oxymetag 1.1.0__tar.gz → 1.1.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (37) hide show
  1. {oxymetag-1.1.0/oxymetag.egg-info → oxymetag-1.1.1}/PKG-INFO +4 -5
  2. {oxymetag-1.1.0 → oxymetag-1.1.1}/README.md +3 -4
  3. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/__init__.py +1 -1
  4. {oxymetag-1.1.0 → oxymetag-1.1.1/oxymetag.egg-info}/PKG-INFO +4 -5
  5. {oxymetag-1.1.0 → oxymetag-1.1.1}/setup.py +1 -1
  6. {oxymetag-1.1.0 → oxymetag-1.1.1}/LICENSE +0 -0
  7. {oxymetag-1.1.0 → oxymetag-1.1.1}/MANIFEST.in +0 -0
  8. {oxymetag-1.1.0 → oxymetag-1.1.1}/environment.yml +0 -0
  9. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/cli.py +0 -0
  10. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/core.py +0 -0
  11. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/.DS_Store +0 -0
  12. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/Oxygen_pfams.csv +0 -0
  13. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/VTML20.out +0 -0
  14. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/nucleotide.out +0 -0
  15. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/oxygen_model.rds +0 -0
  16. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/oxymetag_pfams.dmnd +0 -0
  17. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/oxymetag_pfams_n117.dmnd +0 -0
  18. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/oxymetag_pfams_n117_db +0 -0
  19. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/oxymetag_pfams_n117_db.dbtype +0 -0
  20. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/oxymetag_pfams_n117_db.index +0 -0
  21. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/oxymetag_pfams_n117_db.lookup +0 -0
  22. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/oxymetag_pfams_n117_db.source +0 -0
  23. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/oxymetag_pfams_n117_db_h +0 -0
  24. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/oxymetag_pfams_n117_db_h.dbtype +0 -0
  25. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/oxymetag_pfams_n117_db_h.index +0 -0
  26. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/pfam_headers_table.txt +0 -0
  27. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/data/pfam_lengths.tsv +0 -0
  28. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/scripts/predict_oxygen.R +0 -0
  29. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag/utils.py +0 -0
  30. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag.egg-info/SOURCES.txt +0 -0
  31. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag.egg-info/dependency_links.txt +0 -0
  32. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag.egg-info/entry_points.txt +0 -0
  33. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag.egg-info/requires.txt +0 -0
  34. {oxymetag-1.1.0 → oxymetag-1.1.1}/oxymetag.egg-info/top_level.txt +0 -0
  35. {oxymetag-1.1.0 → oxymetag-1.1.1}/requirements.txt +0 -0
  36. {oxymetag-1.1.0 → oxymetag-1.1.1}/setup.cfg +0 -0
  37. {oxymetag-1.1.0 → oxymetag-1.1.1}/tests/__init__.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: oxymetag
3
- Version: 1.1.0
3
+ Version: 1.1.1
4
4
  Summary: Oxygen metabolism profiling from metagenomic data
5
5
  Home-page: https://github.com/cliffbueno/oxymetag
6
6
  Author: Clifton P. Bueno de Mesquita
@@ -25,9 +25,9 @@ Requires-Dist: numpy>=1.20.0
25
25
 
26
26
  Oxygen metabolism profiling from metagenomic data using Pfam domains. OxyMetaG predicts the percent relative abundance of aerobic bacteria in metagenomic reads based on the ratio of abundances of a set of 20 Pfams. It is recommended to use a HPC cluster or server rather than laptop to run OxyMetaG due to memory requirements, particularly for the step of extracting bacterial reads. If you already have bacterial reads, the "profile" and "predict" functions will run quickly on a laptop.
27
27
 
28
- If you are working with modern metagenomes, we recommend first quality filtering the raw reads with your method of choice and standard practices, and then extracting bacterial reads with Kraken2 and KrakenTools, which is performed with the OxyMetaG extract function. For profiling modern metagenomes, use DIAMOND blastx with the default `-m modern` mode for the predict step.
28
+ If you are working with modern metagenomes, we recommend first quality filtering the raw reads with your method of choice and standard practices, and then extracting bacterial reads with Kraken2 and KrakenTools, which is performed with the OxyMetaG extract function. For profiling modern metagenomes, use DIAMOND blastx with the default `-m diamond` mode for the profile step. You can also use `-m custom` in the predict step to test different hit cutoffs.
29
29
 
