optimum-rbln 0.8.4a6__tar.gz → 0.8.4a8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of optimum-rbln might be problematic. Click here for more details.
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/PKG-INFO +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/__version__.py +2 -2
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/configuration_utils.py +41 -3
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +3 -3
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +2 -2
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +7 -2
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +7 -2
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +2 -2
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +3 -3
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/modeling_diffusers.py +7 -3
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +31 -3
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +28 -3
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/models/autoencoders/vq_model.py +31 -3
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/models/transformers/prior_transformer.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +9 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/models/transformers/transformer_sd3.py +9 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/models/unets/unet_2d_condition.py +6 -3
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/auto_pipeline.py +45 -8
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/modeling.py +17 -13
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/modeling_base.py +11 -9
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/configuration_generic.py +3 -3
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/modeling_generic.py +1 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/auto/auto_factory.py +67 -7
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/auto/modeling_auto.py +31 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +5 -6
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/clip/configuration_clip.py +7 -4
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/clip/modeling_clip.py +23 -4
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/colpali/configuration_colpali.py +2 -2
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/colpali/modeling_colpali.py +38 -6
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +23 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/exaone/modeling_exaone.py +42 -4
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +17 -2
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +7 -8
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +12 -6
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +6 -2
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/llava/configuration_llava.py +6 -2
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/llava/modeling_llava.py +1 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +2 -2
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +57 -78
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/midm/modeling_midm.py +42 -4
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +18 -3
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +2 -2
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +2 -2
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/siglip/configuration_siglip.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/swin/configuration_swin.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +1 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/whisper/configuration_whisper.py +1 -1
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/whisper/modeling_whisper.py +1 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/ISSUE_TEMPLATE/config.yml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/ISSUE_TEMPLATE/model_request.md +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/pull_request_template.md +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/renovate.json +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/scripts/auto_code_review.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/scripts/validate_docstrings.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/scripts/validate_pr_checklist.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/version.yaml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/workflows/auto_code_review.yml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/workflows/auto_dependency_bot.yml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/workflows/check_code_quality.yml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/workflows/deploy-on-tag.yaml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/workflows/deploy.yaml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/workflows/pr-title-check.yaml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/workflows/pr_checklist_validator.yml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/workflows/rbln_check_compiler.yaml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/workflows/rbln_dispatch_pytest.yaml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/workflows/rbln_optimum_inference_test.yaml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/workflows/rbln_optimum_pytest.yaml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/workflows/rbln_scheduled_test.yaml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/workflows/rbln_trigger_on_pr.yaml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.github/workflows/test-docstrings.yml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/.gitignore +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/CODE_OF_CONDUCT.md +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/CONTRIBUTING.md +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/LICENSE +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/README.md +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/assets/rbln_logo.png +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/advanced/custom_class.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/audio-classification/run_ast_audio_classification.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/depth-estimation/run_dpt.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/image-classification/run_image_classification.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/image-classification/run_vit_image_classification.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/image-to-text/run_idefics3.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/image-to-text/run_llava_next_image_to_text.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/kandinsky2_2/run_kandinsky2_2.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/kandinsky2_2/run_kandinsky2_2_combined.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/kandinsky2_2/run_kandinsky2_2_img2img.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/kandinsky2_2/run_kandinsky2_2_img2img_combined.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/kandinsky2_2/run_kandinsky2_2_inpaint.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/kandinsky2_2/run_kandinsky2_2_inpaint_combined.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/kandinsky2_2/run_kandinsky2_2_prior_interpolate.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/question-answering/run_question_answering.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/speech-recognition/run_wav2vec2.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/speech-recognition/run_whisper.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/stable-diffusion/run_stable_diffusion.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/stable-diffusion/run_stable_diffusion_controlnet.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/stable-diffusion/run_stable_diffusion_img2img.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/stable-diffusion/run_stable_diffusion_img2img_controlnet.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/stable-diffusion/run_stable_diffusion_inpaint.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/stable-diffusion/run_stable_diffusion_lora.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/stable-diffusion/run_stable_diffusion_multicontrolnet.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/text-classification/run_bge_m3_text_classification.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/text-classification/run_bge_reranker_v2_m3_text_classification.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/text-classification/run_secureBERT.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/text-classification/run_t5_classification.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/text-classification/run_twitter_roberta_text_classification.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/text2text-generation/run_bart_text2text_generation.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/text2text-generation/run_llama_peft.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/text2text-generation/run_llama_text2text_generation.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/examples/time-series-forecasting/run_time_series_forecasting.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/pyproject.toml +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/scripts/uv-lock.sh +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/scripts/uv-sync.sh +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/models/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/models/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/models/autoencoders/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/models/autoencoders/vae.