owlplanner 2025.2.11__tar.gz → 2025.2.14__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- owlplanner-2025.2.14/.gitattributes +1 -0
- owlplanner-2025.2.14/INSTALL.md +52 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/PKG-INFO +32 -226
- owlplanner-2025.2.14/README.md +185 -0
- owlplanner-2025.2.14/USER_GUIDE.md +221 -0
- owlplanner-2025.2.14/docker/Dockerfile +30 -0
- owlplanner-2025.2.14/docker/README.md +69 -0
- owlplanner-2025.2.14/docker/docker-compose.yml +9 -0
- owlplanner-2025.2.14/docker/entrypoint.sh +35 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/owlplanner.cmd +1 -1
- owlplanner-2025.2.14/owlplanner.sh +10 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/pyproject.toml +1 -1
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/src/owlplanner/plan.py +1 -1
- owlplanner-2025.2.14/src/owlplanner/version.py +1 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/About_Owl.py +3 -2
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Create_Case.py +1 -1
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Documentation.py +24 -38
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Quick_Start.py +2 -1
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Settings.py +10 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/requirements.txt +1 -1
- owlplanner-2025.2.11/INSTALL.md +0 -32
- owlplanner-2025.2.11/README.md +0 -379
- owlplanner-2025.2.11/src/owlplanner/version.py +0 -1
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/.devcontainer/devcontainer.json +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/.flake8 +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/.github/workflows/github-actions-runtests.yml +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/.gitignore +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/LICENSE +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/AD-taxDef.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/AD-taxFree.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/AD-taxable.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/Hist_Bequest.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/Hist_Spending.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/MC-tutorial2a.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/MC-tutorial2b.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/OwlUI.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/allocations.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/owl.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/profile.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/ratesCorrelations.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/ratesPlot.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/savingsPlot.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/sourcesPlot.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/spendingPlot.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/taxIncomePlot.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/images/taxesPlot.png +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/owl.pdf +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/docs/owl.tex +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/examples/case_jack+jill.toml +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/examples/case_joe.toml +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/examples/case_john+sally.toml +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/examples/case_kim+sam-bequest.toml +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/examples/case_kim+sam-spending.toml +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/examples/jack+jill.xlsx +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/examples/joe.xlsx +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/examples/john+sally.xlsx +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/examples/template.xlsx +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/notebooks/john+sally.ipynb +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/notebooks/kim+sam.ipynb +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/notebooks/template.ipynb +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/notebooks/tutorial_1.ipynb +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/notebooks/tutorial_2.ipynb +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/notebooks/tutorial_3.ipynb +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/requirements.txt +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/src/owlplanner/__init__.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/src/owlplanner/abcapi.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/src/owlplanner/config.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/src/owlplanner/data/__init__.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/src/owlplanner/data/rates.csv +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/src/owlplanner/logging.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/src/owlplanner/progress.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/src/owlplanner/rates.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/src/owlplanner/tax2025.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/src/owlplanner/timelists.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/src/owlplanner/utils.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/test.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/tests/test_logger.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/tests/test_regressions.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/tests/test_repro.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/tests/test_toml_cases.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/tests/test_units.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Asset_Allocation.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Assets.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Fixed_Income.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Graphs.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Historical_Range.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Logs.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Monte_Carlo.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Optimization_Parameters.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Output_Files.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/README.md +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Rates_Selection.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Wages_And_Contributions.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/Worksheets.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/main.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/owlbridge.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/plots.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/progress.py +0 -0
- {owlplanner-2025.2.11 → owlplanner-2025.2.14}/ui/sskeys.py +0 -0
|
@@ -0,0 +1 @@
|
|
|
1
|
+
*.sh -crlf
|
|
@@ -0,0 +1,52 @@
|
|
|
1
|
+
## Installation steps
|
|
2
|
+
|
|
3
|
+
### To install and run a Docker image, please see these [instructions](docker/README.md).
|
|
4
|
+
|
|
5
|
+
### Requirements
|
|
6
|
+
These instructions are for installing the Python source code for Owl and run it on your computer.
|
|
7
|
+
You will need Python and `pip` installed on your computer for that purpose.
|
|
8
|
+
|
|
9
|
+
### Installation steps for end-users
|
|
10
|
+
You can install the Owl package directly from the [Python Package Index](http://pypi.org).
|
|
11
|
+
The following command will install the current version of owlplanner and all its dependencies:
|
|
12
|
+
```shell
|
|
13
|
+
pip install -r ui/requirements.txt
|
|
14
|
+
```
|
|
15
|
+
|
|
16
|
+
### Installation steps for developers
|
|
17
|
+
These instructions are command-line instructions.
|
|
18
|
+
You will need the latest version of Owl from GitHub.
|
|
19
|
+
```shell
|
|
20
|
+
git clone https://github.com/mdlacasse/Owl.git
|
|
21
|
+
|
|
22
|
+
```
|
|
23
|
+
Go (`cd`) to the directory where you installed Owl.
|
|
24
|
+
From the top directory of the source code run:
|
|
25
|
+
```shell
|
|
26
|
+
python -m build
|
|
27
|
+
pip install -e .
|
|
28
|
+
```
|
|
29
|
+
The -e instructs Python to load the live version in the current directory tree.
