optimum-rbln 0.8.4a1__tar.gz → 0.8.4a3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of optimum-rbln might be problematic. Click here for more details.
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/PKG-INFO +2 -2
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/pyproject.toml +1 -1
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/__init__.py +8 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/__version__.py +2 -2
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/__init__.py +8 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/__init__.py +12 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +1 -1
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +101 -15
- optimum_rbln-0.8.4a3/src/optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
- optimum_rbln-0.8.4a3/src/optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
- optimum_rbln-0.8.4a3/src/optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +506 -0
- optimum_rbln-0.8.4a3/src/optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +141 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/tests/test_llm.py +44 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/uv.lock +7 -14
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/ISSUE_TEMPLATE/config.yml +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/ISSUE_TEMPLATE/model_request.md +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/pull_request_template.md +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/scripts/auto_code_review.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/scripts/validate_docstrings.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/scripts/validate_pr_checklist.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/version.yaml +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/workflows/auto_code_review.yml +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/workflows/check_code_quality.yml +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/workflows/deploy-on-tag.yaml +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/workflows/deploy.yaml +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/workflows/pr-title-check.yaml +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/workflows/pr_checklist_validator.yml +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/workflows/rbln_check_compiler.yaml +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/workflows/rbln_dispatch_pytest.yaml +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/workflows/rbln_optimum_inference_test.yaml +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/workflows/rbln_optimum_pytest.yaml +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/workflows/rbln_scheduled_test.yaml +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/workflows/rbln_trigger_on_pr.yaml +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.github/workflows/test-docstrings.yml +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/.gitignore +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/CODE_OF_CONDUCT.md +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/CONTRIBUTING.md +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/LICENSE +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/README.md +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/assets/rbln_logo.png +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/advanced/custom_class.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/audio-classification/run_ast_audio_classification.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/depth-estimation/run_dpt.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/image-classification/run_image_classification.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/image-classification/run_vit_image_classification.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/image-to-text/run_idefics3.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/image-to-text/run_llava_next_image_to_text.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/kandinsky2_2/run_kandinsky2_2.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/kandinsky2_2/run_kandinsky2_2_combined.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/kandinsky2_2/run_kandinsky2_2_img2img.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/kandinsky2_2/run_kandinsky2_2_img2img_combined.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/kandinsky2_2/run_kandinsky2_2_inpaint.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/kandinsky2_2/run_kandinsky2_2_inpaint_combined.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/kandinsky2_2/run_kandinsky2_2_prior_interpolate.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/question-answering/run_question_answering.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/speech-recognition/run_wav2vec2.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/speech-recognition/run_whisper.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/stable-diffusion/run_stable_diffusion.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/stable-diffusion/run_stable_diffusion_controlnet.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/stable-diffusion/run_stable_diffusion_img2img.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/stable-diffusion/run_stable_diffusion_img2img_controlnet.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/stable-diffusion/run_stable_diffusion_inpaint.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/stable-diffusion/run_stable_diffusion_lora.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/stable-diffusion/run_stable_diffusion_multicontrolnet.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/text-classification/run_bge_m3_text_classification.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/text-classification/run_bge_reranker_v2_m3_text_classification.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/text-classification/run_secureBERT.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/text-classification/run_t5_classification.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/text-classification/run_twitter_roberta_text_classification.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/text2text-generation/run_bart_text2text_generation.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/text2text-generation/run_llama_peft.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/text2text-generation/run_llama_text2text_generation.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/examples/time-series-forecasting/run_time_series_forecasting.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/scripts/uv-lock.sh +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/scripts/uv-sync.sh +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/configuration_utils.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/models/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/pipelines/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/modeling_diffusers.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/models/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/models/autoencoders/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/models/autoencoders/vae.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/models/autoencoders/vq_model.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/models/controlnet.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/models/transformers/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/models/transformers/prior_transformer.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/models/transformers/transformer_sd3.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/models/unets/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/models/unets/unet_2d_condition.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/auto_pipeline.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/controlnet/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/cosmos/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/modeling.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/modeling_base.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/ops/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/ops/attn.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/ops/flash_attn.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/ops/kv_cache_update.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/ops/linear.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/ops/sliding_window_attn.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/configuration_generic.