pandas-survey-toolkit 1.0.3__tar.gz → 1.0.9__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. pandas_survey_toolkit-1.0.9/.github/workflows/publish.yml +49 -0
  2. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/.gitignore +164 -164
  3. pandas_survey_toolkit-1.0.9/.readthedocs.yaml +17 -0
  4. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/LICENSE +21 -21
  5. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/PKG-INFO +76 -73
  6. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/README.md +37 -36
  7. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/docs/Makefile +20 -20
  8. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/docs/make.bat +35 -35
  9. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/docs/requirements.txt +4 -4
  10. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/docs/source/api/analytics.rst +6 -6
  11. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/docs/source/api/index.rst +8 -8
  12. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/docs/source/api/nlp.rst +6 -6
  13. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/docs/source/api/vis.rst +10 -10
  14. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/docs/source/conf.py +62 -62
  15. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/docs/source/examples/01 - extract sentiment.ipynb +910 -918
  16. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/docs/source/examples/02 - cluster comments.ipynb +1668 -1642
  17. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/docs/source/examples/03 - cluster questions.ipynb +1231 -1167
  18. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/docs/source/examples.rst +11 -11
  19. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/docs/source/index.rst +24 -24
  20. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/docs/source/installation.rst +11 -11
  21. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/docs/source/usage.rst +30 -30
  22. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/notebooks/keyword_graph.html +126 -126
  23. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/notebooks/keyword_sentiment_graph.html +126 -126
  24. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/notebooks/tutorial_cluster_comments.ipynb +1254 -1264
  25. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/notebooks/tutorial_cluster_likert.ipynb +545 -551
  26. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/pyproject.toml +22 -22
  27. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/requirements.txt +17 -17
  28. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/setup.cfg +4 -4
  29. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/setup.py +42 -39
  30. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/src/pandas_survey_toolkit/analytics.py +151 -113
  31. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/src/pandas_survey_toolkit/nlp.py +997 -824
  32. pandas_survey_toolkit-1.0.9/src/pandas_survey_toolkit/utils.py +121 -0
  33. pandas_survey_toolkit-1.0.9/src/pandas_survey_toolkit/vis.py +198 -0
  34. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/src/pandas_survey_toolkit.egg-info/PKG-INFO +76 -73
  35. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/src/pandas_survey_toolkit.egg-info/SOURCES.txt +1 -0
  36. pandas_survey_toolkit-1.0.9/src/pandas_survey_toolkit.egg-info/requires.txt +11 -0
  37. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/tests/context.py +4 -4
  38. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/tests/test_analytics.py +55 -55
  39. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/tests/test_nlp.py +228 -228
  40. pandas_survey_toolkit-1.0.3/.readthedocs.yaml +0 -15
  41. pandas_survey_toolkit-1.0.3/src/pandas_survey_toolkit/utils.py +0 -89
  42. pandas_survey_toolkit-1.0.3/src/pandas_survey_toolkit/vis.py +0 -760
  43. pandas_survey_toolkit-1.0.3/src/pandas_survey_toolkit.egg-info/requires.txt +0 -9
  44. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/MANIFEST.in +0 -0
  45. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/notebooks/austin_likert.xlsx +0 -0
  46. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/src/pandas_survey_toolkit/__init__.py +0 -0
  47. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/src/pandas_survey_toolkit.egg-info/dependency_links.txt +0 -0
  48. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/src/pandas_survey_toolkit.egg-info/top_level.txt +0 -0
  49. {pandas_survey_toolkit-1.0.3 → pandas_survey_toolkit-1.0.9}/tests/__init__.py +0 -0
@@ -0,0 +1,49 @@
1
+ name: Publish to PyPI
2
+
3
+ on:
4
+ push:
5
+ tags:
6
+ - 'v*' # Triggers on version tags like v1.0.0