|
|
30
|
+
### Running the streamlit frontend
|
|
31
|
+
Running the Owl user interface locally from Windows:
|
|
32
|
+
```shell
|
|
33
|
+
./owlplanner.cmd
|
|
34
|
+
```
|
|
35
|
+
From Linux or MacOS:
|
|
36
|
+
```shell
|
|
37
|
+
./owlplanner.sh
|
|
38
|
+
```
|
|
39
|
+
|
|
40
|
+
### Publishing a version (for reference only)
|
|
41
|
+
Run checks before commit:
|
|
42
|
+
```
|
|
43
|
+
flake8 ui src tests
|
|
44
|
+
pytest
|
|
45
|
+
```
|
|
46
|
+
Edit version number in `src/owlplanner/version.py`, `ui/requirements.txt`, and in `pyproject.toml`. Then,
|
|
47
|
+
```shell
|
|
48
|
+
rm dist/*
|
|
49
|
+
python -m build
|
|
50
|
+
twine upload --repository [repo] dist/*
|
|
51
|
+
```
|
|
52
|
+
where [repo] is *testpypi* or *pypi* depending on the type of release.
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: owlplanner
|
|
3
|
-
Version: 2025.2.
|
|
3
|
+
Version: 2025.2.14
|
|
4
4
|
Summary: Owl: Retirement planner with great wisdom
|
|
5
5
|
Project-URL: HomePage, https://github.com/mdlacasse/owl
|
|
6
6
|
Project-URL: Repository, https://github.com/mdlacasse/owl
|
|
@@ -710,10 +710,16 @@ Description-Content-Type: text/markdown
|
|
|
710
710
|
|
|
711
711
|
-----
|
|
712
712
|
|
|
713
|
-
###
|
|
714
|
-
Owl is a planning tool that uses a linear programming optimization algorithm to provide guidance on retirement decisions.
|
|
713
|
+
### TL;DR
|
|
714
|
+
Owl is a planning tool that uses a linear programming optimization algorithm to provide guidance on retirement decisions. There are a few ways to run Owl.
|
|
715
715
|
|
|
716
|
-
|
|
716
|
+
- Run Owl directly on the Streamlit Community Server at [owlplanner.streamlit.app](https://owlplanner.streamlit.app).
|
|
717
|
+
|
|
718
|
+
- Run locally on your computer using a Docker image.
|
|
719
|
+
Follow these [instructions](docker/README.md) for this option.
|
|
720
|
+
|
|
721
|
+
- Run locally on your computer using Python code and libraries.
|
|
722
|
+
Follow there [instructions](INSTALL.md) to install Owl from the source code and run it on your computer.
|
|
717
723
|
|
|
718
724
|
-----
|
|
719
725
|
|
|
@@ -750,21 +756,21 @@ The algorithms in Owl rely on the open-source HiGHS linear programming solver. T
|
|
|
750
756
|
detailed description of the underlying
|
|
751
757
|
mathematical model can be found [here](https://raw.github.com/mdlacasse/Owl/main/docs/owl.pdf).
|
|
752
758
|
|
|
753
|
-
|
|
754
|
-
|
|
755
|
-
|
|
756
|
-
|
|
757
|
-
|
|
759
|
+
It is anticipated that most end users will use Owl through the graphical interface
|
|
760
|
+
either at [owlplanner.streamlit.app](https://owlplanner.streamlit.app)
|
|
761
|
+
or [installed](INSTALL.md) on their own computer.
|
|
762
|
+
The underlying Python package can also be used directly through Python scripts or a Jupyter Notebook
|
|
763
|
+
as described [here](USER_GUIDE.md).
|
|
758
764
|
|
|
759
765
|
Not every retirement decision strategy can be framed as an easy-to-solve optimization problem.
|
|
760
766
|
In particular, if one is interested in comparing different withdrawal strategies,
|
|
761
|
-
[FI Calc](ficalc.app) is
|
|
767
|
+
[FI Calc](ficalc.app) is an elegant application that addresses this need.
|
|
762
768
|
If, however, you also want to optimize spending, bequest, and Roth conversions, with
|
|
763
769
|
an approach also considering Medicare and federal income tax over the next few years,
|
|
764
770
|
then Owl is definitely a tool that can help guide your decisions.
|
|
765
771
|
|
|
766
772
|
--------------------------------------------------------------------------------------
|
|
767
|
-
##
|
|
773
|
+
## Capabilities
|
|
768
774
|
Owl can optimize for either maximum net spending under the constraint of a given bequest (which can be zero),
|
|
769
775
|
or maximize the after-tax value of a bequest under the constraint of a desired net spending profile,
|
|
770
776
|
and under the assumption of a heirs marginal tax rate.
|
|
@@ -805,16 +811,19 @@ bequest under the constraint of a desired net spending amount. Unlike discrete-e
|
|
|
805
811
|
simulators, Owl uses an optimization algorithm for every new scenario, which results in more
|
|
806
812
|
calculations being performed. As a result, the number of cases to be considered should be kept
|
|
807
813
|
to a reasonable number. For a few hundred cases, a few minutes of calculations can provide very good estimates
|
|
808
|
-
and reliable probability distributions.
|
|
809
|
-
|
|
810
|
-
|
|
814
|
+
and reliable probability distributions.
|
|
815
|
+
Optimizing each solution is more representative in the sense that optimal solutions
|
|
816
|
+
will naturally adjust to the return scenarios being considered.
|
|
817
|
+
This is more realistic as retirees would certainly re-evaluate
|
|
818
|
+
their expectations under severe market drops or gains.