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/modeling_attention_utils.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/modeling_generic.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/modeling_outputs.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/modeling_rope_utils.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/auto/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/auto/auto_factory.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/auto/modeling_auto.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/bart/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/bart/bart_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/bart/configuration_bart.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/bart/modeling_bart.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/bert/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/bert/bert_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/bert/configuration_bert.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/bert/modeling_bert.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/blip_2/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/clip/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/clip/configuration_clip.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/clip/modeling_clip.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/colpali/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/colpali/colpali_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/colpali/configuration_colpali.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/colpali/modeling_colpali.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/decoderonly/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/depth_anything/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/distilbert/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/dpt/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/dpt/configuration_dpt.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/exaone/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/exaone/configuration_exaone.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/exaone/exaone_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/exaone/modeling_exaone.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/gemma/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/gemma/configuration_gemma.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/gemma/gemma_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/gemma/modeling_gemma.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/gemma3/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/gpt2/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/grounding_dino/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/idefics3/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/llama/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/llama/configuration_llama.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/llama/llama_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/llama/modeling_llama.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/llava/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/llava/configuration_llava.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/llava/modeling_llava.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/llava_next/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/midm/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/midm/configuration_midm.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/midm/midm_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/midm/modeling_midm.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/mistral/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/mistral/configuration_mistral.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/mistral/mistral_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/mistral/modeling_mistral.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/opt/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/opt/configuration_opt.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/opt/modeling_opt.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/opt/opt_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/pegasus/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/phi/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/phi/configuration_phi.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/phi/modeling_phi.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/phi/phi_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/pixtral/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/qwen2/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/qwen3/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/resnet/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/resnet/configuration_resnet.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/resnet/modeling_resnet.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/roberta/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/roberta/configuration_roberta.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/roberta/modeling_roberta.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/seq2seq/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/siglip/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/siglip/configuration_siglip.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/siglip/modeling_siglip.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/swin/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/swin/configuration_swin.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/swin/modeling_swin.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/t5/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/t5/configuration_t5.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/t5/modeling_t5.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/t5/t5_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/time_series_transformer/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/vit/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/vit/configuration_vit.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/vit/modeling_vit.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/wav2vec2/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/whisper/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/whisper/configuration_whisper.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/whisper/generation_whisper.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/whisper/modeling_whisper.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/whisper/whisper_architecture.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/xlm_roberta/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/utils/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/utils/rbln_quantization.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/utils/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/utils/decorator_utils.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/utils/depreacate_utils.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/utils/hub.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/utils/import_utils.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/utils/logging.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/utils/model_utils.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/utils/runtime_utils.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/utils/save_utils.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/utils/submodule.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/tests/__init__.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/tests/psnr.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/tests/requirements_sdxl.txt +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/tests/run_stable_diffusion_xl_base.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/tests/test_base.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/tests/test_config.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/tests/test_diffusers.py +0 -0
- {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/tests/test_transformers.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: optimum-rbln
|
|
3
|
-
Version: 0.8.
|
|
3
|
+
Version: 0.8.4a3
|
|
4
4
|
Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
|
@@ -23,7 +23,7 @@ Classifier: Programming Language :: Python :: 3.12
|
|
|
23
23
|
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
24
24
|
Requires-Python: <3.13,>=3.9
|
|
25
25
|
Requires-Dist: accelerate>=1.0.1
|
|
26
|
-
Requires-Dist: diffusers==0.
