optimum-rbln 0.8.4a1__tar.gz → 0.8.4a2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of optimum-rbln might be problematic. Click here for more details.

Files changed (319) hide show
  1. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/PKG-INFO +1 -1
  2. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/__init__.py +8 -0
  3. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/__version__.py +2 -2
  4. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/__init__.py +8 -0
  5. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/__init__.py +12 -0
  6. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +1 -1
  7. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +101 -15
  8. optimum_rbln-0.8.4a2/src/optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
  9. optimum_rbln-0.8.4a2/src/optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
  10. optimum_rbln-0.8.4a2/src/optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +506 -0
  11. optimum_rbln-0.8.4a2/src/optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +141 -0
  12. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/tests/test_llm.py +44 -0
  13. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
  14. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/ISSUE_TEMPLATE/config.yml +0 -0
  15. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
  16. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/ISSUE_TEMPLATE/model_request.md +0 -0
  17. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/pull_request_template.md +0 -0
  18. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/scripts/auto_code_review.py +0 -0
  19. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/scripts/validate_docstrings.py +0 -0
  20. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/scripts/validate_pr_checklist.py +0 -0
  21. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/version.yaml +0 -0
  22. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/workflows/auto_code_review.yml +0 -0
  23. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/workflows/check_code_quality.yml +0 -0
  24. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/workflows/deploy-on-tag.yaml +0 -0
  25. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/workflows/deploy.yaml +0 -0
  26. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/workflows/pr-title-check.yaml +0 -0
  27. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/workflows/pr_checklist_validator.yml +0 -0
  28. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/workflows/rbln_check_compiler.yaml +0 -0
  29. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/workflows/rbln_dispatch_pytest.yaml +0 -0
  30. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/workflows/rbln_optimum_inference_test.yaml +0 -0
  31. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/workflows/rbln_optimum_pytest.yaml +0 -0
  32. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/workflows/rbln_scheduled_test.yaml +0 -0
  33. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/workflows/rbln_trigger_on_pr.yaml +0 -0
  34. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.github/workflows/test-docstrings.yml +0 -0
  35. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/.gitignore +0 -0
  36. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/CODE_OF_CONDUCT.md +0 -0
  37. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/CONTRIBUTING.md +0 -0
  38. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/LICENSE +0 -0
  39. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/README.md +0 -0
  40. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/assets/rbln_logo.png +0 -0
  41. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/advanced/custom_class.py +0 -0
  42. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/audio-classification/run_ast_audio_classification.py +0 -0
  43. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/depth-estimation/run_dpt.py +0 -0
  44. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/image-classification/run_image_classification.py +0 -0
  45. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/image-classification/run_vit_image_classification.py +0 -0
  46. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/image-to-text/run_idefics3.py +0 -0
  47. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/image-to-text/run_llava_next_image_to_text.py +0 -0
  48. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/kandinsky2_2/run_kandinsky2_2.py +0 -0
  49. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/kandinsky2_2/run_kandinsky2_2_combined.py +0 -0
  50. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/kandinsky2_2/run_kandinsky2_2_img2img.py +0 -0
  51. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/kandinsky2_2/run_kandinsky2_2_img2img_combined.py +0 -0
  52. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/kandinsky2_2/run_kandinsky2_2_inpaint.py +0 -0
  53. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/kandinsky2_2/run_kandinsky2_2_inpaint_combined.py +0 -0
  54. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/kandinsky2_2/run_kandinsky2_2_prior_interpolate.py +0 -0
  55. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/question-answering/run_question_answering.py +0 -0
  56. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/speech-recognition/run_wav2vec2.py +0 -0
  57. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/speech-recognition/run_whisper.py +0 -0
  58. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/stable-diffusion/run_stable_diffusion.py +0 -0
  59. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/stable-diffusion/run_stable_diffusion_controlnet.py +0 -0
  60. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/stable-diffusion/run_stable_diffusion_img2img.py +0 -0
  61. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/stable-diffusion/run_stable_diffusion_img2img_controlnet.py +0 -0
  62. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/stable-diffusion/run_stable_diffusion_inpaint.py +0 -0
  63. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/stable-diffusion/run_stable_diffusion_lora.py +0 -0
  64. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/stable-diffusion/run_stable_diffusion_multicontrolnet.py +0 -0
  65. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/text-classification/run_bge_m3_text_classification.py +0 -0
  66. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/text-classification/run_bge_reranker_v2_m3_text_classification.py +0 -0
  67. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/text-classification/run_secureBERT.py +0 -0
  68. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/text-classification/run_t5_classification.py +0 -0
  69. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/text-classification/run_twitter_roberta_text_classification.py +0 -0
  70. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/text2text-generation/run_bart_text2text_generation.py +0 -0
  71. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/text2text-generation/run_llama_peft.py +0 -0
  72. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/text2text-generation/run_llama_text2text_generation.py +0 -0
  73. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/examples/time-series-forecasting/run_time_series_forecasting.py +0 -0
  74. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/pyproject.toml +0 -0
  75. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/scripts/uv-lock.sh +0 -0
  76. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/scripts/uv-sync.sh +0 -0
  77. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/configuration_utils.py +0 -0
  78. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/__init__.py +0 -0
  79. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/__init__.py +0 -0
  80. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/models/__init__.py +0 -0
  81. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +0 -0
  82. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +0 -0
  83. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +0 -0
  84. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +0 -0
  85. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +0 -0
  86. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +0 -0
  87. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +0 -0
  88. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +0 -0
  89. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/pipelines/__init__.py +0 -0
  90. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +0 -0
  91. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +0 -0
  92. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +0 -0
  93. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +0 -0
  94. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +0 -0
  95. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +0 -0
  96. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/modeling_diffusers.py +0 -0
  97. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/models/__init__.py +0 -0
  98. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/models/autoencoders/__init__.py +0 -0
  99. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +0 -0
  100. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +0 -0
  101. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/models/autoencoders/vae.py +0 -0