|
|
819
|
+
This optimal approach provides a net benefit over event-based simulations,
|
|
811
820
|
which maintain a distribution strategy either fixed, or within guardrails for capturing the
|
|
812
821
|
retirees' reactions to the market.
|
|
813
822
|
|
|
814
823
|
Basic input parameters are given through function calls while optional additional time series can be read from
|
|
815
824
|
an Excel spreadsheet that contains future wages, contributions
|
|
816
|
-
to savings accounts, and planned *big-ticket items* such as the purchase of a lake house,
|
|
817
|
-
large gifts, or inheritance.
|
|
825
|
+
to savings accounts, and planned *big-ticket items* such as the purchase of a lake house,
|
|
826
|
+
the sale of a boat, large gifts, or inheritance.
|
|
818
827
|
|
|
819
828
|
Three types of savings accounts are considered: taxable, tax-deferred, and tax-exempt,
|
|
820
829
|
which are all tracked separately for married individuals. Asset transition to the surviving spouse
|
|
@@ -824,13 +833,12 @@ Tax status covers married filing jointly and single, depending on the number of
|
|
|
824
833
|
Medicare and IRMAA calculations are performed through a self-consistent loop on cash flow constraints. Future
|
|
825
834
|
values are simple projections of current values with the assumed inflation rates.
|
|
826
835
|
|
|
827
|
-
See one of the notebooks for a tutorial and representative user cases.
|
|
828
|
-
|
|
829
836
|
### Limitations
|
|
830
837
|
Owl is work in progress. At the current time:
|
|
831
838
|
- Only the US federal income tax is considered (and minimized through the optimization algorithm).
|
|
832
839
|
Head of household filing status has not been added but can easily be.
|
|
833
|
-
- Required minimum distributions are calculated, but tables for spouses more than 10 years apart are not included.
|
|
840
|
+
- Required minimum distributions are calculated, but tables for spouses more than 10 years apart are not included.
|
|
841
|
+
An error message will be generated for these cases.
|
|
834
842
|
- Social security rule for surviving spouse assumes that benefits were taken at full retirement age.
|
|
835
843
|
- Current version has no optimization of asset allocations between individuals and/or types of savings accounts.
|
|
836
844
|
If there is interest, that could be added in the future.
|
|
@@ -854,215 +862,12 @@ estate value too large for the savings assets to support, even with zero net spe
|
|
|
854
862
|
or maximizing the bequest subject to a net spending basis that is already too large for the savings
|
|
855
863
|
assets to support, even with no estate being left.
|
|
856
864
|
|
|
857
|
-
-----------------------------------------------------------------------
|
|
858
|
-
## An example of Owl's functionality
|
|
859
|
-
With about 10 lines of Python code, one can generate a full case study.
|
|
860
|
-
Here is a typical plan with some comments.
|
|
861
|
-
A plan starts with the names of the individuals, their birth years and life expectancies, and a name for the plan.
|
|
862
|
-
Dollar amounts are in k\$ (i.e. thousands) and ratios in percentage.
|
|
863
|
-
```python
|
|
864
|
-
import owlplanner as owl
|
|
865
|
-
# Jack was born in 1962 and expects to live to age 89. Jill was born in 1965 and hopes to live to age 92.
|
|
866
|
-
# Plan starts on Jan 1st of this year.
|
|
867
|
-
plan = owl.Plan(['Jack', 'Jill'], [1962, 1965], [89, 92], 'jack & jill - tutorial', startDate='01-01')
|
|
868
|
-
# Jack has $90.5k in a taxable investment account, $600.5k in a tax-deferred account and $70k from 2 tax-exempt accounts.
|
|
869
|
-
# Jill has $60.2k in her taxable account, $150k in a 403b, and $40k in a Roth IRA.
|
|
870
|
-
plan.setAccountBalances(taxable=[90.5, 60.2], taxDeferred=[600.5, 150], taxFree=[50.6 + 20, 40.8])
|
|
871
|
-
# An Excel file contains 2 tabs (one for Jill, one for Jack) describing anticipated wages and contributions.
|
|
872
|
-
plan.readContributions('jack+jill.xlsx')
|
|
873
|
-
# Jack will glide an s-curve for asset allocations from a 60/40 -> 70/30 stocks/bonds portfolio.
|
|
874
|
-
# Jill will do the same thing but is a bit more conservative from 50/50 -> 70/30 stocks/bonds portfolio.
|
|
875
|
-
plan.setInterpolationMethod('s-curve')
|
|
876
|
-
plan.setAllocationRatios('individual', generic=[[[60, 40, 0, 0], [70, 30, 0, 0]], [[50, 50, 0, 0], [70, 30, 0, 0]]])
|
|
877
|
-
# Jack has no pension, but Jill will receive $10k per year at 65 yo.
|
|
878
|
-
plan.setPension([0, 10.5], [65, 65])
|
|
879
|
-
# Jack anticipates receiving social security of $28.4k at age 70, and Jill $19.7k at age 62. All values are in today's $.