|
|
26
|
+
Requires-Dist: diffusers==0.35.1
|
|
27
27
|
Requires-Dist: packaging>=24.1
|
|
28
28
|
Requires-Dist: torch==2.7.0
|
|
29
29
|
Requires-Dist: torchaudio<=2.7.0
|
|
@@ -148,6 +148,10 @@ _import_structure = {
|
|
|
148
148
|
"RBLNQwen3ForCausalLMConfig",
|
|
149
149
|
"RBLNQwen3Model",
|
|
150
150
|
"RBLNQwen3ModelConfig",
|
|
151
|
+
"RBLNQwen2VisionTransformerPretrainedModel",
|
|
152
|
+
"RBLNQwen2VisionTransformerPretrainedModelConfig",
|
|
153
|
+
"RBLNQwen2VLForConditionalGeneration",
|
|
154
|
+
"RBLNQwen2VLForConditionalGenerationConfig",
|
|
151
155
|
"RBLNResNetForImageClassification",
|
|
152
156
|
"RBLNResNetForImageClassificationConfig",
|
|
153
157
|
"RBLNRobertaForMaskedLM",
|
|
@@ -430,6 +434,10 @@ if TYPE_CHECKING:
|
|
|
430
434
|
RBLNQwen2ForCausalLMConfig,
|
|
431
435
|
RBLNQwen2Model,
|
|
432
436
|
RBLNQwen2ModelConfig,
|
|
437
|
+
RBLNQwen2VisionTransformerPretrainedModel,
|
|
438
|
+
RBLNQwen2VisionTransformerPretrainedModelConfig,
|
|
439
|
+
RBLNQwen2VLForConditionalGeneration,
|
|
440
|
+
RBLNQwen2VLForConditionalGenerationConfig,
|
|
433
441
|
RBLNQwen3ForCausalLM,
|
|
434
442
|
RBLNQwen3ForCausalLMConfig,
|
|
435
443
|
RBLNQwen3Model,
|
|
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
|
|
|
28
28
|
commit_id: COMMIT_ID
|
|
29
29
|
__commit_id__: COMMIT_ID
|
|
30
30
|
|
|
31
|
-
__version__ = version = '0.8.
|
|
32
|
-
__version_tuple__ = version_tuple = (0, 8, 4, '
|
|
31
|
+
__version__ = version = '0.8.4a3'
|
|
32
|
+
__version_tuple__ = version_tuple = (0, 8, 4, 'a3')
|
|
33
33
|
|
|
34
34
|
__commit_id__ = commit_id = None
|
|
@@ -130,6 +130,10 @@ _import_structure = {
|
|
|
130
130
|
"RBLNQwen2_5_VisionTransformerPretrainedModelConfig",
|
|
131
131
|
"RBLNQwen2_5_VLForConditionalGeneration",
|
|
132
132
|
"RBLNQwen2_5_VLForConditionalGenerationConfig",
|
|
133
|
+
"RBLNQwen2VisionTransformerPretrainedModel",
|
|
134
|
+
"RBLNQwen2VisionTransformerPretrainedModelConfig",
|
|
135
|
+
"RBLNQwen2VLForConditionalGeneration",
|
|
136
|
+
"RBLNQwen2VLForConditionalGenerationConfig",
|
|
133
137
|
"RBLNQwen2Model",
|
|
134
138
|
"RBLNQwen2ModelConfig",
|
|
135
139
|
"RBLNQwen2ForCausalLM",
|
|
@@ -282,6 +286,10 @@ if TYPE_CHECKING:
|
|
|
282
286
|
RBLNQwen2ForCausalLMConfig,
|
|
283
287
|
RBLNQwen2Model,
|
|
284
288
|
RBLNQwen2ModelConfig,
|
|
289
|
+
RBLNQwen2VisionTransformerPretrainedModel,
|
|
290
|
+
RBLNQwen2VisionTransformerPretrainedModelConfig,
|
|
291
|
+
RBLNQwen2VLForConditionalGeneration,
|
|
292
|
+
RBLNQwen2VLForConditionalGenerationConfig,
|
|
285
293
|
RBLNQwen3ForCausalLM,
|
|
286
294
|
RBLNQwen3ForCausalLMConfig,
|
|
287
295
|
RBLNQwen3Model,
|
{optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a3}/src/optimum/rbln/transformers/models/__init__.py
RENAMED
|
@@ -85,6 +85,12 @@ _import_structure = {
|
|
|
85
85
|
"RBLNQwen2_5_VLForConditionalGeneration",
|
|
86
86
|
"RBLNQwen2_5_VLForConditionalGenerationConfig",
|
|
87
87
|
],
|
|
88
|
+
"qwen2_vl": [
|
|
89
|
+