7
+
8
+ jobs:
9
+ build:
10
+ name: Build distribution 📦
11
+ runs-on: ubuntu-latest
12
+ steps:
13
+ - uses: actions/checkout@v4
14
+ with:
15
+ fetch-depth: 0 # Important for setuptools_scm
16
+ - name: Set up Python
17
+ uses: actions/setup-python@v5
18
+ with:
19
+ python-version: "3.x"
20
+ - name: Install build dependencies
21
+ run: |
22
+ python -m pip install --upgrade pip
23
+ python -m pip install build
24
+ - name: Build package
25
+ run: python -m build
26
+ - name: Store the distribution packages
27
+ uses: actions/upload-artifact@v4
28
+ with:
29
+ name: python-package-distributions
30
+ path: dist/
31
+
32
+ publish-to-pypi:
33
+ name: Publish to PyPI
34
+ if: startsWith(github.ref, 'refs/tags/')
35
+ needs:
36
+ - build
37
+ runs-on: ubuntu-latest
38
+ environment:
39
+ name: pypi
40
+ steps:
41
+ - name: Download all the dists
42
+ uses: actions/download-artifact@v4
43
+ with:
44
+ name: python-package-distributions
45
+ path: dist/
46
+ - name: Publish distribution 📦 to PyPI
47
+ uses: pypa/gh-action-pypi-publish@release/v1
48
+ with:
49
+ password: ${{ secrets.PYPI_API_TOKEN }}
@@ -1,165 +1,165 @@
1
- # Byte-compiled / optimized / DLL files
2
- __pycache__/
3
- *.py[cod]
4
- *$py.class
5
-
6
- # C extensions
7
- *.so
8
-
9
- # Distribution / packaging
10
- .Python
11
- build/
12
- develop-eggs/
13
- dist/
14
- downloads/
15
- eggs/
16
- .eggs/
17
- lib/
18
- lib64/
19
- parts/
20
- sdist/
21
- var/
22
- wheels/
23
- share/python-wheels/
24
- *.egg-info/
25
- .installed.cfg
26
- *.egg
27
- MANIFEST
28
-
29
- # PyInstaller
30
- # Usually these files are written by a python script from a template
31
- # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
- *.manifest
33
- *.spec
34
-
35
- # Installer logs
36
- pip-log.txt
37
- pip-delete-this-directory.txt
38
-
39
- # Unit test / coverage reports
40
- htmlcov/
41
- .tox/
42
- .nox/
43
- .coverage
44
- .coverage.*
45
- .cache
46
- nosetests.xml
47
- coverage.xml
48
- *.cover
49
- *.py,cover
50
- .hypothesis/
51
- .pytest_cache/
52
- cover/
53
-
54
- # Translations
55
- *.mo
56
- *.pot
57
-
58
- # Django stuff:
59
- *.log
60
- local_settings.py
61
- db.sqlite3
62
- db.sqlite3-journal
63
-
64
- # Flask stuff:
65
- instance/
66
- .webassets-cache
67
-
68
- # Scrapy stuff:
69
- .scrapy
70
-
71
- # Sphinx documentation
72
- docs/_build/
73
-
74
- # PyBuilder
75
- .pybuilder/
76
- target/
77
-
78
- # Jupyter Notebook
79
- .ipynb_checkpoints
80
-
81
- # IPython
82
- profile_default/
83
- ipython_config.py
84
-
85
- # pyenv
86
- # For a library or package, you might want to ignore these files since the code is
87
- # intended to run in multiple environments; otherwise, check them in:
88
- # .python-version
89
-
90
- # pipenv
91
- # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
- # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
- # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
- # install all needed dependencies.
95
- #Pipfile.lock
96
-
97
- # poetry
98
- # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
- # This is especially recommended for binary packages to ensure reproducibility, and is more
100
- # commonly ignored for libraries.
101
- # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
- #poetry.lock
103
-
104
- # pdm
105
- # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
- #pdm.lock
107
- # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
- # in version control.
109
- # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
110
- .pdm.toml
111
- .pdm-python
112
- .pdm-build/
113
-
114
- # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
115
- __pypackages__/
116
-
117
- # Celery stuff
118
- celerybeat-schedule
119
- celerybeat.pid
120
-
121
- # SageMath parsed files
122
- *.sage.py
123
-
124
- # Environments
125
- .env
126
- .venv
127
- env/
128
- venv/
129
- ENV/
130
- env.bak/
131
- venv.bak/
132
- .vscode/
133
-
134
- # Spyder project settings
135
- .spyderproject
136
- .spyproject
137
-
138
- # Rope project settings
139
- .ropeproject
140
-
141
- # mkdocs documentation
142
- /site
143
-
144
- # mypy
145
- .mypy_cache/
146
- .dmypy.json
147
- dmypy.json
148
-
149
- # Pyre type checker
150
- .pyre/
151
-
152
- # pytype static type analyzer
153
- .pytype/
154
-
155
- # Cython debug symbols
156
- cython_debug/
157
-
158
- # PyCharm
159
- # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
160
- # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
161
- # and can be added to the global gitignore or merged into this file. For a more nuclear
162
- # option (not recommended) you can uncomment the following to ignore the entire idea folder.