  102. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/models/autoencoders/vq_model.py +0 -0
  103. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/models/controlnet.py +0 -0
  104. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/models/transformers/__init__.py +0 -0
  105. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/models/transformers/prior_transformer.py +0 -0
  106. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +0 -0
  107. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/models/transformers/transformer_sd3.py +0 -0
  108. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/models/unets/__init__.py +0 -0
  109. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/models/unets/unet_2d_condition.py +0 -0
  110. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/__init__.py +0 -0
  111. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/auto_pipeline.py +0 -0
  112. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/controlnet/__init__.py +0 -0
  113. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +0 -0
  114. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +0 -0
  115. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +0 -0
  116. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +0 -0
  117. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +0 -0
  118. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/cosmos/__init__.py +0 -0
  119. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +0 -0
  120. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +0 -0
  121. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +0 -0
  122. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +0 -0
  123. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +0 -0
  124. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +0 -0
  125. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +0 -0
  126. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +0 -0
  127. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +0 -0
  128. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +0 -0
  129. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +0 -0
  130. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +0 -0
  131. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +0 -0
  132. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +0 -0
  133. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +0 -0
  134. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +0 -0
  135. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +0 -0
  136. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +0 -0
  137. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +0 -0
  138. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -0
  139. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -0
  140. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -0
  141. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/modeling.py +0 -0
  142. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/modeling_base.py +0 -0
  143. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/ops/__init__.py +0 -0
  144. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/ops/attn.py +0 -0
  145. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/ops/flash_attn.py +0 -0
  146. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/ops/kv_cache_update.py +0 -0
  147. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/ops/linear.py +0 -0
  148. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/ops/sliding_window_attn.py +0 -0
  149. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/configuration_generic.py +0 -0
  150. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/modeling_attention_utils.py +0 -0
  151. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/modeling_generic.py +0 -0
  152. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/modeling_outputs.py +0 -0
  153. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/modeling_rope_utils.py +0 -0
  154. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py +0 -0
  155. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +0 -0
  156. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +0 -0
  157. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/auto/__init__.py +0 -0
  158. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/auto/auto_factory.py +0 -0
  159. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/auto/modeling_auto.py +0 -0
  160. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/bart/__init__.py +0 -0
  161. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/bart/bart_architecture.py +0 -0
  162. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/bart/configuration_bart.py +0 -0
  163. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/bart/modeling_bart.py +0 -0
  164. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/bert/__init__.py +0 -0
  165. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/bert/bert_architecture.py +0 -0
  166. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/bert/configuration_bert.py +0 -0
  167. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/bert/modeling_bert.py +0 -0
  168. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/blip_2/__init__.py +0 -0
  169. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +0 -0
  170. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +0 -0
  171. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/clip/__init__.py +0 -0
  172. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/clip/configuration_clip.py +0 -0
  173. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/clip/modeling_clip.py +0 -0
  174. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/colpali/__init__.py +0 -0
  175. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/colpali/colpali_architecture.py +0 -0
  176. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/colpali/configuration_colpali.py +0 -0
  177. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/colpali/modeling_colpali.py +0 -0
  178. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/decoderonly/__init__.py +0 -0
  179. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +0 -0
  180. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +0 -0
  181. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +0 -0
  182. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +0 -0
  183. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/depth_anything/__init__.py +0 -0
  184. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +0 -0
  185. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +0 -0
  186. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/distilbert/__init__.py +0 -0
  187. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +0 -0
  188. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +0 -0
  189. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/dpt/__init__.py +0 -0
  190. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/dpt/configuration_dpt.py +0 -0
  191. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -0
  192. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/exaone/__init__.py +0 -0
  193. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/exaone/configuration_exaone.py +0 -0
  194. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/exaone/exaone_architecture.py +0 -0
  195. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/exaone/modeling_exaone.py +0 -0
  196. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/gemma/__init__.py +0 -0
  197. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/gemma/configuration_gemma.py +0 -0
  198. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/gemma/gemma_architecture.py +0 -0
  199. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/gemma/modeling_gemma.py +0 -0
  200. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/gemma3/__init__.py +0 -0
  201. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +0 -0
  202. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +0 -0
  203. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +0 -0
  204. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +0 -0
  205. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/gpt2/__init__.py +0 -0
  206. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +0 -0
  207. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +0 -0
  208. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +0 -0
  209. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/grounding_dino/__init__.py +0 -0
  210. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +0 -0
  211. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +0 -0
  212. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/idefics3/__init__.py +0 -0
  213. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +0 -0
  214. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +0 -0
  215. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/llama/__init__.py +0 -0
  216. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/llama/configuration_llama.py +0 -0
  217. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/llama/llama_architecture.py +0 -0
  218. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/llama/modeling_llama.py +0 -0
  219. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/llava/__init__.py +0 -0
  220. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/llava/configuration_llava.py +0 -0