"RBLNQwen2VisionTransformerPretrainedModel",
|
|
90
|
+
"RBLNQwen2VisionTransformerPretrainedModelConfig",
|
|
91
|
+
"RBLNQwen2VLForConditionalGeneration",
|
|
92
|
+
"RBLNQwen2VLForConditionalGenerationConfig",
|
|
93
|
+
],
|
|
88
94
|
"decoderonly": [
|
|
89
95
|
"RBLNDecoderOnlyModelConfig",
|
|
90
96
|
"RBLNDecoderOnlyModel",
|
|
@@ -281,6 +287,12 @@ if TYPE_CHECKING:
|
|
|
281
287
|
RBLNQwen2_5_VLForConditionalGeneration,
|
|
282
288
|
RBLNQwen2_5_VLForConditionalGenerationConfig,
|
|
283
289
|
)
|
|
290
|
+
from .qwen2_vl import (
|
|
291
|
+
RBLNQwen2VisionTransformerPretrainedModel,
|
|
292
|
+
RBLNQwen2VisionTransformerPretrainedModelConfig,
|
|
293
|
+
RBLNQwen2VLForConditionalGeneration,
|
|
294
|
+
RBLNQwen2VLForConditionalGenerationConfig,
|
|
295
|
+
)
|
|
284
296
|
from .qwen3 import RBLNQwen3ForCausalLM, RBLNQwen3ForCausalLMConfig, RBLNQwen3Model, RBLNQwen3ModelConfig
|
|
285
297
|
from .resnet import RBLNResNetForImageClassification, RBLNResNetForImageClassificationConfig
|
|
286
298
|
from .roberta import (
|
|
@@ -579,7 +579,7 @@ class DecoderOnlyAttention(nn.Module):
|
|
|
579
579
|
)
|
|
580
580
|
self.head_dim = self._original_mod.head_dim
|
|
581
581
|
self._phase = "prefill"
|
|
582
|
-
self.scale = torch.tensor(self.get_attn_scale())
|
|
582
|
+
self.scale = torch.nn.Parameter(torch.tensor(self.get_attn_scale()))
|
|
583
583
|
self.quantization = rbln_config.quantization
|
|
584
584
|
|
|
585
585
|
if hasattr(self._original_mod, "num_key_value_heads"):
|
|
@@ -11,6 +11,7 @@
|
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
|
+
import math
|
|
14
15
|
from functools import wraps
|
|
15
16
|
from typing import TYPE_CHECKING, List, Optional, Tuple
|
|
16
17
|
|
|
@@ -20,7 +21,6 @@ from torch import Tensor
|
|
|
20
21
|
from transformers.models.grounding_dino.modeling_grounding_dino import (
|
|
21
22
|
GroundingDinoDecoder,
|
|
22
23
|
GroundingDinoEncoder,
|
|
23
|
-
get_sine_pos_embed,
|
|
24
24
|
)
|
|
25
25
|
|
|
26
26
|
|
|
@@ -33,31 +33,46 @@ def monkey_patch():
|
|
|
33
33
|
GroundingDinoBiMultiHeadAttention,
|
|
34
34
|
GroundingDinoEncoderLayer,
|
|
35
35
|
GroundingDinoMultiscaleDeformableAttention,
|
|
36
|
+
MultiScaleDeformableAttention,
|
|
36
37
|
)
|
|
37
38
|
|
|
38
39
|
original_forward = GroundingDinoMultiscaleDeformableAttention.forward
|
|
39
40
|
original_bi_multihead_attention_forward = GroundingDinoBiMultiHeadAttention.forward
|
|
40
41
|
original_encoder_layer_forward = GroundingDinoEncoderLayer.forward
|
|
42
|
+
original_multiscale_deform_attn = MultiScaleDeformableAttention.forward
|
|
41
43
|
|
|
42
44
|
# Patch the methods with the custom implementations
|
|
43
45
|
GroundingDinoMultiscaleDeformableAttention.forward = _GroundingDinoMultiscaleDeformableAttention.forward
|
|
44
46
|
GroundingDinoBiMultiHeadAttention.forward = _GroundingDinoBiMultiHeadAttention.forward
|
|
45
47
|
GroundingDinoEncoderLayer.forward = _GroundingDinoEncoderLayer.forward
|
|
48
|
+
MultiScaleDeformableAttention.forward = _MultiScaleDeformableAttention.forward