30
- If you are working with ancient metagenomes, we recommend first quality filtering the raw reads with your method of choice and standard practices, and then extracting bacterial reads with a workflow optimized for ancient DNA, such as the read mapping approach employed by De Sanctis et al. (2025). For profiling ancient metagenomes, use MMseqs2 with `-m mmseqs2` for the profile step and `-m ancient` for the predict step. The ancient mode uses parameters optimized for ancient DNA along with 97 decoy Pfams to reduce instances of false positives.
30
+ If you are working with ancient metagenomes, we recommend first quality filtering the raw reads with your method of choice and standard practices, and then extracting bacterial reads with a workflow optimized for ancient DNA, such as the read mapping approach employed by De Sanctis et al. (2025). For profiling ancient metagenomes, use MMseqs2 with `-m mmseqs2` for the profile step and `-m ancient` for the predict step. The ancient mode uses parameters optimized for ancient DNA along with 97 decoy Pfams to reduce instances of false positives. We are still working on optimizing the methods for ancient DNA, which will be released as v2.0.0.
31
31
 
32
32
  ## Installation
33
33
 
@@ -89,8 +89,7 @@ oxymetag predict -i diamond_output -o per_aerobe_predictions.tsv -m modern
89
89
  ### Ancient DNA workflow
90
90
 
91
91
  ```bash
92
- # 1. Extract bacterial reads (use ancient DNA-optimized workflow if available)
93
- # If using oxymetag extract, same as modern workflow
92
+ # 1. Extract bacterial reads with an ancient DNA-optimized workflow (not currently provided by OxyMetaG)
94
93
 
95
94
  # 2. Profile samples with MMseqs2
96
95
  oxymetag profile -i BactReads -o mmseqs_output -m mmseqs2 -t 8
@@ -2,9 +2,9 @@
2
2
 
3
3
  Oxygen metabolism profiling from metagenomic data using Pfam domains. OxyMetaG predicts the percent relative abundance of aerobic bacteria in metagenomic reads based on the ratio of abundances of a set of 20 Pfams. It is recommended to use a HPC cluster or server rather than laptop to run OxyMetaG due to memory requirements, particularly for the step of extracting bacterial reads. If you already have bacterial reads, the "profile" and "predict" functions will run quickly on a laptop.
4
4
 
5
- If you are working with modern metagenomes, we recommend first quality filtering the raw reads with your method of choice and standard practices, and then extracting bacterial reads with Kraken2 and KrakenTools, which is performed with the OxyMetaG extract function. For profiling modern metagenomes, use DIAMOND blastx with the default `-m modern` mode for the predict step.
5
+ If you are working with modern metagenomes, we recommend first quality filtering the raw reads with your method of choice and standard practices, and then extracting bacterial reads with Kraken2 and KrakenTools, which is performed with the OxyMetaG extract function. For profiling modern metagenomes, use DIAMOND blastx with the default `-m diamond` mode for the profile step. You can also use `-m custom` in the predict step to test different hit cutoffs.
6
6
 
7
- If you are working with ancient metagenomes, we recommend first quality filtering the raw reads with your method of choice and standard practices, and then extracting bacterial reads with a workflow optimized for ancient DNA, such as the read mapping approach employed by De Sanctis et al. (2025). For profiling ancient metagenomes, use MMseqs2 with `-m mmseqs2` for the profile step and `-m ancient` for the predict step. The ancient mode uses parameters optimized for ancient DNA along with 97 decoy Pfams to reduce instances of false positives.
7
+ If you are working with ancient metagenomes, we recommend first quality filtering the raw reads with your method of choice and standard practices, and then extracting bacterial reads with a workflow optimized for ancient DNA, such as the read mapping approach employed by De Sanctis et al. (2025). For profiling ancient metagenomes, use MMseqs2 with `-m mmseqs2` for the profile step and `-m ancient` for the predict step. The ancient mode uses parameters optimized for ancient DNA along with 97 decoy Pfams to reduce instances of false positives. We are still working on optimizing the methods for ancient DNA, which will be released as v2.0.0.
8
8
 
9
9
  ## Installation
10
10
 
@@ -66,8 +66,7 @@ oxymetag predict -i diamond_output -o per_aerobe_predictions.tsv -m modern
66
66
  ### Ancient DNA workflow
67
67
 
68
68
  ```bash
69
- # 1. Extract bacterial reads (use ancient DNA-optimized workflow if available)
70
- # If using oxymetag extract, same as modern workflow
69
+ # 1. Extract bacterial reads with an ancient DNA-optimized workflow (not currently provided by OxyMetaG)
71
70
 
