  server/static/favicon.svg
20
+ server/static/index.bundle.js
19
21
  server/static/index.html
20
22
  server/static/style.css
@@ -2,6 +2,7 @@ fastapi>=0.110.0
2
2
  uvicorn>=0.29.0
3
3
  wonderwords>=3.0.0
4
4
  psutil>=7.1.0
5
+ typst>=0.14.4
5
6
 
6
7
  [dev]
7
8
  pytest
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "pearmut"
3
- version = "0.3.2"
3
+ version = "1.0.0"
4
4
  description = "A tool for evaluation of model outputs, primarily MT."
5
5
  readme = "README.md"
6
6
  license = { text = "MIT" }
@@ -17,6 +17,7 @@ dependencies = [
17
17
  "uvicorn >= 0.29.0",
18
18
  "wonderwords >= 3.0.0",
19
19
  "psutil >= 7.1.0",
20
+ "typst >= 0.14.4",
20
21
  ]
21
22
 
22
23
  [project.optional-dependencies]
@@ -1,20 +1,23 @@
1
- import collections
2
1
  import json
3
2
  import os
4
- import statistics
5
3
  from typing import Any
6
4
 
7
5
  from fastapi import FastAPI, Query
8
6
  from fastapi.middleware.cors import CORSMiddleware
9
- from fastapi.responses import JSONResponse
7
+ from fastapi.responses import JSONResponse, Response
10
8
  from fastapi.staticfiles import StaticFiles
11
9
  from pydantic import BaseModel
12
10
 
13
11
  from .assignment import get_i_item, get_next_item, reset_task, update_progress
12
+ from .results_export import (
13
+ compute_model_scores,
14
+ generate_latex_table,
15
+ generate_pdf,
16
+ generate_typst_table,
17
+ )
14
18
  from .utils import (
15
19
  ROOT,
16
20
  check_validation_threshold,
17
- get_db_log,
18
21
  load_progress_data,
19
22
  save_db_payload,
20
23
  save_progress_data,
@@ -159,7 +162,7 @@ async def _dashboard_data(request: DashboardDataRequest):
159
162
 
160
163
  progress_new = {}
161
164
  assignment = tasks_data[campaign_id]["info"]["assignment"]
162
- if assignment not in ["task-based", "single-stream"]:
165
+ if assignment not in ["task-based", "single-stream", "dynamic"]:
163
166
  return JSONResponse(
164
167
  content="Unsupported campaign assignment type", status_code=400
165
168
  )
@@ -211,31 +214,47 @@ async def _dashboard_results(request: DashboardResultsRequest):
211
214
  if token != tasks_data[campaign_id]["token"]:
212
215
  return JSONResponse(content="Invalid token", status_code=400)
213
216
 
214
- # Compute model scores from annotations
215
- model_scores = collections.defaultdict(dict)
216
-
217
- # Iterate through all tasks to find items with 'models' field (basic template)
218
- log = get_db_log(campaign_id)
219
- for entry in log:
220
- if "item" not in entry or "annotation" not in entry:
221
- continue
222
- for item, annotation in zip(entry["item"], entry["annotation"]):
223
- for model, annotation in annotation.items():
224
- if "score" in annotation:
225
- model_scores[model][json.dumps(item)] = annotation["score"]
226
-
227
- results = [
228
- {
229
- "model": model,
230
- "score": statistics.mean(scores.values()),
231
- "count": len(scores),
232
- }
233
- for model, scores in model_scores.items()
234
- ]
235
- results.sort(key=lambda x: x["score"], reverse=True)
217
+ results = compute_model_scores(campaign_id)
236
218
  return JSONResponse(content=results, status_code=200)
237
219
 
238
220
 
221
+ @app.get("/export-results")
222
+ async def _export_results(
223
+ campaign_id: str = Query(),
224
+ token: str = Query(),
225
+ format: str = Query(),
226
+ ):
227
+ if campaign_id not in progress_data:
228
+ return JSONResponse(content="Unknown campaign ID", status_code=400)
229
+
230
+ # Check if token is valid
231
+ if token != tasks_data[campaign_id]["token"]:
232
+ return JSONResponse(content="Invalid token", status_code=400)
233
+
234
+ results = compute_model_scores(campaign_id)
235
+
236
+ if format == "typst":
237
+ content = generate_typst_table(results)
238
+ return Response(
239
+ content=content,
240
+ media_type="text/plain",
241
+ )
242
+ elif format == "latex":
243
+ content = generate_latex_table(results)
244
+ return Response(
245
+ content=content,
246
+ media_type="text/plain",
247
+ )
248
+ elif format == "pdf":
249
+ pdf_bytes = generate_pdf(results, campaign_id)
250
+ return Response(
251
+ content=pdf_bytes,
252
+ media_type="application/pdf",
253
+ )
254
+ else:
255
+ return JSONResponse(content="Invalid export format", status_code=400)
256
+
257
+
239
258
  class ResetTaskRequest(BaseModel):
240
259
  campaign_id: str
241
260
  user_id: str
@@ -284,7 +303,9 @@ async def _download_annotations(
284
303
  return JSONResponse(
285
304
  content=output,
286
305
  status_code=200,
287
- headers={"Content-Disposition": 'inline; filename="annotations.json"'},
306
+ headers={
307
+ "Content-Disposition": 'attachment; filename="annotations.json"',
308
+ },
288
309
  )
289
310
 
290
311
 
@@ -312,7 +333,9 @@ async def _download_progress(
312
333
  return JSONResponse(
313
334
  content=output,
314
335
  status_code=200,
315
- headers={"Content-Disposition": 'inline; filename="progress.json"'},
336
+ headers={
337
+ "Content-Disposition": 'attachment; filename="progress.json"',
338
+ },
316
339
  )
317
340
 
318
341