|
|
46
49
|
|
|
47
|
-
return (
|
|
50
|
+
return (
|
|
51
|
+
original_forward,
|
|
52
|
+
original_bi_multihead_attention_forward,
|
|
53
|
+
original_encoder_layer_forward,
|
|
54
|
+
original_multiscale_deform_attn,
|
|
55
|
+
)
|
|
48
56
|
|
|
49
57
|
|
|
50
|
-
def restore_monkey_patch(
|
|
58
|
+
def restore_monkey_patch(
|
|
59
|
+
original_forward,
|
|
60
|
+
original_bi_multihead_attention_forward,
|
|
61
|
+
original_encoder_layer_forward,
|
|
62
|
+
original_multiscale_deform_attn,
|
|
63
|
+
):
|
|
51
64
|
from transformers.models.grounding_dino.modeling_grounding_dino import (
|
|
52
65
|
GroundingDinoBiMultiHeadAttention,
|
|
53
66
|
GroundingDinoEncoderLayer,
|
|
54
67
|
GroundingDinoMultiscaleDeformableAttention,
|
|
68
|
+
MultiScaleDeformableAttention,
|
|
55
69
|
)
|
|
56
70
|
|
|
57
71
|
# Restore the original methods
|
|
58
72
|
GroundingDinoMultiscaleDeformableAttention.forward = original_forward
|
|
59
73
|
GroundingDinoBiMultiHeadAttention.forward = original_bi_multihead_attention_forward
|
|
60
74
|
GroundingDinoEncoderLayer.forward = original_encoder_layer_forward
|
|
75
|
+
MultiScaleDeformableAttention.forward = original_multiscale_deform_attn
|
|
61
76
|
|
|
62
77
|
|
|
63
78
|
def monkey_patch_decorator(func):
|
|
@@ -76,6 +91,30 @@ def monkey_patch_decorator(func):
|
|
|
76
91
|
return wrapper
|
|
77
92
|
|
|
78
93
|
|
|
94
|
+
def get_sine_pos_embed(
|
|
95
|
+
pos_tensor: torch.Tensor, num_pos_feats: int = 128, temperature: int = 10000, exchange_xy: bool = True
|
|
96
|
+
) -> Tensor:
|
|
97
|
+
scale = 2 * math.pi
|
|
98
|
+
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device)
|
|
99
|
+
dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
|
|
100
|
+
|
|
101
|
+
scaled_pos = pos_tensor.unsqueeze(-1) * scale / dim_t
|
|
102
|
+
reshaped_pos = scaled_pos.view(*scaled_pos.shape[:-1], -1, 2)
|
|
103
|
+
sin_chunk, cos_chunk = torch.split(reshaped_pos, 1, dim=-1)
|
|
104
|
+
sin_embed = sin_chunk.squeeze(-1).sin()
|
|
105
|
+
cos_embed = cos_chunk.squeeze(-1).cos()
|
|
106
|
+
|
|
107
|
+
pos_embed = torch.stack((sin_embed, cos_embed), dim=-1).flatten(-2)
|
|
108
|
+
|
|
109
|
+
if exchange_xy and pos_tensor.shape[-1] >= 2:
|
|
110
|
+
swapped_embeds = torch.cat([pos_embed[..., 1:2, :], pos_embed[..., 0:1, :], pos_embed[..., 2:, :]], dim=-2)
|
|
111
|
+
pos_embed = swapped_embeds
|
|
112
|
+
|
|
113
|
+
position_embeddings = pos_embed.flatten(start_dim=-2)
|
|
114
|
+
|
|
115
|
+
return position_embeddings
|
|
116
|
+
|
|
117
|
+
|
|
79
118
|
class _GroundingDinoEncoder(torch.nn.Module):
|
|
80
119
|
def __init__(self, model: "GroundingDinoEncoder", rbln_config: "RBLNGroundingDinoEncoderConfig"):
|
|
81
120
|
super().__init__()
|
|
@@ -386,16 +425,20 @@ class _GroundingDinoMultiscaleDeformableAttention(torch.nn.Module):
|
|
|
386
425
|
# batch_size, num_queries, n_heads, n_levels, n_points, 2
|
|
387
426
|
num_coordinates = reference_points.shape[-1]
|
|
388
427
|