|
|
880
|
-
plan.setSocialSecurity([28.4, 19.7], [70, 62])
|
|
881
|
-
# Instead of a 'flat' profile, we select a 'smile' spending profile, with 60% needs for the survivor.
|
|
882
|
-
plan.setSpendingProfile('smile', 60)
|
|
883
|
-
# We will reproduce the historical sequence of returns starting in year 1969.
|
|
884
|
-
plan.setRates('historical', 1969)
|
|
885
|
-
# Jack and Jill want to leave a bequest of $500k, and limit Roth conversions to $100k per year.
|
|
886
|
-
# Jill's 403b plan does not support in-plan Roth conversions.
|
|
887
|
-
# We solve for the maximum net spending profile under these constraints.
|
|
888
|
-
plan.solve('maxSpending', options={'maxRothConversion': 100, 'bequest': 500, 'noRothConversions': 'Jill'})
|
|
889
|
-
```
|
|
890
|
-
The output can be seen using the following commands that display various plots of the decision variables in time.
|
|
891
|
-
```python
|
|
892
|
-
plan.showNetSpending()
|
|
893
|
-
plan.showGrossIncome()
|
|
894
|
-
plan.showTaxes()
|
|
895
|
-
plan.showSources()
|
|
896
|
-
plan.showAccounts()
|
|
897
|
-
plan.showAssetDistribution()
|
|
898
|
-
...
|
|
899
|
-
```
|
|
900
|
-
By default, all these plots are in nominal dollars. To get values in today's $, a call to
|
|
901
|
-
```python
|
|
902
|
-
plan.setDefaultPlots('today')
|
|
903
|
-
```
|
|
904
|
-
would change all graphs to report in today's dollars. Each plot can also override the default by setting the `value`
|
|
905
|
-
parameters to either *nominal* or *today*, such as in the following example, which shows the taxable ordinary
|
|
906
|
-
income over the duration of the plan,
|
|
907
|
-
along with inflation-adjusted extrapolated tax brackets. Notice how the optimized income is surfing
|
|
908
|
-
the boundaries of tax brackets.
|
|
909
|
-
```python
|
|
910
|
-
plan.showGrossIncome(value='nominal')
|
|
911
|
-
```
|
|
912
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/taxIncomePlot.png" width="75%">
|
|
913
|
-
|
|
914
|
-
The optimal spending profile is shown in the next plot (in today's dollars). Notice the drop
|
|
915
|
-
(recall we selected 60% survivor needs) at the passing of the first spouse.
|
|
916
|
-
```python
|
|
917
|
-
plan.showProfile('today')
|
|
918
|
-
```
|
|
919
|
-
|
|
920
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/spendingPlot.png" width="75%">
|
|
921
|
-
|
|
922
|
-
The following plot shows the account balances in nominal value for all savings accounts owned by Jack and Jill.
|
|
923
|
-
It was generated using
|
|
924
|
-
```python
|
|
925
|
-
plan.showAccounts(value='nominal')
|
|
926
|
-
```
|
|
927
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/savingsPlot.png" width="75%">
|
|
928
|
-
|
|
929
|
-
while this plot shows the complex cash flow from all sources, which was generated with
|
|
930
|
-
```python
|
|
931
|
-
plan.showSources(value='nominal')
|
|
932
|
-
```
|
|
933
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/sourcesPlot.png" width="75%">
|
|
934
|
-
|
|
935
|
-
For taxes, the following call will display Medicare premiums (including Part B IRMAA fees) and federal income tax
|
|
936
|
-
```python
|
|
937
|
-
plan.showTaxes(value='nominal')
|
|
938
|
-
```
|
|
939
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/taxesPlot.png" width="75%">
|
|
940
|
-
|
|
941
|
-
For the case at hand, recall that asset allocations were selected above through
|
|
942
|
-
|
|
943
|
-
```python
|
|
944
|
-
plan.setAllocationRatios('individual', generic=[[[60, 40, 0, 0], [70, 30, 0, 0]], [[50, 50, 0, 0], [70, 30, 0, 0]]])
|
|
945
|
-
```
|
|
946
|
-
gliding from a 60%/40% stocks/bonds portfolio to 70%/30% for Jack, and 50%/50% -> 70%/30% for Jill.
|
|
947
|
-
Assets distribution in all accounts in today's $ over time can be displayed from
|
|
948
|
-
```python
|
|
949
|
-
plan.showAssetDistribution(value='today')
|
|
950
|
-
```
|
|
951
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/AD-taxable.png" width="75%">
|
|
952
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/AD-taxDef.png" width="75%">
|
|
953
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/AD-taxFree.png" width="75%">
|
|
954
|
-
|
|
955
|
-
These plots are irregular because we used historical rates from 1969. The volatility of
|
|
956
|
-
the rates offers Roth conversion benefits which are exploited by the optimizer.
|
|
957
|
-
The rates used can be displayed by:
|
|
958
|
-
```python
|
|
959
|
-
plan.showRates()
|
|
960
|
-
```
|
|
961
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/ratesPlot.png" width="75%">
|
|
962
|
-
|
|
963
|
-
Values between brackets <> are the average values and volatility over the selected period.
|
|
964
|
-
|
|
965
|
-
For the statisticians, rates distributions and correlations between them can be shown using:
|
|
966
|
-
```python
|
|
967
|
-
plan.showRatesCorrelations()
|
|
968
|
-
```
|
|
969
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/ratesCorrelations.png" width="75%">
|
|
970
|
-
|
|
971
|
-
A short text summary of the outcome of the optimization can be displayed through using:
|
|
972
|
-
```python
|
|
973
|
-
plan.summary()
|
|
974
|
-
```
|
|
975
|
-
The output of the last command reports that if future rates are exactly like those observed
|
|
976
|
-
starting from 1969 and the following years, Jack and Jill could afford an annual spending of
|
|
977
|
-
\\$97k starting this year
|
|
978
|
-
(with a basis of \\$88.8k - the basis multiplies the profile which can vary over the course of the plan).