  221. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/llava/modeling_llava.py +0 -0
  222. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/llava_next/__init__.py +0 -0
  223. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +0 -0
  224. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +0 -0
  225. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/midm/__init__.py +0 -0
  226. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/midm/configuration_midm.py +0 -0
  227. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/midm/midm_architecture.py +0 -0
  228. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/midm/modeling_midm.py +0 -0
  229. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/mistral/__init__.py +0 -0
  230. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/mistral/configuration_mistral.py +0 -0
  231. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/mistral/mistral_architecture.py +0 -0
  232. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/mistral/modeling_mistral.py +0 -0
  233. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/opt/__init__.py +0 -0
  234. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/opt/configuration_opt.py +0 -0
  235. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/opt/modeling_opt.py +0 -0
  236. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/opt/opt_architecture.py +0 -0
  237. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/pegasus/__init__.py +0 -0
  238. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +0 -0
  239. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +0 -0
  240. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +0 -0
  241. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/phi/__init__.py +0 -0
  242. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/phi/configuration_phi.py +0 -0
  243. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/phi/modeling_phi.py +0 -0
  244. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/phi/phi_architecture.py +0 -0
  245. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/pixtral/__init__.py +0 -0
  246. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +0 -0
  247. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +0 -0
  248. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +0 -0
  249. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/qwen2/__init__.py +0 -0
  250. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +0 -0
  251. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +0 -0
  252. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +0 -0
  253. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +0 -0
  254. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +0 -0
  255. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +0 -0
  256. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +0 -0
  257. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/qwen3/__init__.py +0 -0
  258. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +0 -0
  259. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +0 -0
  260. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +0 -0
  261. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/resnet/__init__.py +0 -0
  262. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/resnet/configuration_resnet.py +0 -0
  263. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/resnet/modeling_resnet.py +0 -0
  264. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/roberta/__init__.py +0 -0
  265. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/roberta/configuration_roberta.py +0 -0
  266. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/roberta/modeling_roberta.py +0 -0
  267. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/seq2seq/__init__.py +0 -0
  268. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +0 -0
  269. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +0 -0
  270. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +0 -0
  271. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/siglip/__init__.py +0 -0
  272. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/siglip/configuration_siglip.py +0 -0
  273. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/siglip/modeling_siglip.py +0 -0
  274. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/swin/__init__.py +0 -0
  275. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/swin/configuration_swin.py +0 -0
  276. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/swin/modeling_swin.py +0 -0
  277. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/t5/__init__.py +0 -0
  278. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/t5/configuration_t5.py +0 -0
  279. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/t5/modeling_t5.py +0 -0
  280. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/t5/t5_architecture.py +0 -0
  281. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/time_series_transformer/__init__.py +0 -0
  282. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +0 -0
  283. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +0 -0
  284. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +0 -0
  285. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/vit/__init__.py +0 -0
  286. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/vit/configuration_vit.py +0 -0
  287. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/vit/modeling_vit.py +0 -0
  288. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/wav2vec2/__init__.py +0 -0
  289. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +0 -0
  290. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +0 -0
  291. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/whisper/__init__.py +0 -0
  292. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/whisper/configuration_whisper.py +0 -0
  293. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/whisper/generation_whisper.py +0 -0
  294. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/whisper/modeling_whisper.py +0 -0
  295. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/whisper/whisper_architecture.py +0 -0
  296. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/xlm_roberta/__init__.py +0 -0
  297. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +0 -0
  298. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +0 -0
  299. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/utils/__init__.py +0 -0
  300. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/transformers/utils/rbln_quantization.py +0 -0
  301. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/utils/__init__.py +0 -0
  302. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/utils/decorator_utils.py +0 -0
  303. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/utils/depreacate_utils.py +0 -0
  304. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/utils/hub.py +0 -0
  305. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/utils/import_utils.py +0 -0
  306. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/utils/logging.py +0 -0
  307. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/utils/model_utils.py +0 -0
  308. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/utils/runtime_utils.py +0 -0
  309. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/utils/save_utils.py +0 -0
  310. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/src/optimum/rbln/utils/submodule.py +0 -0
  311. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/tests/__init__.py +0 -0
  312. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/tests/psnr.py +0 -0
  313. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/tests/requirements_sdxl.txt +0 -0
  314. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/tests/run_stable_diffusion_xl_base.py +0 -0
  315. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/tests/test_base.py +0 -0
  316. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/tests/test_config.py +0 -0
  317. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/tests/test_diffusers.py +0 -0
  318. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/tests/test_transformers.py +0 -0
  319. {optimum_rbln-0.8.4a1 → optimum_rbln-0.8.4a2}/uv.lock +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.8.4a1
3
+ Version: 0.8.4a2
4
4
  Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
@@ -148,6 +148,10 @@ _import_structure = {
148
148
  "RBLNQwen3ForCausalLMConfig",
149
149
  "RBLNQwen3Model",
150
150
  "RBLNQwen3ModelConfig",
151
+ "RBLNQwen2VisionTransformerPretrainedModel",
152
+ "RBLNQwen2VisionTransformerPretrainedModelConfig",
153
+ "RBLNQwen2VLForConditionalGeneration",
154
+ "RBLNQwen2VLForConditionalGenerationConfig",
151
155
  "RBLNResNetForImageClassification",
152
156
  "RBLNResNetForImageClassificationConfig",
153
157
  "RBLNRobertaForMaskedLM",
@@ -430,6 +434,10 @@ if TYPE_CHECKING:
430
434
  RBLNQwen2ForCausalLMConfig,
431
435
  RBLNQwen2Model,
432
436
  RBLNQwen2ModelConfig,
437
+ RBLNQwen2VisionTransformerPretrainedModel,
438
+ RBLNQwen2VisionTransformerPretrainedModelConfig,
439
+ RBLNQwen2VLForConditionalGeneration,
440
+ RBLNQwen2VLForConditionalGenerationConfig,
433
441
  RBLNQwen3ForCausalLM,
434
442
  RBLNQwen3ForCausalLMConfig,
435
443
  RBLNQwen3Model,
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
28
28
  commit_id: COMMIT_ID
29
29
  __commit_id__: COMMIT_ID
30
30
 