if num_coordinates == 2:
|
|
389
|
-
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
|
|
390
|
-
|
|
391
|
-
reference_points[:, :, None, :, None, :]
|
|
428
|
+
offset_normalizer = 0.5 * torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
|
|
429
|
+
sampling_grids = (
|
|
430
|
+
2 * reference_points[:, :, None, :, None, :]
|
|
431
|
+
- 1
|
|
392
432
|
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
|
393
433
|
)
|
|
394
434
|
elif num_coordinates == 4:
|
|
395
|
-
|
|
396
|
-
|
|
397
|
-
|
|
398
|
-
|
|
435
|
+
ref_points_xy, ref_points_wh = torch.split(reference_points, 2, dim=-1)
|
|
436
|
+
ref_points_xy = ref_points_xy[:, :, None, :, None, :]
|
|
437
|
+
ref_points_wh = ref_points_wh[:, :, None, :, None, :]
|
|
438
|
+
ref_points_grids = 2 * ref_points_xy - 1
|
|
439
|
+
offset_grids = sampling_offsets / self.n_points * ref_points_wh
|
|
440
|
+
sampling_grids = ref_points_grids + offset_grids
|
|
441
|
+
|
|
399
442
|
else:
|
|
400
443
|
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
|
|
401
444
|
|
|
@@ -404,7 +447,7 @@ class _GroundingDinoMultiscaleDeformableAttention(torch.nn.Module):
|
|
|
404
447
|
spatial_shapes,
|
|
405
448
|
spatial_shapes_list,
|
|
406
449
|
level_start_index,
|
|
407
|
-
|
|
450
|
+
sampling_grids,
|
|
408
451
|
attention_weights,
|
|
409
452
|
self.im2col_step,
|
|
410
453
|
)
|
|
@@ -456,15 +499,14 @@ class _GroundingDinoBiMultiHeadAttention(torch.nn.Module):
|
|
|
456
499
|
# # Do not increase -50000/50000, data type half has quite limited range
|
|
457
500
|
attn_weights = torch.clamp(attn_weights, min=-50000, max=50000)
|
|
458
501
|
|
|
459
|
-
attn_weights_transposed = attn_weights.transpose(1, 2)
|
|
460
502
|
# RBLN FIX: max_values from scalar to vector
|
|
461
|
-
text_attn_weights =
|
|
462
|
-
0
|
|
463
|
-
].repeat(1, 1, tgt_len)
|
|
503
|
+
text_attn_weights = attn_weights - torch.max(attn_weights, dim=1, keepdim=True)[0].repeat(1, tgt_len, 1)
|
|
464
504
|
|
|
465
505
|
# # Do not increase -50000/50000, data type half has quite limited range
|
|
466
506
|
text_attn_weights = torch.clamp(text_attn_weights, min=-50000, max=50000)
|
|
467
507
|
|
|
508
|
+
text_attn_weights = text_attn_weights.transpose(1, 2)
|
|
509
|
+
|
|
468
510
|
# mask vision for language
|
|
469
511
|
if vision_attention_mask is not None:
|
|
470
512
|
# RBLN FIX: bool tensor to float tensor
|
|
@@ -511,3 +553,47 @@ class _GroundingDinoBiMultiHeadAttention(torch.nn.Module):
|
|
|
511
553
|
text_attn_output = self.out_text_proj(text_attn_output)
|
|
512
554
|
|
|
513
555
|
return (vision_attn_output, vision_attn_weights), (text_attn_output, text_attn_weights)
|
|
556
|
+
|
|
557
|
+
|
|
558
|
+
class _MultiScaleDeformableAttention(torch.nn.Module):
|
|
559
|
+
def forward(
|
|
560
|
+
self,
|
|
561
|
+
value: Tensor,
|
|
562
|
+
value_spatial_shapes: Tensor,
|
|
563
|
+
value_spatial_shapes_list: List[Tuple],
|
|
564
|
+
level_start_index: Tensor,
|
|
565
|
+
sampling_grids: Tensor,
|
|
566
|
+
attention_weights: Tensor,