|
|
979
|
-
The summary also contains some details:
|
|
980
|
-
```
|
|
981
|
-
SUMMARY ================================================================
|
|
982
|
-
Net yearly spending basis in 2025$: $91,812
|
|
983
|
-
Net yearly spending for year 2025: $100,448
|
|
984
|
-
Net spending remaining in year 2025: $100,448
|
|
985
|
-
Total net spending in 2025$: $2,809,453 ($7,757,092 nominal)
|
|
986
|
-
Total Roth conversions in 2025$: $320,639 ($456,454 nominal)
|
|
987
|
-
Total income tax paid on ordinary income in 2025$: $247,788 ($469,522 nominal)
|
|
988
|
-
Total tax paid on gains and dividends in 2025$: $3,313 ($3,768 nominal)
|
|
989
|
-
Total Medicare premiums paid in 2025$: $117,660 ($343,388 nominal)
|
|
990
|
-
Spousal wealth transfer from Jack to Jill in year 2051 (nominal): taxable: $0 tax-def: $57,224 tax-free: $2,102,173
|
|
991
|
-
Sum of spousal bequests to Jill in year 2051 in 2025$: $499,341 ($2,159,397 nominal)
|
|
992
|
-
Post-tax non-spousal bequests from Jack in year 2051 (nominal): taxable: $0 tax-def: $0 tax-free: $0
|
|
993
|
-
Sum of post-tax non-spousal bequests from Jack in year 2051 in 2025$: $0 ($0 nominal)
|
|
994
|
-
Post-tax account values at the end of final plan year 2057 (nominal): taxable: $0 tax-def: $0 tax-free: $2,488,808
|
|
995
|
-
Total estate value at the end of final plan year 2057 in 2025$: $500,000 ($2,488,808 nominal)
|
|
996
|
-
Plan starting date: 01-01
|
|
997
|
-
Cumulative inflation factor from start date to end of plan: 4.98
|
|
998
|
-
Jack's 27-year life horizon: 2025 -> 2051
|
|
999
|
-
Jill's 33-year life horizon: 2025 -> 2057
|
|
1000
|
-
Plan name: jack & jill - tutorial
|
|
1001
|
-
Number of decision variables: 996
|
|
1002
|
-
Number of constraints: 867
|
|
1003
|
-
Case executed on: 2025-02-04 at 22:55:03
|
|
1004
|
-
------------------------------------------------------------------------
|
|
1005
|
-
```
|
|
1006
|
-
And an Excel workbook can be saved with all the detailed amounts over the years by using the following command:
|
|
1007
|
-
```python
|
|
1008
|
-
plan.saveWorkbook(overwrite=True)
|
|
1009
|
-
```
|
|
1010
|
-
For Monte Carlo simulations, the mean return rates, their volatility and covariance are specified
|
|
1011
|
-
and used to generate random scenarios. A histogram of outcomes is generated such as this one for Jack and Jill, which was generated
|
|
1012
|
-
by selecting *stochastic* rates and using
|
|
1013
|
-
```
|
|
1014
|
-
plan.runMC('maxSpending', ...)
|
|
1015
|
-
```
|
|
1016
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/MC-tutorial2a.png" width="75%">
|
|
1017
|
-
|
|
1018
|
-
Similarly, the next one was generated using
|
|
1019
|
-
```
|
|
1020
|
-
plan.runMC('maxBequest', ...)
|
|
1021
|
-
```
|
|
1022
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/MC-tutorial2b.png" width="75%">
|
|
1023
|
-
|
|
1024
|
-
|
|
1025
|
-
See tutorial notebooks [1](https://github.com/mdlacasse/Owl/blob/main/notebooks/tutorial_1.ipynb),
|
|
1026
|
-
[2](https://github.com/mdlacasse/Owl/blob/main/notebooks/tutorial_2.ipynb), and
|
|
1027
|
-
[3](https://github.com/mdlacasse/Owl/blob/main/notebooks/tutorial_3.ipynb) for more info.
|
|
1028
|
-
|
|
1029
|
-
|
|
1030
865
|
---------------------------------------------------------------
|
|
1031
|
-
##
|
|
1032
|
-
|
|
1033
|
-
If you have Python already installed on your computer, Owl can be installed as a package using the following commands:
|
|
1034
|
-
```shell
|
|
1035
|
-
python -m build
|
|
1036
|
-
pip install .
|
|
1037
|
-
```
|
|
1038
|
-
These commands need to run from the Owl directory where you downloaded Owl from GitHub either through git or a zip file.
|
|
1039
|
-
Pip will install all the required dependencies.
|
|
1040
|
-
|
|
1041
|
-
Owl relies on common Python modules such as NumPy, Pandas, SciPy, matplotlib, and Seaborn.
|
|
1042
|
-
The user front-end was built on Streamlit.
|
|
1043
|
-
Package `odfpy` might be required if one read files created by LibreOffice. Again, these dependencies
|
|
1044
|
-
will be installed by pip.
|
|
1045
|
-
|
|
1046
|
-
The simplest way to get started with Owl is to use the `streamlit` browser-based user interface
|
|
1047
|
-
that is started by the `owlplanner.cmd` script, which will start a user interface on your own browser.