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/models/controlnet.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/models/transformers/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/models/unets/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/cosmos/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/ops/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/ops/attn.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/ops/flash_attn.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/ops/kv_cache_update.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/ops/linear.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/ops/sliding_window_attn.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/modeling_attention_utils.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/modeling_outputs.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/modeling_rope_utils.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/auto/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/bart/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/bart/bart_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/bart/configuration_bart.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/bart/modeling_bart.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/bert/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/bert/bert_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/bert/configuration_bert.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/bert/modeling_bert.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/blip_2/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/clip/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/colpali/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/colpali/colpali_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/decoderonly/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/depth_anything/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/distilbert/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/dpt/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/dpt/configuration_dpt.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/exaone/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/exaone/configuration_exaone.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/exaone/exaone_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/gemma/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/gemma/configuration_gemma.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/gemma/gemma_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/gemma/modeling_gemma.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/gemma3/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/gpt2/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/grounding_dino/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/idefics3/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/llama/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/llama/configuration_llama.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/llama/llama_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/llama/modeling_llama.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/llava/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/llava_next/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/midm/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/midm/configuration_midm.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/midm/midm_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/mistral/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/mistral/configuration_mistral.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/mistral/mistral_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/mistral/modeling_mistral.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/opt/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/opt/configuration_opt.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/opt/modeling_opt.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/opt/opt_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/pegasus/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/phi/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/phi/configuration_phi.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/phi/modeling_phi.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/phi/phi_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/pixtral/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen2/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen2_vl/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen3/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/resnet/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/resnet/configuration_resnet.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/resnet/modeling_resnet.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/roberta/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/roberta/configuration_roberta.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/roberta/modeling_roberta.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/seq2seq/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/siglip/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/siglip/modeling_siglip.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/swin/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/swin/modeling_swin.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/t5/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/t5/configuration_t5.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/t5/modeling_t5.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/t5/t5_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/time_series_transformer/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/vit/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/vit/configuration_vit.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/vit/modeling_vit.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/wav2vec2/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/whisper/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/whisper/generation_whisper.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/whisper/whisper_architecture.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/xlm_roberta/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/utils/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/transformers/utils/rbln_quantization.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/utils/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/utils/decorator_utils.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/utils/depreacate_utils.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/utils/hub.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/utils/import_utils.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/utils/logging.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/utils/model_utils.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/utils/runtime_utils.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/utils/save_utils.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/utils/submodule.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/tests/__init__.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/tests/psnr.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/tests/requirements_sdxl.txt +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/tests/run_stable_diffusion_xl_base.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/tests/test_base.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/tests/test_config.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/tests/test_diffusers.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/tests/test_llm.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/tests/test_transformers.py +0 -0
- {optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/uv.lock +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: optimum-rbln
|
|
3
|
-
Version: 0.8.
|
|
3
|
+
Version: 0.8.4a8
|
|
4
4
|
Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
|
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
|
|
|
28
28
|
commit_id: COMMIT_ID
|
|
29
29
|
__commit_id__: COMMIT_ID
|
|
30
30
|
|
|
31
|
-
__version__ = version = '0.8.
|
|
32
|
-
__version_tuple__ = version_tuple = (0, 8, 4, '
|
|
31
|
+
__version__ = version = '0.8.4a8'
|
|
32
|
+
__version_tuple__ = version_tuple = (0, 8, 4, 'a8')
|
|
33
33
|
|
|
34
34
|
__commit_id__ = commit_id = None
|
|
@@ -185,6 +185,15 @@ def load_config(path: str) -> Tuple[Type["RBLNModelConfig"], Dict[str, Any]]:
|
|
|
185
185
|
|
|
186
186
|
|
|
187
187
|
class RBLNAutoConfig:
|
|
188
|
+
"""
|
|
189
|
+
Resolver and factory for RBLN model configurations.
|
|
190
|
+
|
|
191
|
+
This class selects the concrete `RBLNModelConfig` subclass, validates the
|
|
192
|
+
provided data, and returns a frozen configuration object that serves as the
|
|
193
|
+
single source of truth during export and load. It does not define the schema
|
|
194
|
+
or control model behavior.
|
|
195
|
+
"""
|
|
196
|
+
|
|
188
197
|
def __new__(cls, **kwargs):
|
|
189
198
|
cls_name = kwargs.get("cls_name")
|
|
190
199
|
if cls_name is None:
|
|
@@ -194,6 +203,33 @@ class RBLNAutoConfig:
|
|
|
194
203
|
|
|
195
204
|
@staticmethod
|
|
196
205
|
def load_from_dict(config_dict: Dict[str, Any]) -> "RBLNModelConfig":
|
|
206
|
+
"""
|
|
207
|
+
Build a `RBLNModelConfig` from a plain dictionary.
|
|
208
|
+
|
|
209
|
+
The dictionary must contain `cls_name`, which identifies the concrete
|
|
210
|
+
configuration class to instantiate. All other keys are forwarded to the
|
|
211
|
+
target class initializer. This method does not mutate `config_dict`.