31
- __version__ = version = '0.8.4a1'
32
- __version_tuple__ = version_tuple = (0, 8, 4, 'a1')
31
+ __version__ = version = '0.8.4a2'
32
+ __version_tuple__ = version_tuple = (0, 8, 4, 'a2')
33
33
 
34
34
  __commit_id__ = commit_id = None
@@ -130,6 +130,10 @@ _import_structure = {
130
130
  "RBLNQwen2_5_VisionTransformerPretrainedModelConfig",
131
131
  "RBLNQwen2_5_VLForConditionalGeneration",
132
132
  "RBLNQwen2_5_VLForConditionalGenerationConfig",
133
+ "RBLNQwen2VisionTransformerPretrainedModel",
134
+ "RBLNQwen2VisionTransformerPretrainedModelConfig",
135
+ "RBLNQwen2VLForConditionalGeneration",
136
+ "RBLNQwen2VLForConditionalGenerationConfig",
133
137
  "RBLNQwen2Model",
134
138
  "RBLNQwen2ModelConfig",
135
139
  "RBLNQwen2ForCausalLM",
@@ -282,6 +286,10 @@ if TYPE_CHECKING:
282
286
  RBLNQwen2ForCausalLMConfig,
283
287
  RBLNQwen2Model,
284
288
  RBLNQwen2ModelConfig,
289
+ RBLNQwen2VisionTransformerPretrainedModel,
290
+ RBLNQwen2VisionTransformerPretrainedModelConfig,
291
+ RBLNQwen2VLForConditionalGeneration,
292
+ RBLNQwen2VLForConditionalGenerationConfig,
285
293
  RBLNQwen3ForCausalLM,
286
294
  RBLNQwen3ForCausalLMConfig,
287
295
  RBLNQwen3Model,
@@ -85,6 +85,12 @@ _import_structure = {
85
85
  "RBLNQwen2_5_VLForConditionalGeneration",
86
86
  "RBLNQwen2_5_VLForConditionalGenerationConfig",
87
87
  ],
88
+ "qwen2_vl": [
89
+ "RBLNQwen2VisionTransformerPretrainedModel",
90
+ "RBLNQwen2VisionTransformerPretrainedModelConfig",
91
+ "RBLNQwen2VLForConditionalGeneration",
92
+ "RBLNQwen2VLForConditionalGenerationConfig",
93
+ ],
88
94
  "decoderonly": [
89
95
  "RBLNDecoderOnlyModelConfig",
90
96
  "RBLNDecoderOnlyModel",
@@ -281,6 +287,12 @@ if TYPE_CHECKING:
281
287
  RBLNQwen2_5_VLForConditionalGeneration,
282
288
  RBLNQwen2_5_VLForConditionalGenerationConfig,
283
289
  )
290
+ from .qwen2_vl import (
291
+ RBLNQwen2VisionTransformerPretrainedModel,
292
+ RBLNQwen2VisionTransformerPretrainedModelConfig,
293
+ RBLNQwen2VLForConditionalGeneration,
294
+ RBLNQwen2VLForConditionalGenerationConfig,
295
+ )
284
296
  from .qwen3 import RBLNQwen3ForCausalLM, RBLNQwen3ForCausalLMConfig, RBLNQwen3Model, RBLNQwen3ModelConfig
285
297
  from .resnet import RBLNResNetForImageClassification, RBLNResNetForImageClassificationConfig
286
298
  from .roberta import (
@@ -579,7 +579,7 @@ class DecoderOnlyAttention(nn.Module):
579
579
  )
580
580
  self.head_dim = self._original_mod.head_dim
581
581
  self._phase = "prefill"
582
- self.scale = torch.tensor(self.get_attn_scale())
582
+ self.scale = torch.nn.Parameter(torch.tensor(self.get_attn_scale()))
583
583
  self.quantization = rbln_config.quantization
584
584
 