|
|
567
|
+
im2col_step: int,
|
|
568
|
+
):
|
|
569
|
+
batch_size, _, num_heads, hidden_dim = value.shape
|
|
570
|
+
_, num_queries, num_heads, num_levels, num_points, _ = sampling_grids.shape
|
|
571
|
+
value_list = value.split([height * width for height, width in value_spatial_shapes_list], dim=1)
|
|
572
|
+
sampling_value_list = []
|
|
573
|
+
sampling_grids_list = [t.squeeze(3) for t in torch.split(sampling_grids, 1, dim=3)]
|
|
574
|
+
for level_id, (height, width) in enumerate(value_spatial_shapes_list):
|
|
575
|
+
value_l_ = (
|
|
576
|
+
value_list[level_id].permute(0, 2, 3, 1).reshape(batch_size * num_heads, hidden_dim, height, width)
|
|
577
|
+
)
|
|
578
|
+
sampling_grid_l_ = sampling_grids_list[level_id].transpose(1, 2).flatten(0, 1)
|
|
579
|
+
sampling_value_l_ = torch.nn.functional.grid_sample(
|
|
580
|
+
value_l_,
|
|
581
|
+
sampling_grid_l_,
|
|
582
|
+
mode="bilinear",
|
|
583
|
+
padding_mode="zeros",
|
|
584
|
+
align_corners=False,
|
|
585
|
+
)
|
|
586
|
+
sampling_value_list.append(sampling_value_l_)
|
|
587
|
+
|
|
588
|
+
sampling_values = torch.cat(sampling_value_list, dim=-1)
|
|
589
|
+
attention_weights_prep = attention_weights.transpose(1, 2)
|
|
590
|
+
values_permuted = sampling_values.permute(0, 2, 3, 1)
|
|
591
|
+
|
|
592
|
+
weights_for_matmul = attention_weights_prep.reshape(
|
|
593
|
+
batch_size * num_heads, num_queries, 1, num_levels * num_points
|
|
594
|
+
)
|
|
595
|
+
output_before_permute = torch.matmul(weights_for_matmul, values_permuted)
|
|
596
|
+
output_before_view = output_before_permute.squeeze(2).permute(0, 2, 1)
|
|
597
|
+
output = output_before_view.reshape(batch_size, num_heads * hidden_dim, num_queries)
|
|
598
|
+
|
|
599
|
+
return output.transpose(1, 2).contiguous()
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from .configuration_qwen2_vl import (
|
|
16
|
+
RBLNQwen2VisionTransformerPretrainedModelConfig,
|
|
17
|
+
RBLNQwen2VLForConditionalGenerationConfig,
|
|
18
|
+
)
|
|
19
|
+
from .modeling_qwen2_vl import RBLNQwen2VisionTransformerPretrainedModel, RBLNQwen2VLForConditionalGeneration
|
|
@@ -0,0 +1,88 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from typing import Any, Dict, List, Optional, Union
|
|
16
|
+
|
|
17
|
+
from ....configuration_utils import RBLNModelConfig
|
|
18
|
+
from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausalLMConfig
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class RBLNQwen2VLForConditionalGenerationConfig(RBLNDecoderOnlyModelForCausalLMConfig):
|
|
22
|
+
submodules = ["visual"]
|
|
23
|
+
|
|
24
|
+
def __init__(
|
|
25
|
+
self,
|
|
26
|
+
use_inputs_embeds: bool = True,
|
|
27
|
+
visual: Optional[RBLNModelConfig] = None,
|
|
28
|
+
**kwargs: Dict[str, Any],
|
|
29
|
+
):
|
|
30
|
+
"""
|
|
31
|
+
Args:
|
|
32
|
+
use_inputs_embeds (bool): Whether or not to use `inputs_embeds` as input. Defaults to `True`.
|
|
33
|
+
visual (Optional[RBLNModelConfig]): Configuration for the vision encoder component.
|
|
34
|
+
**kwargs: Additional arguments passed to the parent `RBLNDecoderOnlyModelForCausalLMConfig`.
|
|
35
|
+
|
|
36
|
+
Raises:
|
|
37
|
+
ValueError: If `use_inputs_embeds` is False.
|
|
38
|
+
ValueError: If the visual configuration is provided but contains invalid settings, such as an invalid max_seq_lens (e.g., not a positive integer or insufficient for the expected resolution).
|
|
39
|
+
ValueError: If visual is None and no default vision configuration can be inferred for the model architecture.
|
|
40
|
+
ValueError: If any inherited parameters violate constraints defined in the parent class, such as batch_size not being a positive integer, prefill_chunk_size not being divisible by 64, or max_seq_len not meeting requirements for Flash Attention.
|
|
41
|
+
"""
|
|
42
|
+
super().__init__(use_inputs_embeds=use_inputs_embeds, **kwargs)
|
|
43
|
+
if not self.use_inputs_embeds:
|
|
44
|
+
raise ValueError(
|
|
45
|
+
"RBLNQwen2VLForConditionalGenerationConfig does not allow `use_inputs_embeds` to be set to False, "
|
|
46
|
+
"as RBLNQwen2VLForConditionalGeneration accepts only `inputs_embeds` as input."
|
|
47
|
+
)
|
|
48
|
+
self.visual = visual
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
class RBLNQwen2VisionTransformerPretrainedModelConfig(RBLNModelConfig):
|
|
52
|
+
def __init__(self, max_seq_lens: Union[int, List[int]] = None, **kwargs: Dict[str, Any]):
|
|
53
|
+
"""
|
|
54
|
+
Args:
|
|
55
|
+
max_seq_lens (Optional[Union[int, List[int]]]): Maximum sequence lengths for Vision
|
|
56
|
+
Transformer attention. Can be an integer or list of integers, each indicating
|
|
57
|
+
the number of patches in a sequence for an image or video. For example, an image
|
|
58
|
+
of 224x224 pixels with patch size 14 results in (224/14) * (224/14) = 256 patches,
|
|
59
|
+
so `max_seq_lens` must be at least 256. RBLN optimization runs inference per image
|
|
60
|
+
or video frame, so set `max_seq_lens` to match the maximum expected resolution to
|
|
61
|
+
optimize computation. If not provided, a `ValueError` is raised.
|
|
62
|
+
**kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
63
|
+
|
|
64
|
+
Raises:
|
|
65
|
+
ValueError: If batch_size is not a positive integer.
|
|
66
|
+
ValueError: If `max_seq_lens` (or any value in the list) is not a positive integer.
|
|
67
|
+
ValueError: If `max_seq_lens` is insufficient for the expected image/video resolution.
|
|
68
|
+
ValueError: If `batch_size` (inherited from RBLNModelConfig) is not a positive integer.
|
|
69
|
+
|
|
70
|
+
Max Seq Lens:
|
|
71
|
+
Since `Qwen2VLForConditionalGeneration` performs inference on a per-image or per-frame basis,
|
|
72
|
+
`max_seq_lens` should be set based on the maximum expected resolution of the input images or video frames.
|
|
73
|
+
|
|
74
|
+
The value must be greater than or equal to the number of patches generated from the input image.
|
|
75
|
+
For example, a 224x224 image with a patch size of 14 results in (224 / 14) * (224 / 14) = 256 patches.
|
|
76
|
+
Therefore, `max_seq_lens` must be at least 256.
|
|
77
|
+
"""
|
|
78
|
+
super().__init__(**kwargs)
|
|
79
|
+
|
|
80
|
+
if max_seq_lens is not None:
|
|
81
|
+
if isinstance(max_seq_lens, int):
|
|
82
|
+
max_seq_lens = [max_seq_lens]
|
|
83
|
+
elif isinstance(max_seq_lens, list):
|
|
84
|
+
max_seq_lens.sort(reverse=True)
|
|
85
|
+
else:
|
|
86
|
+
raise ValueError("'max_seq_lens' must be specified.")
|
|
87
|
+
|
|
88
|
+
self.max_seq_lens = max_seq_lens
|