|
|
212
|
+
|
|
213
|
+
Args:
|
|
214
|
+
config_dict: Mapping typically created by `json.load` or `yaml.safe_load`.
|
|
215
|
+
For example, the parsed contents of `rbln_config.json`.
|
|
216
|
+
|
|
217
|
+
Returns:
|
|
218
|
+
RBLNModelConfig: A configuration instance. The specific subclass is
|
|
219
|
+
selected by `config_dict["cls_name"]`.
|
|
220
|
+
|
|
221
|
+
Raises:
|
|
222
|
+
ValueError: If `cls_name` is missing.
|
|
223
|
+
Exception: Any error raised by the target config class during init.
|
|
224
|
+
|
|
225
|
+
Examples:
|
|
226
|
+
>>> data = {
|
|
227
|
+
... "cls_name": "RBLNLlamaForCausalLMConfig",
|
|
228
|
+
... "create_runtimes": False,
|
|
229
|
+
... "tensor_parallel_size": 4
|
|
230
|
+
... }
|
|
231
|
+
>>> cfg = RBLNAutoConfig.load_from_dict(data)
|
|
232
|
+
"""
|
|
197
233
|
cls_name = config_dict.get("cls_name")
|
|
198
234
|
if cls_name is None:
|
|
199
235
|
raise ValueError("`cls_name` is required.")
|
|
@@ -206,7 +242,8 @@ class RBLNAutoConfig:
|
|
|
206
242
|
Register a new configuration for this class.
|
|
207
243
|
|
|
208
244
|
Args:
|
|
209
|
-
config (
|
|
245
|
+
config (RBLNModelConfig): The config to register.
|
|
246
|
+
exist_ok (bool): Whether to allow registering an already registered model.
|
|
210
247
|
"""
|
|
211
248
|
if not issubclass(config, RBLNModelConfig):
|
|
212
249
|
raise ValueError("`config` must be a subclass of RBLNModelConfig.")
|
|
@@ -282,6 +319,7 @@ class RBLNModelConfig(RBLNSerializableConfigProtocol):
|
|
|
282
319
|
"""Base configuration class for RBLN models that handles compilation settings, runtime options, and submodules.
|
|
283
320
|
|
|
284
321
|
This class provides functionality for:
|
|
322
|
+
|
|
285
323
|
1. Managing compilation configurations for RBLN devices
|
|
286
324
|
2. Configuring runtime behavior such as device placement
|
|
287
325
|
3. Handling nested configuration objects for complex model architectures
|
|
@@ -594,7 +632,7 @@ class RBLNModelConfig(RBLNSerializableConfigProtocol):
|
|
|
594
632
|
optimum_rbln_version (Optional[str]): The optimum-rbln version used for this configuration.
|
|
595
633
|
_torch_dtype (Optional[str]): The data type to use for the model.
|
|
596
634
|
_compile_cfgs (List[RBLNCompileConfig]): List of compilation configurations for the model.
|
|
597
|
-
|
|
635
|
+
kwargs: Additional keyword arguments.
|
|
598
636
|
|
|
599
637
|
Raises:
|
|
600
638
|
ValueError: If unexpected keyword arguments are provided.
|
|
@@ -761,7 +799,7 @@ class RBLNModelConfig(RBLNSerializableConfigProtocol):
|
|
|
761
799
|
|
|
762
800
|
Args:
|
|
763
801
|
path (str): Path to the RBLNModelConfig file or directory containing the config file.
|
|
764
|
-
|
|
802
|
+
kwargs: Additional keyword arguments to override configuration values.
|
|
765
803
|
Keys starting with 'rbln_' will have the prefix removed and be used
|
|
766
804
|
to update the configuration.
|
|
767
805
|
|
|
@@ -46,7 +46,7 @@ class RBLNAutoencoderKLConfig(RBLNModelConfig):
|
|
|
46
46
|
Determines how much smaller the latent representations are compared to the original images.
|
|
47
47
|
in_channels (Optional[int]): Number of input channels for the model.
|
|
48
48
|
latent_channels (Optional[int]): Number of channels in the latent space.
|
|
49
|
-
|
|
49
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
50
50
|
|
|
51
51
|
Raises:
|
|
52
52
|
ValueError: If batch_size is not a positive integer.
|
|
@@ -12,7 +12,7 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
from typing import Any, Optional
|
|
15
|
+
from typing import Any, Dict, Optional
|
|
16
16
|
|
|
17
17
|
from ....configuration_utils import RBLNModelConfig
|
|
18
18
|
from ....utils.logging import get_logger
|
|
@@ -35,7 +35,7 @@ class RBLNAutoencoderKLCosmosConfig(RBLNModelConfig):
|
|
|
35
35
|
vae_scale_factor_temporal: Optional[int] = None,
|
|
36
36
|
vae_scale_factor_spatial: Optional[int] = None,
|
|
37
37
|
use_slicing: Optional[bool] = None,
|
|
38
|
-
**kwargs: Any,
|
|
38
|
+
**kwargs: Dict[str, Any],
|
|
39
39
|
):
|
|
40
40
|
"""
|
|
41
41
|
Args:
|
|
@@ -52,7 +52,7 @@ class RBLNAutoencoderKLCosmosConfig(RBLNModelConfig):
|
|
|
52
52
|
Determines how much smaller the latent representations are compared to the original videos.
|
|
53
53
|
use_slicing (Optional[bool]): Enable sliced VAE encoding and decoding.
|
|
54
54
|
If True, the VAE will split the input tensor in slices to compute encoding or decoding in several steps.
|
|
55
|
-
|
|
55
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
56
56
|
|
|
57
57
|
Raises:
|
|
58
58
|
ValueError: If batch_size is not a positive integer.
|
|
@@ -42,7 +42,7 @@ class RBLNControlNetModelConfig(RBLNModelConfig):
|
|
|
42
42
|
of the VAE input/output images.
|
|
43
43
|
text_model_hidden_size (Optional[int]): Hidden size of the text encoder model used
|
|
44
44
|
for conditioning.
|
|
45
|
-
|
|
45
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
46
46
|
|
|
47
47
|
Raises:
|
|
48
48
|
ValueError: If batch_size is not a positive integer.
|
|
@@ -22,7 +22,7 @@ class RBLNPriorTransformerConfig(RBLNModelConfig):
|
|
|
22
22
|
Configuration class for RBLN Prior Transformer models.
|
|
23
23
|
|
|
24
24
|
This class inherits from RBLNModelConfig and provides specific configuration options
|
|
25
|
-
for
|
|
25
|
+
for Transformer models used in diffusion models like Kandinsky V2.2.
|
|
26
26
|
"""
|
|
27
27
|
|
|
28
28
|
subclass_non_save_attributes = ["_batch_size_is_specified"]
|
|
@@ -39,7 +39,7 @@ class RBLNPriorTransformerConfig(RBLNModelConfig):
|
|
|
39
39
|
batch_size (Optional[int]): The batch size for inference. Defaults to 1.
|
|
40
40
|
embedding_dim (Optional[int]): Dimension of the embedding vectors in the model.
|
|
41
41
|
num_embeddings (Optional[int]): Number of discrete embeddings in the codebook.
|
|
42
|
-
|
|
42
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
43
43
|
|
|
44
44
|
Raises:
|
|
45
45
|
ValueError: If batch_size is not a positive integer.
|
|
@@ -18,7 +18,12 @@ from ....configuration_utils import RBLNModelConfig
|
|
|
18
18
|
|
|
19
19
|
|
|
20
20
|
class RBLNCosmosTransformer3DModelConfig(RBLNModelConfig):
|
|
21
|
-
"""
|
|
21
|
+
"""
|
|
22
|
+
Configuration class for RBLN Cosmos Transformer models.
|
|
23
|
+
|
|
24
|
+
This class inherits from RBLNModelConfig and provides specific configuration options
|
|
25
|
+
for Transformer models used in diffusion models like Cosmos.
|
|
26
|
+
"""
|
|
22
27
|
|
|
23
28
|
def __init__(
|
|
24
29
|
self,
|
|
@@ -47,7 +52,7 @@ class RBLNCosmosTransformer3DModelConfig(RBLNModelConfig):
|
|
|
47
52
|
num_channels_latents (Optional[int]): The number of channels in latent space.
|
|
48
53
|
latent_height (Optional[int]): The height in pixels in latent space.
|
|
49
54
|
latent_width (Optional[int]): The width in pixels in latent space.
|
|
50
|
-
|
|
55
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
51
56
|
|
|
52
57
|
Raises:
|
|
53
58
|
ValueError: If batch_size is not a positive integer.
|
|
@@ -18,7 +18,12 @@ from ....configuration_utils import RBLNModelConfig
|
|
|
18
18
|
|
|
19
19
|
|
|
20
20
|
class RBLNSD3Transformer2DModelConfig(RBLNModelConfig):
|
|
21
|
-
"""
|
|
21
|
+
"""
|
|
22
|
+
Configuration class for RBLN Stable Diffusion 3 Transformer models.
|
|
23
|
+
|
|
24
|
+
This class inherits from RBLNModelConfig and provides specific configuration options
|
|
25
|
+
for Transformer models used in diffusion models like Stable Diffusion 3.
|
|
26
|
+
"""
|
|
22
27
|
|
|
23
28
|
subclass_non_save_attributes = ["_batch_size_is_specified"]
|
|
24
29
|
|
|
@@ -36,7 +41,7 @@ class RBLNSD3Transformer2DModelConfig(RBLNModelConfig):
|
|
|
36
41
|
of the generated samples. If an integer is provided, it's used for both height and width.
|
|
37
42
|
prompt_embed_length (Optional[int]): The length of the embedded prompt vectors that
|
|
38
43
|
will be used to condition the transformer model.
|
|
39
|
-
|
|
44
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
40
45
|
|
|
41
46
|
Raises:
|
|
42
47
|
ValueError: If batch_size is not a positive integer.
|
|
@@ -52,7 +52,7 @@ class RBLNUNet2DConditionModelConfig(RBLNModelConfig):
|
|
|
52
52
|
in_features (Optional[int]): Number of input features for the model.
|
|
53
53
|
text_model_hidden_size (Optional[int]): Hidden size of the text encoder model.
|
|
54
54
|
image_model_hidden_size (Optional[int]): Hidden size of the image encoder model.
|
|
55
|
-
|
|
55
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
56
56
|
|
|
57
57
|
Raises:
|
|
58
58
|
ValueError: If batch_size is not a positive integer.
|
|
@@ -46,7 +46,7 @@ class RBLNVQModelConfig(RBLNModelConfig):
|
|
|
46
46
|
Determines the downsampling ratio between original images and latent representations.
|
|
47
47
|
in_channels (Optional[int]): Number of input channels for the model.
|
|
48
48
|
latent_channels (Optional[int]): Number of channels in the latent space.
|
|
49
|
-
|
|
49
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
50
50
|
|
|
51
51
|
Raises:
|
|
52
52
|
ValueError: If batch_size is not a positive integer.
|
|
@@ -59,7 +59,7 @@ class RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
|
|
|
59
59
|
image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
|
|
60
60
|
Cannot be used together with img_height/img_width.
|
|
61
61
|
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
|
62
|
-
|
|
62
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
63
63
|
|
|
64
64
|
Raises:
|
|
65
65
|
ValueError: If both image_size and img_height/img_width are provided.
|
|
@@ -201,7 +201,7 @@ class RBLNStableDiffusionXLControlNetPipelineBaseConfig(RBLNModelConfig):
|
|
|
201
201
|
image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
|
|
202
202
|
Cannot be used together with img_height/img_width.
|
|
203
203
|
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
|
204
|
-
|
|
204
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
205
205
|
|
|
206
206
|
Raises:
|
|
207
207
|
ValueError: If both image_size and img_height/img_width are provided.
|
|
@@ -59,7 +59,7 @@ class RBLNCosmosPipelineBaseConfig(RBLNModelConfig):
|
|
|
59
59
|
num_frames (Optional[int]): The number of frames in the generated video.
|
|
60
60
|
fps (Optional[int]): The frames per second of the generated video.
|
|
61
61
|
max_seq_len (Optional[int]): Maximum sequence length supported by the model.
|
|
62
|
-
|
|
62
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
63
63
|
"""
|
|
64
64
|
super().__init__(**kwargs)
|
|
65
65
|
|
|
@@ -54,7 +54,7 @@ class RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
|
|
|
54
54
|
img_width (Optional[int]): Width of the generated images.
|
|
55
55
|
height (Optional[int]): Height of the generated images.
|
|
56
56
|
width (Optional[int]): Width of the generated images.
|
|
57
|
-
|
|
57
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
58
58
|
|
|
59
59
|
Raises:
|
|
60
60
|
ValueError: If both image_size and img_height/img_width are provided.
|
|
@@ -166,7 +166,7 @@ class RBLNKandinskyV22PriorPipelineConfig(RBLNModelConfig):
|
|
|
166
166
|
Initialized as RBLNPriorTransformerConfig if not provided.
|
|
167
167
|
batch_size (Optional[int]): Batch size for inference, applied to all submodules.
|
|
168
168
|
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
|
169
|
-
|
|
169
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
170
170
|
|
|
171
171
|
Note:
|
|
172
172
|
When guidance_scale > 1.0, the prior batch size is automatically doubled to
|
|
@@ -259,7 +259,7 @@ class RBLNKandinskyV22CombinedPipelineBaseConfig(RBLNModelConfig):
|
|
|
259
259
|
Used if decoder_pipe is not provided.
|
|
260
260
|
movq (Optional[RBLNVQModelConfig]): Direct configuration for the MoVQ (VQ-GAN) model.
|
|
261
261
|
Used if decoder_pipe is not provided.
|
|
262
|
-
|
|
262
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
263
263
|
"""
|
|
264
264
|
super().__init__(**kwargs)
|
|
265
265
|
|
|
@@ -56,7 +56,7 @@ class RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
|
|
|
56
56
|
image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
|
|
57
57
|
Cannot be used together with img_height/img_width.
|
|
58
58
|
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
|
59
|
-
|
|
59
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
60
60
|
|
|
61
61
|
Raises:
|
|
62
62
|
ValueError: If both image_size and img_height/img_width are provided.
|
|
@@ -64,7 +64,7 @@ class RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
|
|
|
64
64
|
height (Optional[int]): Height of the generated images.
|
|
65
65
|
width (Optional[int]): Width of the generated images.
|
|
66
66
|
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
|
67
|
-
|
|
67
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
68
68
|
|
|
69
69
|
Raises:
|
|
70
70
|
ValueError: If both image_size and img_height/img_width are provided.
|
|
@@ -59,7 +59,7 @@ class RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
|
|
|
59
59
|
image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
|
|
60
60
|
Cannot be used together with img_height/img_width.
|
|
61
61
|
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
|
62
|
-
|
|
62
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
63
63
|
|
|
64
64
|
Raises:
|
|
65
65
|
ValueError: If both image_size and img_height/img_width are provided.
|
{optimum_rbln-0.8.4a6 → optimum_rbln-0.8.4a8}/src/optimum/rbln/diffusers/modeling_diffusers.py
RENAMED
|
@@ -33,6 +33,10 @@ if TYPE_CHECKING:
|
|
|
33
33
|
|
|
34
34
|
|
|
35
35
|
class RBLNDiffusionMixinConfig(RBLNModelConfig):
|
|
36
|
+
"""
|
|
37
|
+
Configuration class for RBLN diffusion pipelines.
|
|
38
|
+
"""
|
|
39
|
+
|
|
36
40
|
pass
|
|
37
41
|
|
|
38
42
|
|
|
@@ -54,8 +58,8 @@ class RBLNDiffusionMixin:
|
|
|
54
58
|
```
|
|
55
59
|
|
|
56
60
|
Class Variables:
|
|
57
|
-
_submodules
|
|
58
|
-
_optional_submodules
|
|
61
|
+
- `_submodules`: List of submodule names that should be compiled (typically ["text_encoder", "unet", "vae"])
|
|
62
|
+
- `_optional_submodules`: List of submodule names compiled without inheriting RBLNModel (typically ["safety_checker"])
|
|
59
63
|
|
|
60
64
|
Methods:
|
|
61
65
|
from_pretrained: Creates and optionally compiles a model from a pretrained checkpoint
|
|
@@ -170,7 +174,7 @@ class RBLNDiffusionMixin:
|
|
|
170
174
|
Names of specific LoRA weight files to load, corresponding to lora_ids. Only used when `export=True`.
|
|
171
175
|
lora_scales:
|
|
172
176
|
Scaling factor(s) to apply to the LoRA adapter(s). Only used when `export=True`.
|
|
173
|
-
|
|
177
|
+
kwargs:
|
|
174
178
|
Additional arguments to pass to the underlying diffusion pipeline constructor or the
|
|
175
179
|
RBLN compilation process. These may include parameters specific to individual submodules
|
|
176
180
|
or the particular diffusion pipeline being used.
|
|
@@ -12,7 +12,7 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
from typing import TYPE_CHECKING, Dict, List, Tuple, Union
|
|
15
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Union
|
|
16
16
|
|
|
17
17
|
import rebel
|
|
18
18
|
import torch
|
|
@@ -214,13 +214,41 @@ class RBLNAutoencoderKL(RBLNModel):
|
|
|
214
214
|
for compiled_model, device_val in zip(compiled_models, device_vals)
|
|
215
215
|
]
|
|
216
216
|
|
|
217
|
-
def encode(
|
|
217
|
+
def encode(
|
|
218
|
+
self, x: torch.FloatTensor, return_dict: bool = True, **kwargs: Dict[str, Any]
|
|
219
|
+
) -> Union[torch.FloatTensor, AutoencoderKLOutput]:
|
|
220
|
+
"""
|
|
221
|
+
Encode an input image into a latent representation.
|
|
222
|
+
|
|
223
|
+
Args:
|
|
224
|
+
x: The input image to encode.
|
|
225
|
+
return_dict:
|
|
226
|
+
Whether to return output as a dictionary. Defaults to True.
|
|
227
|
+
kwargs: Additional arguments to pass to the encoder.
|
|
228
|
+
|
|
229
|
+
Returns:
|
|
230
|
+
The latent representation or AutoencoderKLOutput if return_dict=True
|
|
231
|
+
"""
|
|
218
232
|
posterior = self.encoder.encode(x)
|
|
219
233
|
if not return_dict:
|
|
220
234
|
return (posterior,)
|
|
221
235
|
return AutoencoderKLOutput(latent_dist=posterior)
|
|
222
236
|
|
|
223
|
-
def decode(
|
|
237
|
+
def decode(
|
|
238
|
+
self, z: torch.FloatTensor, return_dict: bool = True, **kwargs: Dict[str, Any]
|
|
239
|
+
) -> Union[torch.FloatTensor, DecoderOutput]:
|
|
240
|
+
"""
|
|
241
|
+
Decode a latent representation into an image.
|
|
242
|
+
|
|
243
|
+
Args:
|
|
244
|
+
z: The latent representation to decode.
|
|
245
|
+
return_dict:
|
|
246
|
+
Whether to return output as a dictionary. Defaults to True.
|
|
247
|
+
kwargs: Additional arguments to pass to the decoder.
|
|
248
|
+
|
|
249
|
+
Returns:
|
|
250
|
+
The decoded image or DecoderOutput if return_dict=True
|
|
251
|
+
"""
|
|
224
252
|
dec = self.decoder.decode(z)
|
|
225
253
|
if not return_dict:
|
|
226
254
|
return (dec,)
|
|
@@ -12,7 +12,7 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
from typing import TYPE_CHECKING, Dict, List, Union
|
|
15
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Union
|
|
16
16
|
|
|
17
17
|
import rebel
|
|
18
18
|
import torch
|
|
@@ -205,13 +205,38 @@ class RBLNAutoencoderKLCosmos(RBLNModel):
|
|
|
205
205
|
for compiled_model, device_val in zip(compiled_models, device_vals)
|
|
206
206
|
]
|
|
207
207
|
|
|
208
|
-
def encode(
|
|
208
|
+
def encode(
|
|
209
|
+
self, x: torch.FloatTensor, return_dict: bool = True, **kwargs: Dict[str, Any]
|
|
210
|
+
) -> Union[torch.FloatTensor, AutoencoderKLOutput]:
|
|
211
|
+
"""
|
|
212
|
+
Encode an input video into a latent representation.
|
|
213
|
+
|
|
214
|
+
Args:
|
|
215
|
+
x: The input video to encode.
|
|
216
|
+
return_dict:
|
|
217
|
+
Whether to return output as a dictionary. Defaults to True.
|
|
218
|
+
kwargs: Additional arguments to pass to the encoder.
|
|
219
|
+
|
|
220
|
+
Returns:
|
|
221
|
+
The latent representation or AutoencoderKLOutput if return_dict=True
|
|
222
|
+
"""
|
|
209
223
|
posterior = self.encoder.encode(x)
|
|
210
224
|
if not return_dict:
|
|
211
225
|
return (posterior,)
|
|
212
226
|
return AutoencoderKLOutput(latent_dist=posterior)
|
|
213
227
|
|
|
214
|
-
def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> torch.FloatTensor:
|
|
228
|
+
def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[torch.FloatTensor, DecoderOutput]:
|
|
229
|
+
"""
|
|
230
|
+
Decode a latent representation into a video.
|
|
231
|
+
|
|
232
|
+
Args:
|
|
233
|
+
z: The latent representation to decode.
|
|
234
|
+
return_dict:
|
|
235
|
+
Whether to return output as a dictionary. Defaults to True.
|
|
236
|
+
|
|
237
|
+
Returns:
|
|
238
|
+
The decoded video or DecoderOutput if return_dict=True
|
|
239
|
+
"""
|
|
215
240
|
decoded = self.decoder.decode(z)
|
|
216
241
|
|
|
217
242
|
if not return_dict:
|
|
@@ -12,7 +12,7 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
from typing import TYPE_CHECKING, List, Union
|
|
15
|
+
from typing import TYPE_CHECKING, Any, List, Union
|
|
16
16
|
|
|
17
17
|
import rebel
|
|
18
18
|
import torch
|
|
@@ -170,13 +170,41 @@ class RBLNVQModel(RBLNModel):
|
|
|
170
170
|
for compiled_model, device_val in zip(compiled_models, device_vals)
|
|
171
171
|
]
|
|
172
172
|
|
|
173
|
-
def encode(
|
|
173
|
+
def encode(
|
|
174
|
+
self, x: torch.FloatTensor, return_dict: bool = True, **kwargs: Any
|
|
175
|
+
) -> Union[torch.FloatTensor, VQEncoderOutput]:
|
|
176
|
+
"""
|
|
177
|
+
Encode an input image into a quantized latent representation.
|
|
178
|
+
|
|
179
|
+
Args:
|
|
180
|
+
x: The input image to encode.
|
|
181
|
+
return_dict:
|
|
182
|
+
Whether to return output as a dictionary. Defaults to True.
|
|
183
|
+
kwargs: Additional arguments to pass to the encoder/quantizer.
|
|
184
|
+
|
|
185
|
+
Returns:
|
|
186
|
+
The quantized latent representation or a specific output object.
|
|
187
|
+
"""
|
|
174
188
|
posterior = self.encoder.encode(x)
|
|
175
189
|
if not return_dict:
|
|
176
190
|
return (posterior,)
|
|
177
191
|
return VQEncoderOutput(latents=posterior)
|
|
178
192
|
|
|
179
|
-
def decode(
|
|
193
|
+
def decode(
|
|
194
|
+
self, h: torch.FloatTensor, return_dict: bool = True, **kwargs: Any
|
|
195
|
+
) -> Union[torch.FloatTensor, DecoderOutput]:
|
|
196
|
+
"""
|
|
197
|
+
Decode a quantized latent representation back into an image.
|
|
198
|
+
|
|
199
|
+
Args:
|
|
200
|
+
h: The quantized latent representation to decode.
|
|
201
|
+
return_dict:
|
|
202
|
+
Whether to return output as a dictionary. Defaults to True.
|
|
203
|
+
kwargs: Additional arguments to pass to the decoder.
|
|
204
|
+
|
|
205
|
+
Returns:
|
|
206
|
+
The decoded image or a DecoderOutput object.
|
|
207
|
+
"""
|
|
180
208
|
dec, commit_loss = self.decoder.decode(h, **kwargs)
|
|
181
209
|
if not return_dict:
|
|
182
210
|
return (dec, commit_loss)
|
|
@@ -59,7 +59,7 @@ class RBLNPriorTransformer(RBLNModel):
|
|
|
59
59
|
"""
|
|
60
60
|
RBLN implementation of PriorTransformer for diffusion models like Kandinsky V2.2.
|
|
61
61
|
|
|
62
|
-
The
|
|
62
|
+
The PriorTransformer takes text and/or image embeddings from encoders (like CLIP) and
|
|
63
63
|
maps them to a shared latent space that guides the diffusion process to generate the desired image.
|
|
64
64
|
|
|
65
65
|
This class inherits from [`RBLNModel`]. Check the superclass documentation for the generic methods
|
|
@@ -94,7 +94,15 @@ class CosmosTransformer3DModelWrapper(torch.nn.Module):
|
|
|
94
94
|
|
|
95
95
|
|
|
96
96
|
class RBLNCosmosTransformer3DModel(RBLNModel):
|
|
97
|
-
"""
|
|
97
|
+
"""
|
|
98
|
+
RBLN implementation of CosmosTransformer3DModel for diffusion models like Cosmos.
|
|
99
|
+
|
|
100
|
+
The CosmosTransformer3DModel takes text and/or image embeddings from encoders (like CLIP) and
|
|
101
|
+
maps them to a shared latent space that guides the diffusion process to generate the desired image.
|
|
102
|
+
|
|
103
|
+
This class inherits from [`RBLNModel`]. Check the superclass documentation for the generic methods
|
|
104
|
+
the library implements for all its models.
|
|
105
|
+
"""
|
|
98
106
|
|
|
99
107
|
hf_library_name = "diffusers"
|
|
100
108
|
auto_model_class = CosmosTransformer3DModel
|
|
@@ -59,7 +59,15 @@ class SD3Transformer2DModelWrapper(torch.nn.Module):
|
|
|
59
59
|
|
|
60
60
|
|
|
61
61
|
class RBLNSD3Transformer2DModel(RBLNModel):
|
|
62
|
-
"""
|
|
62
|
+
"""
|
|
63
|
+
RBLN implementation of SD3Transformer2DModel for diffusion models like Stable Diffusion 3.
|
|
64
|
+
|
|
65
|
+
The SD3Transformer2DModel takes text and/or image embeddings from encoders (like CLIP) and
|
|
66
|
+
maps them to a shared latent space that guides the diffusion process to generate the desired image.
|
|
67
|
+
|
|
68
|
+
This class inherits from [`RBLNModel`]. Check the superclass documentation for the generic methods
|
|
69
|
+
the library implements for all its models.
|
|
70
|
+
"""
|
|
63
71
|
|
|
64
72
|
hf_library_name = "diffusers"
|
|
65
73
|
auto_model_class = SD3Transformer2DModel
|
|
@@ -141,10 +141,13 @@ class _UNet_Kandinsky(torch.nn.Module):
|
|
|
141
141
|
|
|
142
142
|
class RBLNUNet2DConditionModel(RBLNModel):
|
|
143
143
|
"""
|
|
144
|
-
|
|
144
|
+
RBLN implementation of UNet2DConditionModel for diffusion models.
|
|
145
145
|
|
|
146
|
-
This
|
|
147
|
-
|
|
146
|
+
This model is used to accelerate UNet2DCondition models from diffusers library on RBLN NPUs.
|
|
147
|
+
It is a key component in diffusion-based image generation models like Stable Diffusion.
|
|
148
|
+
|
|
149
|
+
This class inherits from [`RBLNModel`]. Check the superclass documentation for the generic methods
|
|
150
|
+
the library implements for all its models.
|
|
148
151
|
"""
|
|
149
152
|
|
|
150
153
|
hf_library_name = "diffusers"
|