585
585
  if hasattr(self._original_mod, "num_key_value_heads"):
@@ -11,6 +11,7 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
+ import math
14
15
  from functools import wraps
15
16
  from typing import TYPE_CHECKING, List, Optional, Tuple
16
17
 
@@ -20,7 +21,6 @@ from torch import Tensor
20
21
  from transformers.models.grounding_dino.modeling_grounding_dino import (
21
22
  GroundingDinoDecoder,
22
23
  GroundingDinoEncoder,
23
- get_sine_pos_embed,
24
24
  )
25
25
 
26
26
 
@@ -33,31 +33,46 @@ def monkey_patch():
33
33
  GroundingDinoBiMultiHeadAttention,
34
34
  GroundingDinoEncoderLayer,
35
35
  GroundingDinoMultiscaleDeformableAttention,
36
+ MultiScaleDeformableAttention,
36
37
  )
37
38
 
38
39
  original_forward = GroundingDinoMultiscaleDeformableAttention.forward
39
40
  original_bi_multihead_attention_forward = GroundingDinoBiMultiHeadAttention.forward
40
41
  original_encoder_layer_forward = GroundingDinoEncoderLayer.forward
42
+ original_multiscale_deform_attn = MultiScaleDeformableAttention.forward
41
43
 
42
44
  # Patch the methods with the custom implementations
43
45
  GroundingDinoMultiscaleDeformableAttention.forward = _GroundingDinoMultiscaleDeformableAttention.forward
44
46
  GroundingDinoBiMultiHeadAttention.forward = _GroundingDinoBiMultiHeadAttention.forward
45
47
  GroundingDinoEncoderLayer.forward = _GroundingDinoEncoderLayer.forward
48
+ MultiScaleDeformableAttention.forward = _MultiScaleDeformableAttention.forward
46
49
 
47
- return (original_forward, original_bi_multihead_attention_forward, original_encoder_layer_forward)
50
+ return (
51
+ original_forward,
52
+ original_bi_multihead_attention_forward,
53
+ original_encoder_layer_forward,
54
+ original_multiscale_deform_attn,
55
+ )
48
56
 
49
57
 
50
- def restore_monkey_patch(original_forward, original_bi_multihead_attention_forward, original_encoder_layer_forward):
58
+ def restore_monkey_patch(
59
+ original_forward,
60
+ original_bi_multihead_attention_forward,
61
+ original_encoder_layer_forward,
62
+ original_multiscale_deform_attn,
63
+ ):
51
64
  from transformers.models.grounding_dino.modeling_grounding_dino import (
52
65
  GroundingDinoBiMultiHeadAttention,
53
66
  GroundingDinoEncoderLayer,
54
67
  GroundingDinoMultiscaleDeformableAttention,
68
+ MultiScaleDeformableAttention,
55
69
  )
56
70
 
57
71
  # Restore the original methods
58
72
  GroundingDinoMultiscaleDeformableAttention.forward = original_forward
59
73
  GroundingDinoBiMultiHeadAttention.forward = original_bi_multihead_attention_forward
60
74
  GroundingDinoEncoderLayer.forward = original_encoder_layer_forward
75
+ MultiScaleDeformableAttention.forward = original_multiscale_deform_attn
61
76
 
62
77
 
63
78
  def monkey_patch_decorator(func):
@@ -76,6 +91,30 @@ def monkey_patch_decorator(func):
76
91
  return wrapper
77
92
 
78
93
 
94
+ def get_sine_pos_embed(
95
+ pos_tensor: torch.Tensor, num_pos_feats: int = 128, temperature: int = 10000, exchange_xy: bool = True
96
+ ) -> Tensor:
97
+ scale = 2 * math.pi
98
+ dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device)
99
+ dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
100
+
101
+ scaled_pos = pos_tensor.unsqueeze(-1) * scale / dim_t
102
+ reshaped_pos = scaled_pos.view(*scaled_pos.shape[:-1], -1, 2)
103
+ sin_chunk, cos_chunk = torch.split(reshaped_pos, 1, dim=-1)
104
+ sin_embed = sin_chunk.squeeze(-1).sin()
105
+ cos_embed = cos_chunk.squeeze(-1).cos()
106
+
107
+ pos_embed = torch.stack((sin_embed, cos_embed), dim=-1).flatten(-2)
108
+
109
+ if exchange_xy and pos_tensor.shape[-1] >= 2:
110
+ swapped_embeds = torch.cat([pos_embed[..., 1:2, :], pos_embed[..., 0:1, :], pos_embed[..., 2:, :]], dim=-2)
111
+ pos_embed = swapped_embeds
112
+
113
+ position_embeddings = pos_embed.flatten(start_dim=-2)
114
+
115
+ return position_embeddings
116
+
117
+
79
118
  class _GroundingDinoEncoder(torch.nn.Module):
80
119
  def __init__(self, model: "GroundingDinoEncoder", rbln_config: "RBLNGroundingDinoEncoderConfig"):
81
120
  super().__init__()
@@ -386,16 +425,20 @@ class _GroundingDinoMultiscaleDeformableAttention(torch.nn.Module):
386
425
  # batch_size, num_queries, n_heads, n_levels, n_points, 2
387
426
  num_coordinates = reference_points.shape[-1]
388
427
  if num_coordinates == 2:
389
- offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
390
- sampling_locations = (
391
- reference_points[:, :, None, :, None, :]
428
+ offset_normalizer = 0.5 * torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
429
+ sampling_grids = (
430
+ 2 * reference_points[:, :, None, :, None, :]
431
+ - 1
392
432
  + sampling_offsets / offset_normalizer[None, None, None, :, None, :]
393
433
  )
394
434
  elif num_coordinates == 4:
395
- sampling_locations = (
396
- reference_points[:, :, None, :, None, :2]
397
- + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
398
- )
435
+ ref_points_xy, ref_points_wh = torch.split(reference_points, 2, dim=-1)
436
+ ref_points_xy = ref_points_xy[:, :, None, :, None, :]
437
+ ref_points_wh = ref_points_wh[:, :, None, :, None, :]
438
+ ref_points_grids = 2 * ref_points_xy - 1
439
+ offset_grids = sampling_offsets / self.n_points * ref_points_wh
440
+ sampling_grids = ref_points_grids + offset_grids
441
+
399
442
  else:
400
443
  raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
401
444
 