163
- #.idea/
164
-
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
110
+ .pdm.toml
111
+ .pdm-python
112
+ .pdm-build/
113
+
114
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
115
+ __pypackages__/
116
+
117
+ # Celery stuff
118
+ celerybeat-schedule
119
+ celerybeat.pid
120
+
121
+ # SageMath parsed files
122
+ *.sage.py
123
+
124
+ # Environments
125
+ .env
126
+ .venv
127
+ env/
128
+ venv/
129
+ ENV/
130
+ env.bak/
131
+ venv.bak/
132
+ .vscode/
133
+
134
+ # Spyder project settings
135
+ .spyderproject
136
+ .spyproject
137
+
138
+ # Rope project settings
139
+ .ropeproject
140
+
141
+ # mkdocs documentation
142
+ /site
143
+
144
+ # mypy
145
+ .mypy_cache/
146
+ .dmypy.json
147
+ dmypy.json
148
+
149
+ # Pyre type checker
150
+ .pyre/
151
+
152
+ # pytype static type analyzer
153
+ .pytype/
154
+
155
+ # Cython debug symbols
156
+ cython_debug/
157
+
158
+ # PyCharm
159
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
160
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
161
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
162
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
163
+ #.idea/
164
+
165
165
  data/
@@ -0,0 +1,17 @@
1
+ build:
2
+ os: ubuntu-24.04
3
+ tools:
4
+ python: "3.11"
5
+ apt_packages:
6
+ - pandoc
7
+
8
+ sphinx:
9
+ configuration: docs/source/conf.py
10
+
11
+ python:
12
+ install:
13
+ - method: pip
14
+ path: .
15
+ - requirements: docs/requirements.txt
16
+ - requirements: requirements.txt
17
+
@@ -1,21 +1,21 @@
1
- MIT License
2
-
3
- Copyright (c) 2024 Andy7475
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Andy7475
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -1,73 +1,76 @@
1
- Metadata-Version: 2.4
2
- Name: pandas-survey-toolkit
3
- Version: 1.0.3
4
- Summary: A pandas extension for survey analysis
5
- Home-page: https://github.com/Andy7475/pandas-survey-toolkit
6
- Author: Andy Laing
7
- Author-email: andylaing5@gmail.com
8
- License: MIT
9
- Project-URL: Bug Tracker, https://github.com/Andy7475/pandas-survey-toolkit/issues
10
- Classifier: Programming Language :: Python :: 3
11
- Classifier: License :: OSI Approved :: MIT License
12
- Classifier: Operating System :: OS Independent
13
- Requires-Python: >=3.8
14
- Description-Content-Type: text/markdown
15
- License-File: LICENSE
16
- Requires-Dist: sentence-transformers>=3.0
17
- Requires-Dist: umap-learn>=0.5
18
- Requires-Dist: scikit-learn>=1.3
19
- Requires-Dist: pandas>=2.2.0
20
- Requires-Dist: numpy==1.24.3
21
- Requires-Dist: pandas-flavor>=0.6.0
22
- Requires-Dist: spacy>=3.8
23
- Requires-Dist: gensim>=4.3.3
24
- Requires-Dist: altair>=5.4.0
25
- Dynamic: author
26
- Dynamic: author-email
27
- Dynamic: classifier
28
- Dynamic: description
29
- Dynamic: description-content-type
30
- Dynamic: home-page
31
- Dynamic: license
32
- Dynamic: license-file
33
- Dynamic: project-url
34
- Dynamic: requires-dist
35
- Dynamic: requires-python
36
- Dynamic: summary
37
-
38
- # Faster and more Insightful analysis of survey results
39
-
40
- This package lets you apply advanced Natural Language Processing (NLP) and Machine Learning functions on survey results directly within a dataframe.
41
-
42
- It fills a gap where many NLP packages (like spacy, genism, sentence_transformers) are not designed for data in a spreadsheet (and therefore imported into a dataframe), and many of the people who are tasked with analysing survey results are often not data scientists.
43
-
44
- For example, to extract the sentiment you can just type:
45
-
46
- df.extract_sentiment(input_column="survey-comments")
47
-
48
- It will abstract away a lot of the data transformation pipeline to give you useful functionality with minimal code.