|
|
1048
|
-
Here is a screenshot of one of the multiple tabs of the interface:
|
|
1049
|
-
|
|
1050
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/OwlUI.png" width="100%">
|
|
1051
|
-
|
|
1052
|
-
Alternatively, one can prefer using Owl from Jupyter notebooks. For that purpose, the `examples` directory
|
|
1053
|
-
contains many files as a tutorial. The Jupyter Notebook interface is a browser-based application for authoring documents that combines live-code with narrative text, equations and visualizations.
|
|
1054
|
-
Jupyter will run in your default web browser, from your computer to your browser, and therefore no data is ever transferred on the Internet
|
|
1055
|
-
(your computer, i.e., `localhost`, is the server).
|
|
1056
|
-
|
|
1057
|
-
For simulating your own realizations, use the files beginning with the word *template*.
|
|
1058
|
-
Make a copy and rename them with your own names while keeping the same extension.
|
|
1059
|
-
Then you'll be able to personalize a case with your own numbers and start experimenting with Owl.
|
|
1060
|
-
Notebooks with detailed explanations can be found in
|
|
1061
|
-
[tutorial_1](https://github.com/mdlacasse/Owl/blob/main/examples/tutorial_1.ipynb),
|
|
1062
|
-
[tutorial_2](https://github.com/mdlacasse/Owl/blob/main/examples/tutorial_1.ipynb), and
|
|
1063
|
-
[tutorial_3](https://github.com/mdlacasse/Owl/blob/main/examples/tutorial_2.ipynb).
|
|
866
|
+
## Documentation
|
|
1064
867
|
|
|
1065
|
-
|
|
868
|
+
- Documentation for the app user interface is available from the interface itself.
|
|
869
|
+
- Installation guide and software requirements can be found [here](INSTALL.md).
|
|
870
|
+
- User guide for the underlying library to be used in a Jupyter notebook can be found [here](USER_GUIDE.md).
|
|
1066
871
|
|
|
1067
872
|
---------------------------------------------------------------------
|
|
1068
873
|
|
|
@@ -1071,6 +876,7 @@ Finally, you will also need the capability to read and edit Excel files. One can
|
|
|
1071
876
|
- Image from [freepik](https://freepik.com)
|
|
1072
877
|
- Optimization solver from [HiGHS](https://highs.dev)
|
|
1073
878
|
- Streamlit Community Cloud [Streamlit](https://streamlit.io)
|
|
879
|
+
- Other contributors: Josh (noimjosh@gmail.com) for Docker image code
|
|
1074
880
|
|
|
1075
881
|
---------------------------------------------------------------------
|
|
1076
882
|
|
|
@@ -0,0 +1,185 @@
|
|
|
1
|
+
|
|
2
|
+
# Owl
|
|
3
|
+
|
|
4
|
+
## A retirement exploration tool based on linear programming
|
|
5
|
+
|
|
6
|
+
<img align=right src="https://raw.github.com/mdlacasse/Owl/main/docs/images/owl.png" width="250">
|
|
7
|
+
|
|
8
|
+
-----
|
|
9
|
+
|
|
10
|
+
### TL;DR
|
|
11
|
+
Owl is a planning tool that uses a linear programming optimization algorithm to provide guidance on retirement decisions. There are a few ways to run Owl.
|
|
12
|
+
|
|
13
|
+
- Run Owl directly on the Streamlit Community Server at [owlplanner.streamlit.app](https://owlplanner.streamlit.app).
|
|
14
|
+
|
|
15
|
+
- Run locally on your computer using a Docker image.
|
|
16
|
+
Follow these [instructions](docker/README.md) for this option.
|
|
17
|
+
|
|
18
|
+
- Run locally on your computer using Python code and libraries.
|
|
19
|
+
Follow there [instructions](INSTALL.md) to install Owl from the source code and run it on your computer.
|
|
20
|
+
|
|
21
|
+
-----
|
|
22
|
+
|
|
23
|
+
This package is a retirement modeling framework for exploring the sensitivity of retirement financial decisions.
|
|
24
|
+
Strictly speaking, it is not a planning tool, but more an environment for exploring *what if* scenarios.
|
|
25
|
+
It provides different realizations of a financial strategy through the rigorous
|
|
26
|
+
mathematical optimization of relevant decision variables. Two major objective goals can be set: either
|
|
27
|
+
maximize net spending, or after-tax bequest under various constraints.
|
|
28
|
+
Look at *Basic capabilities* below for more detail.
|
|
29
|
+
|
|
30
|
+
One can certainly have a savings plan, but due to the volatility of financial investments,
|
|
31
|
+
it is impossible to have a certain asset earnings plan. This does not mean one cannot make decisions.
|
|
32
|
+
These decisions need to be guided with an understanding of the sensitivity of the parameters.
|
|
33
|
+
This is exactly where this tool fits it. Given your savings capabilities and spending desires,
|
|
34
|
+
it can generate different future realizations of
|
|
35
|
+
your strategy under different market assumptions, helping to better understand your financial situation.
|
|
36
|
+
|
|
37
|
+
Disclaimers: I am not a financial planner. You make your own decisions.
|
|
38
|
+
This program comes with no guarantee. Use at your own risk.
|
|
39
|
+
|
|
40
|
+
More disclaimers: While some output of the code has been verified with other approaches,
|
|
41
|
+
this code is still under development and I cannot guarantee the accuracy of the results.
|
|
42
|
+
Use at your own risk.
|
|
43
|
+
|
|
44
|
+
-------------------------------------------------------------------------------------
|
|
45
|
+
## Purpose and vision
|
|
46
|
+
The goal of Owl is to create a free and open-source ecosystem that has cutting-edge optimization capabilities,
|
|
47
|
+
allowing for the next generation of Python-literate retirees to experiment with their own financial future
|
|
48
|
+
while providing a codebase where they can learn and contribute. There are and were
|
|
49
|
+
good retirement optimizers in the recent past, but the vast majority of them are either proprietary platforms
|
|
50
|
+
collecting your data, or academic papers that share the results without really sharing the details of
|
|
51
|
+
the underlying mathematical models.
|
|
52
|
+
The algorithms in Owl rely on the open-source HiGHS linear programming solver. The complete formulation and
|
|
53
|
+
detailed description of the underlying
|
|
54
|
+
mathematical model can be found [here](https://raw.github.com/mdlacasse/Owl/main/docs/owl.pdf).
|
|
55
|
+
|
|
56
|
+
It is anticipated that most end users will use Owl through the graphical interface
|
|
57
|
+
either at [owlplanner.streamlit.app](https://owlplanner.streamlit.app)
|
|
58
|
+
or [installed](INSTALL.md) on their own computer.
|
|
59
|
+
The underlying Python package can also be used directly through Python scripts or a Jupyter Notebook
|
|
60
|
+
as described [here](USER_GUIDE.md).
|
|
61
|
+
|
|
62
|
+
Not every retirement decision strategy can be framed as an easy-to-solve optimization problem.
|
|
63
|
+
In particular, if one is interested in comparing different withdrawal strategies,
|
|
64
|
+
[FI Calc](ficalc.app) is an elegant application that addresses this need.
|
|
65
|
+
If, however, you also want to optimize spending, bequest, and Roth conversions, with
|
|
66
|
+
an approach also considering Medicare and federal income tax over the next few years,
|
|
67
|
+
then Owl is definitely a tool that can help guide your decisions.
|
|
68
|
+
|
|
69
|
+
--------------------------------------------------------------------------------------
|
|
70
|
+
## Capabilities
|
|
71
|
+
Owl can optimize for either maximum net spending under the constraint of a given bequest (which can be zero),
|
|
72
|
+
or maximize the after-tax value of a bequest under the constraint of a desired net spending profile,
|
|
73
|
+
and under the assumption of a heirs marginal tax rate.
|
|
74
|
+
Roth conversions are also considered, subject to an optional maximum conversion amount,
|
|
75
|
+
and optimized to suit the goals of the selected objective function.
|
|
76
|
+
All calculations are indexed for inflation, which is either provided as a fixed rate,
|
|
77
|
+
or through historical values, as are all other rates used for the calculations.
|
|
78
|
+
These rates can be used for backtesting different scenarios by choosing
|
|
79
|
+
*historical* rates, or by choosing *historical average* rates over a historical year range,
|
|
80
|
+
or what I coined "*histochastic*" rates which are
|
|
81
|
+
generated using the statistical distribution of observed historical rates.
|
|
82
|
+
|
|
83
|
+
Portfolios available for experimenting include assets from the S&P 500, Corporate Bonds Baa, Treasury 10-y Notes,
|
|
84
|
+
and cash assets assumed to just follow inflation which is represented by the Consumer Price Index.
|
|
85
|
+
Other asset classes can easily be added, but would add complexity while only providing diminishing insights.
|
|
86
|
+
Historical data used are from
|
|
87
|
+
[Aswath Damodaran](https://pages.stern.nyu.edu/~adamodar/) at the Stern School of Business.
|
|
88
|
+
Asset allocations are selected for the duration of the plan, and these can glide linearly
|
|
89
|
+
or along a configurable s-curve from now to the last year of the plan.
|
|
90
|
+
|
|
91
|
+
Spending profiles are adjusted for inflation, and so are all other indexable quantities. Proflies can be
|
|
92
|
+
flat or follow a *smile* curve which is also adjustable through two simple parameters.
|
|
93
|
+
|
|
94
|
+
Available rates are from 1928 to last year and can be used to test historical performance.
|
|
95
|
+
Fixed rates can also be provided, as well as *histochastic* rates, which are generated using
|
|
96
|
+
the statistical characteristics (means and covariance matrix) of
|
|
97
|
+
a selected historical year range. Pure *stochastic* rates can also be generated
|
|
98
|
+
if the user provides means, volatility (expressed as standard deviation), and optionally
|
|
99
|
+
the correlations between the different assets return rates provided as a matrix, or a list of
|
|
100
|
+
the off-diagonal elements (see the notebook tutorial for details).
|
|
101
|
+
Average rates calculated over a historical data period can also be chosen.
|
|
102
|
+
|
|
103
|
+
Monte Carlo simulations capabilities are included and provide a probability of success and a histogram of
|
|
104
|
+
outcomes. These simulations can be used for either determining the probability distribution of the
|
|
105
|
+
maximum net spending amount under
|
|
106
|
+
the constraint of a desired bequest, or the probability distribution of the maximum
|
|
107
|
+
bequest under the constraint of a desired net spending amount. Unlike discrete-event
|
|
108
|
+
simulators, Owl uses an optimization algorithm for every new scenario, which results in more
|
|
109
|
+
calculations being performed. As a result, the number of cases to be considered should be kept
|
|
110
|
+
to a reasonable number. For a few hundred cases, a few minutes of calculations can provide very good estimates
|
|
111
|
+
and reliable probability distributions.
|
|
112
|
+
Optimizing each solution is more representative in the sense that optimal solutions
|
|
113
|
+
will naturally adjust to the return scenarios being considered.
|
|
114
|
+
This is more realistic as retirees would certainly re-evaluate
|
|
115
|
+
their expectations under severe market drops or gains.
|
|
116
|
+
This optimal approach provides a net benefit over event-based simulations,
|
|
117
|
+
which maintain a distribution strategy either fixed, or within guardrails for capturing the
|
|
118
|
+
retirees' reactions to the market.
|
|
119
|
+
|
|
120
|
+
Basic input parameters are given through function calls while optional additional time series can be read from
|
|
121
|
+
an Excel spreadsheet that contains future wages, contributions
|
|
122
|
+
to savings accounts, and planned *big-ticket items* such as the purchase of a lake house,
|
|
123
|
+
the sale of a boat, large gifts, or inheritance.
|
|
124
|
+
|
|
125
|
+
Three types of savings accounts are considered: taxable, tax-deferred, and tax-exempt,
|
|
126
|
+
which are all tracked separately for married individuals. Asset transition to the surviving spouse
|
|
127
|
+
is done according to beneficiary fractions for each account type.
|
|
128
|
+
Tax status covers married filing jointly and single, depending on the number of individuals reported.
|
|
129
|
+
|
|
130
|
+
Medicare and IRMAA calculations are performed through a self-consistent loop on cash flow constraints. Future
|
|
131
|
+
values are simple projections of current values with the assumed inflation rates.
|
|
132
|
+
|
|
133
|
+
### Limitations
|
|
134
|
+
Owl is work in progress. At the current time:
|
|
135
|
+
- Only the US federal income tax is considered (and minimized through the optimization algorithm).
|
|
136
|
+
Head of household filing status has not been added but can easily be.
|
|
137
|
+
- Required minimum distributions are calculated, but tables for spouses more than 10 years apart are not included.
|
|
138
|
+
An error message will be generated for these cases.
|
|
139
|
+
- Social security rule for surviving spouse assumes that benefits were taken at full retirement age.
|
|
140
|
+
- Current version has no optimization of asset allocations between individuals and/or types of savings accounts.
|
|
141
|
+
If there is interest, that could be added in the future.
|
|
142
|
+
- In the current implementation, social securiy is always taxed at 85%.
|
|
143
|
+
- Medicare calculations are done through a self-consistent loop.
|
|
144
|
+
This means that the Medicare premiums are calculated after an initial solution is generated,
|
|
145
|
+
and then a new solution is re-generated with these premiums as a constraint.
|
|
146
|
+
In some situations, when the income (MAGI) is near an IRMAA bracket, oscillatory solutions can arise.
|
|
147
|
+
Owl will detect these cases and inform the user.
|
|
148
|
+
While the solutions generated are very close to one another, Owl will pick the smallest one
|
|
149
|
+
for being conservative.
|
|
150
|
+
- Part D is not included in the IRMAA calculations. Being considerably more, only Part B is taken into account.
|
|
151
|
+
- Future tax brackets are pure speculations derived from the little we know now and projected to the next 30 years. Your guesses are as good as mine.
|
|
152
|
+
Having a knob to adjust future rates might be an interesting feature to add for measuring the impact on Roth conversions.
|
|
153
|
+
|
|
154
|
+
The solution from an optimization algorithm has only two states: feasible and infeasible.
|
|
155
|
+
Therefore, unlike event-driven simulators that can tell you that your distribution strategy runs
|
|
156
|
+
out of money in year 20, an optimization-based solver can only tell you that a solution does or does not
|
|
157
|
+
exist for the plan being considered. Examples of infeasible solutions include requesting a bequeathed
|
|
158
|
+
estate value too large for the savings assets to support, even with zero net spending basis,
|
|
159
|
+
or maximizing the bequest subject to a net spending basis that is already too large for the savings
|
|
160
|
+
assets to support, even with no estate being left.
|
|
161
|
+
|
|
162
|
+
---------------------------------------------------------------
|
|
163
|
+
## Documentation
|
|
164
|
+
|
|
165
|
+
- Documentation for the app user interface is available from the interface itself.
|
|
166
|
+
- Installation guide and software requirements can be found [here](INSTALL.md).
|
|
167
|
+
- User guide for the underlying library to be used in a Jupyter notebook can be found [here](USER_GUIDE.md).
|
|
168
|
+
|
|
169
|
+
---------------------------------------------------------------------
|
|
170
|
+
|
|
171
|
+
## Credits
|
|
172
|
+
- Historical rates from [Aswath Damodaran](https://pages.stern.nyu.edu/~adamodar/)
|
|
173
|
+
- Image from [freepik](https://freepik.com)
|
|
174
|
+
- Optimization solver from [HiGHS](https://highs.dev)
|
|
175
|
+
- Streamlit Community Cloud [Streamlit](https://streamlit.io)
|
|
176
|
+
- Other contributors: Josh (noimjosh@gmail.com) for Docker image code
|
|
177
|
+
|
|
178
|
+
---------------------------------------------------------------------
|
|
179
|
+
|
|
180
|
+
Copyright © 2024 - Martin-D. Lacasse
|
|
181
|
+
|
|
182
|
+
Disclaimers: I am not a financial planner. You make your own decisions. This program comes with no guarantee. Use at your own risk.
|
|
183
|
+
|
|
184
|
+
--------------------------------------------------------
|
|
185
|
+
|