@@ -404,7 +447,7 @@ class _GroundingDinoMultiscaleDeformableAttention(torch.nn.Module):
404
447
  spatial_shapes,
405
448
  spatial_shapes_list,
406
449
  level_start_index,
407
- sampling_locations,
450
+ sampling_grids,
408
451
  attention_weights,
409
452
  self.im2col_step,
410
453
  )
@@ -456,15 +499,14 @@ class _GroundingDinoBiMultiHeadAttention(torch.nn.Module):
456
499
  # # Do not increase -50000/50000, data type half has quite limited range
457
500
  attn_weights = torch.clamp(attn_weights, min=-50000, max=50000)
458
501
 
459
- attn_weights_transposed = attn_weights.transpose(1, 2)
460
502
  # RBLN FIX: max_values from scalar to vector
461
- text_attn_weights = attn_weights_transposed - torch.max(attn_weights_transposed, dim=-1, keepdim=True)[
462
- 0
463
- ].repeat(1, 1, tgt_len)
503
+ text_attn_weights = attn_weights - torch.max(attn_weights, dim=1, keepdim=True)[0].repeat(1, tgt_len, 1)
464
504
 
465
505
  # # Do not increase -50000/50000, data type half has quite limited range
466
506
  text_attn_weights = torch.clamp(text_attn_weights, min=-50000, max=50000)
467
507
 
508
+ text_attn_weights = text_attn_weights.transpose(1, 2)
509
+
468
510
  # mask vision for language
469
511
  if vision_attention_mask is not None:
470
512
  # RBLN FIX: bool tensor to float tensor
@@ -511,3 +553,47 @@ class _GroundingDinoBiMultiHeadAttention(torch.nn.Module):
511
553
  text_attn_output = self.out_text_proj(text_attn_output)
512
554
 
513
555
  return (vision_attn_output, vision_attn_weights), (text_attn_output, text_attn_weights)
556
+
557
+
558
+ class _MultiScaleDeformableAttention(torch.nn.Module):
559
+ def forward(
560
+ self,
561
+ value: Tensor,
562
+ value_spatial_shapes: Tensor,
563
+ value_spatial_shapes_list: List[Tuple],
564
+ level_start_index: Tensor,
565
+ sampling_grids: Tensor,
566
+ attention_weights: Tensor,
567
+ im2col_step: int,
568
+ ):
569
+ batch_size, _, num_heads, hidden_dim = value.shape
570
+ _, num_queries, num_heads, num_levels, num_points, _ = sampling_grids.shape
571
+ value_list = value.split([height * width for height, width in value_spatial_shapes_list], dim=1)
572
+ sampling_value_list = []
573
+ sampling_grids_list = [t.squeeze(3) for t in torch.split(sampling_grids, 1, dim=3)]
574
+ for level_id, (height, width) in enumerate(value_spatial_shapes_list):
575
+ value_l_ = (
576
+ value_list[level_id].permute(0, 2, 3, 1).reshape(batch_size * num_heads, hidden_dim, height, width)
577
+ )
578
+ sampling_grid_l_ = sampling_grids_list[level_id].transpose(1, 2).flatten(0, 1)
579
+ sampling_value_l_ = torch.nn.functional.grid_sample(
580
+ value_l_,
581
+ sampling_grid_l_,
582
+ mode="bilinear",
583
+ padding_mode="zeros",
584
+ align_corners=False,
585
+ )
586
+ sampling_value_list.append(sampling_value_l_)
587
+
588
+ sampling_values = torch.cat(sampling_value_list, dim=-1)
589
+ attention_weights_prep = attention_weights.transpose(1, 2)
590
+ values_permuted = sampling_values.permute(0, 2, 3, 1)
591
+
592
+ weights_for_matmul = attention_weights_prep.reshape(
593
+ batch_size * num_heads, num_queries, 1, num_levels * num_points
594
+ )
595
+ output_before_permute = torch.matmul(weights_for_matmul, values_permuted)
596
+ output_before_view = output_before_permute.squeeze(2).permute(0, 2, 1)
597
+ output = output_before_view.reshape(batch_size, num_heads * hidden_dim, num_queries)
598
+
599
+ return output.transpose(1, 2).contiguous()
@@ -0,0 +1,19 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .configuration_qwen2_vl import (
16
+ RBLNQwen2VisionTransformerPretrainedModelConfig,
17
+ RBLNQwen2VLForConditionalGenerationConfig,
18
+ )
19
+ from .modeling_qwen2_vl import RBLNQwen2VisionTransformerPretrainedModel, RBLNQwen2VLForConditionalGeneration
@@ -0,0 +1,88 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Any, Dict, List, Optional, Union
16
+
17
+ from ....configuration_utils import RBLNModelConfig
18
+ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausalLMConfig
19
+
20
+
21
+ class RBLNQwen2VLForConditionalGenerationConfig(RBLNDecoderOnlyModelForCausalLMConfig):
22
+ submodules = ["visual"]
23
+
24
+ def __init__(
25
+ self,
26
+ use_inputs_embeds: bool = True,
27
+ visual: Optional[RBLNModelConfig] = None,
28
+ **kwargs: Dict[str, Any],
29
+ ):
30
+ """
31
+ Args:
32
+ use_inputs_embeds (bool): Whether or not to use `inputs_embeds` as input. Defaults to `True`.
33
+ visual (Optional[RBLNModelConfig]): Configuration for the vision encoder component.
34
+ **kwargs: Additional arguments passed to the parent `RBLNDecoderOnlyModelForCausalLMConfig`.
35
+
36
+ Raises:
37
+ ValueError: If `use_inputs_embeds` is False.
38
+ ValueError: If the visual configuration is provided but contains invalid settings, such as an invalid max_seq_lens (e.g., not a positive integer or insufficient for the expected resolution).
39
+ ValueError: If visual is None and no default vision configuration can be inferred for the model architecture.
40
+ ValueError: If any inherited parameters violate constraints defined in the parent class, such as batch_size not being a positive integer, prefill_chunk_size not being divisible by 64, or max_seq_len not meeting requirements for Flash Attention.
41
+ """
42
+ super().__init__(use_inputs_embeds=use_inputs_embeds, **kwargs)
43
+ if not self.use_inputs_embeds:
44
+ raise ValueError(
45
+ "RBLNQwen2VLForConditionalGenerationConfig does not allow `use_inputs_embeds` to be set to False, "
46
+ "as RBLNQwen2VLForConditionalGeneration accepts only `inputs_embeds` as input."
47
+ )
48
+ self.visual = visual
49
+
50
+
51
+ class RBLNQwen2VisionTransformerPretrainedModelConfig(RBLNModelConfig):
52
+ def __init__(self, max_seq_lens: Union[int, List[int]] = None, **kwargs: Dict[str, Any]):
53
+ """
54
+ Args:
55
+ max_seq_lens (Optional[Union[int, List[int]]]): Maximum sequence lengths for Vision
56
+ Transformer attention. Can be an integer or list of integers, each indicating
57
+ the number of patches in a sequence for an image or video. For example, an image
58
+ of 224x224 pixels with patch size 14 results in (224/14) * (224/14) = 256 patches,
59
+ so `max_seq_lens` must be at least 256. RBLN optimization runs inference per image
60
+ or video frame, so set `max_seq_lens` to match the maximum expected resolution to
61
+ optimize computation. If not provided, a `ValueError` is raised.
62
+ **kwargs: Additional arguments passed to the parent RBLNModelConfig.
63
+
64
+ Raises:
65
+ ValueError: If batch_size is not a positive integer.
66
+ ValueError: If `max_seq_lens` (or any value in the list) is not a positive integer.
67
+ ValueError: If `max_seq_lens` is insufficient for the expected image/video resolution.
68
+ ValueError: If `batch_size` (inherited from RBLNModelConfig) is not a positive integer.
69
+
70
+ Max Seq Lens:
71
+ Since `Qwen2VLForConditionalGeneration` performs inference on a per-image or per-frame basis,
72
+ `max_seq_lens` should be set based on the maximum expected resolution of the input images or video frames.
73
+
74
+ The value must be greater than or equal to the number of patches generated from the input image.
75
+ For example, a 224x224 image with a patch size of 14 results in (224 / 14) * (224 / 14) = 256 patches.
76
+ Therefore, `max_seq_lens` must be at least 256.
77
+ """
78
+ super().__init__(**kwargs)
79
+
80
+ if max_seq_lens is not None:
81
+ if isinstance(max_seq_lens, int):
82
+ max_seq_lens = [max_seq_lens]
83
+ elif isinstance(max_seq_lens, list):
84
+ max_seq_lens.sort(reverse=True)
85
+ else:
86
+ raise ValueError("'max_seq_lens' must be specified.")
87
+
88
+ self.max_seq_lens = max_seq_lens