49
-
50
- # Examples
51
- See Read-the-docs for simple example notebooks. There are more detailed notebooks in the repo under notebooks/
52
-
53
- # Functionality
54
-
55
- ## Clustering comments
56
- It will group similar free-text comments together and assign a cluster ID. This is a useful step prior to any qualitative analysis.
57
-
58
- ## Sentiment Analysis
59
- It will measure the sentiment in terms or postive / neutral / negative and assign a score for each of those parts, picking the highest scoring as the most likely overall sentiment.
60
-
61
- ## Topic analysis
62
- Involves TFIDF and word co-occurence to gain some high level insights into the likely topics
63
-
64
- ## Clustering likert questions (or other responses)
65
- For strongly disagree ... neutral ... strong agree type responses, it will groups all those questions together to identity groups of respondents within your survey data. This can be much more useful than overall averages across the survey.
66
-
67
- ## Visualisation
68
- Functions to help make sense of the clusters and topics you have identified using the above functions (in development)
69
-
70
- ## Setup
71
- If sentence transformers throws dll errors: https://stackoverflow.com/questions/78484297/c-torch-lib-fbgemm-dll-or-one-of-its-dependencies/78794748#78794748
72
-
73
-
1
+ Metadata-Version: 2.4
2
+ Name: pandas-survey-toolkit
3
+ Version: 1.0.9
4
+ Summary: A pandas extension for survey analysis
5
+ Home-page: https://github.com/Andy7475/pandas-survey-toolkit
6
+ Author: Andy Laing
7
+ Author-email: andylaing5@gmail.com
8
+ License: MIT
9
+ Project-URL: Bug Tracker, https://github.com/Andy7475/pandas-survey-toolkit/issues
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: License :: OSI Approved :: MIT License
12
+ Classifier: Operating System :: OS Independent
13
+ Requires-Python: >=3.8
14
+ Description-Content-Type: text/markdown
15
+ License-File: LICENSE
16
+ Requires-Dist: torch<3.0,>=2.1.0
17
+ Requires-Dist: sentence-transformers<4.0,>=3.0
18
+ Requires-Dist: umap-learn<1.0,>=0.5
19
+ Requires-Dist: scikit-learn<2.0,>=1.3
20
+ Requires-Dist: pandas<3.0,>=2.0
21
+ Requires-Dist: pandas-flavor<1.0,>=0.6.0
22
+ Requires-Dist: spacy<4.0,>=3.0.0
23
+ Requires-Dist: gensim<5.0,>=4.0.0
24
+ Requires-Dist: altair<6.0,>=5.0.0
25
+ Requires-Dist: matplotlib<4.0,>=3.0.0
26
+ Requires-Dist: pyvis<1.0,>=0.3.2
27
+ Dynamic: author
28
+ Dynamic: author-email
29
+ Dynamic: classifier
30
+ Dynamic: description
31
+ Dynamic: description-content-type
32
+ Dynamic: home-page
33
+ Dynamic: license
34
+ Dynamic: license-file
35
+ Dynamic: project-url
36
+ Dynamic: requires-dist
37
+ Dynamic: requires-python
38
+ Dynamic: summary
39
+
40
+ # Faster and more Insightful analysis of survey results
41
+
42
+ This package lets you apply advanced Natural Language Processing (NLP) and Machine Learning functions on survey results directly within a dataframe.
43
+
44
+ It fills a gap where many NLP packages (like spacy, genism, sentence_transformers) are not designed for data in a spreadsheet (and therefore imported into a dataframe), and many of the people who are tasked with analysing survey results are often not data scientists.
45
+
46
+ For example, to extract the sentiment you can just type:
47
+
48
+ df.extract_sentiment(input_column="survey-comments")
49
+
50
+ It will abstract away a lot of the data transformation pipeline to give you useful functionality with minimal code.
51
+
52
+ # Examples
53
+
54
+ See [ReadTheDocs](https://pandas-survey-toolkit.readthedocs.io/en/latest/) for simple example notebooks. There are more detailed notebooks in the repo under notebooks/
55
+
56
+ # Functionality
57
+
58
+ ## Clustering comments
59
+ It will group similar free-text comments together and assign a cluster ID. This is a useful step prior to any qualitative analysis.
60
+
61
+ ## Sentiment Analysis
62
+ It will measure the sentiment in terms or postive / neutral / negative and assign a score for each of those parts, picking the highest scoring as the most likely overall sentiment.
63
+
64
+ ## Topic analysis
65
+ Involves TFIDF and word co-occurence to gain some high level insights into the likely topics
66
+
67
+ ## Clustering likert questions (or other responses)
68
+ For strongly disagree ... neutral ... strong agree type responses, it will groups all those questions together to identity groups of respondents within your survey data. This can be much more useful than overall averages across the survey.
69
+
70
+ ## Visualisation
71
+ Functions to help make sense of the clusters and topics you have identified using the above functions (in development)
72
+
73
+ ## Setup
74
+ If sentence transformers throws dll errors: https://stackoverflow.com/questions/78484297/c-torch-lib-fbgemm-dll-or-one-of-its-dependencies/78794748#78794748
75
+
76
+
@@ -1,36 +1,37 @@
1
- # Faster and more Insightful analysis of survey results
2
-
3
- This package lets you apply advanced Natural Language Processing (NLP) and Machine Learning functions on survey results directly within a dataframe.
4
-
5
- It fills a gap where many NLP packages (like spacy, genism, sentence_transformers) are not designed for data in a spreadsheet (and therefore imported into a dataframe), and many of the people who are tasked with analysing survey results are often not data scientists.
6
-
7
- For example, to extract the sentiment you can just type:
8
-
9
- df.extract_sentiment(input_column="survey-comments")
10
-
11
- It will abstract away a lot of the data transformation pipeline to give you useful functionality with minimal code.
12
-
13
- # Examples
14
- See Read-the-docs for simple example notebooks. There are more detailed notebooks in the repo under notebooks/
15
-
16
- # Functionality
17
-
18
- ## Clustering comments
19
- It will group similar free-text comments together and assign a cluster ID. This is a useful step prior to any qualitative analysis.
20
-
21
- ## Sentiment Analysis
22
- It will measure the sentiment in terms or postive / neutral / negative and assign a score for each of those parts, picking the highest scoring as the most likely overall sentiment.
23
-
24
- ## Topic analysis
25
- Involves TFIDF and word co-occurence to gain some high level insights into the likely topics
26
-
27
- ## Clustering likert questions (or other responses)
28
- For strongly disagree ... neutral ... strong agree type responses, it will groups all those questions together to identity groups of respondents within your survey data. This can be much more useful than overall averages across the survey.
29
-
30
- ## Visualisation
31
- Functions to help make sense of the clusters and topics you have identified using the above functions (in development)
32
-
33
- ## Setup
34
- If sentence transformers throws dll errors: https://stackoverflow.com/questions/78484297/c-torch-lib-fbgemm-dll-or-one-of-its-dependencies/78794748#78794748
35
-
36
-
1
+ # Faster and more Insightful analysis of survey results
2
+
3
+ This package lets you apply advanced Natural Language Processing (NLP) and Machine Learning functions on survey results directly within a dataframe.
4
+
5
+ It fills a gap where many NLP packages (like spacy, genism, sentence_transformers) are not designed for data in a spreadsheet (and therefore imported into a dataframe), and many of the people who are tasked with analysing survey results are often not data scientists.
6
+
7
+ For example, to extract the sentiment you can just type:
8
+
9
+ df.extract_sentiment(input_column="survey-comments")
10
+
11
+ It will abstract away a lot of the data transformation pipeline to give you useful functionality with minimal code.
12
+
13
+ # Examples
14
+
15
+ See [ReadTheDocs](https://pandas-survey-toolkit.readthedocs.io/en/latest/) for simple example notebooks. There are more detailed notebooks in the repo under notebooks/
16
+
17
+ # Functionality
18
+
19
+ ## Clustering comments
20
+ It will group similar free-text comments together and assign a cluster ID. This is a useful step prior to any qualitative analysis.
21
+
22
+ ## Sentiment Analysis
23
+ It will measure the sentiment in terms or postive / neutral / negative and assign a score for each of those parts, picking the highest scoring as the most likely overall sentiment.
24
+
25
+ ## Topic analysis
26
+ Involves TFIDF and word co-occurence to gain some high level insights into the likely topics
27
+
28
+ ## Clustering likert questions (or other responses)
29
+ For strongly disagree ... neutral ... strong agree type responses, it will groups all those questions together to identity groups of respondents within your survey data. This can be much more useful than overall averages across the survey.
30
+
31
+ ## Visualisation
32
+ Functions to help make sense of the clusters and topics you have identified using the above functions (in development)
33
+
34
+ ## Setup
35
+ If sentence transformers throws dll errors: https://stackoverflow.com/questions/78484297/c-torch-lib-fbgemm-dll-or-one-of-its-dependencies/78794748#78794748
36
+
37
+