72
71
  # 2. Profile samples with MMseqs2
73
72
  oxymetag profile -i BactReads -o mmseqs_output -m mmseqs2 -t 8
@@ -2,7 +2,7 @@
2
2
  OxyMetaG: Oxygen metabolism profiling from metagenomic data
3
3
  """
4
4
 
5
- __version__ = "1.1.0"
5
+ __version__ = "1.1.1"
6
6
  __author__ = "Clifton P. Bueno de Mesquita"
7
7
  __email__ = "cliff.buenodemesquita@colorado.edu"
8
8
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: oxymetag
3
- Version: 1.1.0
3
+ Version: 1.1.1
4
4
  Summary: Oxygen metabolism profiling from metagenomic data
5
5
  Home-page: https://github.com/cliffbueno/oxymetag
6
6
  Author: Clifton P. Bueno de Mesquita
@@ -25,9 +25,9 @@ Requires-Dist: numpy>=1.20.0
25
25
 
26
26
  Oxygen metabolism profiling from metagenomic data using Pfam domains. OxyMetaG predicts the percent relative abundance of aerobic bacteria in metagenomic reads based on the ratio of abundances of a set of 20 Pfams. It is recommended to use a HPC cluster or server rather than laptop to run OxyMetaG due to memory requirements, particularly for the step of extracting bacterial reads. If you already have bacterial reads, the "profile" and "predict" functions will run quickly on a laptop.
27
27
 
28
- If you are working with modern metagenomes, we recommend first quality filtering the raw reads with your method of choice and standard practices, and then extracting bacterial reads with Kraken2 and KrakenTools, which is performed with the OxyMetaG extract function. For profiling modern metagenomes, use DIAMOND blastx with the default `-m modern` mode for the predict step.
28
+ If you are working with modern metagenomes, we recommend first quality filtering the raw reads with your method of choice and standard practices, and then extracting bacterial reads with Kraken2 and KrakenTools, which is performed with the OxyMetaG extract function. For profiling modern metagenomes, use DIAMOND blastx with the default `-m diamond` mode for the profile step. You can also use `-m custom` in the predict step to test different hit cutoffs.
29
29
 
30
- If you are working with ancient metagenomes, we recommend first quality filtering the raw reads with your method of choice and standard practices, and then extracting bacterial reads with a workflow optimized for ancient DNA, such as the read mapping approach employed by De Sanctis et al. (2025). For profiling ancient metagenomes, use MMseqs2 with `-m mmseqs2` for the profile step and `-m ancient` for the predict step. The ancient mode uses parameters optimized for ancient DNA along with 97 decoy Pfams to reduce instances of false positives.
30
+ If you are working with ancient metagenomes, we recommend first quality filtering the raw reads with your method of choice and standard practices, and then extracting bacterial reads with a workflow optimized for ancient DNA, such as the read mapping approach employed by De Sanctis et al. (2025). For profiling ancient metagenomes, use MMseqs2 with `-m mmseqs2` for the profile step and `-m ancient` for the predict step. The ancient mode uses parameters optimized for ancient DNA along with 97 decoy Pfams to reduce instances of false positives. We are still working on optimizing the methods for ancient DNA, which will be released as v2.0.0.
31
31
 
32
32
  ## Installation
33
33
 
@@ -89,8 +89,7 @@ oxymetag predict -i diamond_output -o per_aerobe_predictions.tsv -m modern
89
89
  ### Ancient DNA workflow
90
90
 
91
91
  ```bash
92
- # 1. Extract bacterial reads (use ancient DNA-optimized workflow if available)
93
- # If using oxymetag extract, same as modern workflow
92
+ # 1. Extract bacterial reads with an ancient DNA-optimized workflow (not currently provided by OxyMetaG)
94
93
 
95
94
  # 2. Profile samples with MMseqs2
96
95
  oxymetag profile -i BactReads -o mmseqs_output -m mmseqs2 -t 8
@@ -8,7 +8,7 @@ with open("requirements.txt", "r", encoding="utf-8") as fh:
8
8
 
9
9
  setup(
10
10
  name="oxymetag",
11
- version="1.1.0",
11
+ version="1.1.1",
12
12
  author="Clifton P. Bueno de Mesquita",
13
13
  author_email="cliff.buenodemesquita@colorado.edu",
14
14
  description="Oxygen metabolism profiling from metagenomic data",
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes