optimum-rbln 0.8.2a1__tar.gz → 0.8.2a3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of optimum-rbln might be problematic. Click here for more details.
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/workflows/rbln_optimum_pytest.yaml +7 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/workflows/rbln_scheduled_test.yaml +1 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/PKG-INFO +1 -1
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/__init__.py +8 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/__version__.py +2 -2
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/configuration_utils.py +16 -1
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +3 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/modeling_diffusers.py +3 -4
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +1 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/models/autoencoders/vq_model.py +1 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +1 -1
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +10 -2
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +4 -30
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/modeling.py +2 -3
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/modeling_base.py +17 -13
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/__init__.py +8 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/__init__.py +2 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/clip/configuration_clip.py +12 -1
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/clip/modeling_clip.py +123 -28
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +13 -1
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +2 -3
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +107 -249
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +18 -1
- optimum_rbln-0.8.2a3/src/optimum/rbln/transformers/models/qwen3/__init__.py +16 -0
- optimum_rbln-0.8.2a3/src/optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +71 -0
- optimum_rbln-0.8.2a3/src/optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +377 -0
- optimum_rbln-0.8.2a3/src/optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +275 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +2 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +2 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/whisper/modeling_whisper.py +2 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/utils/hub.py +8 -47
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/utils/runtime_utils.py +28 -2
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/tests/test_base.py +75 -77
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/tests/test_diffusers.py +2 -2
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/tests/test_llm.py +13 -1
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/tests/test_transformers.py +2 -2
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/ISSUE_TEMPLATE/config.yml +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/ISSUE_TEMPLATE/model_request.md +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/pull_request_template.md +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/scripts/auto_code_review.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/scripts/validate_docstrings.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/scripts/validate_pr_checklist.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/version.yaml +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/workflows/auto_code_review.yml +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/workflows/check_code_quality.yml +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/workflows/deploy-on-tag.yaml +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/workflows/deploy.yaml +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/workflows/pr-title-check.yaml +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/workflows/pr_checklist_validator.yml +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/workflows/rbln_check_compiler.yaml +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/workflows/rbln_dispatch_pytest.yaml +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/workflows/rbln_optimum_inference_test.yaml +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/workflows/rbln_trigger_on_pr.yaml +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.github/workflows/test-docstrings.yml +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/.gitignore +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/CODE_OF_CONDUCT.md +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/CONTRIBUTING.md +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/LICENSE +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/README.md +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/assets/rbln_logo.png +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/advanced/custom_class.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/audio-classification/run_ast_audio_classification.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/depth-estimation/run_dpt.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/image-classification/run_image_classification.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/image-classification/run_vit_image_classification.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/image-to-text/run_idefics3.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/image-to-text/run_llava_next_image_to_text.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/kandinsky2_2/run_kandinsky2_2.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/kandinsky2_2/run_kandinsky2_2_combined.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/kandinsky2_2/run_kandinsky2_2_img2img.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/kandinsky2_2/run_kandinsky2_2_img2img_combined.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/kandinsky2_2/run_kandinsky2_2_inpaint.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/kandinsky2_2/run_kandinsky2_2_inpaint_combined.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/kandinsky2_2/run_kandinsky2_2_prior_interpolate.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/question-answering/run_question_answering.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/speech-recognition/run_wav2vec2.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/speech-recognition/run_whisper.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/stable-diffusion/run_stable_diffusion.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/stable-diffusion/run_stable_diffusion_controlnet.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/stable-diffusion/run_stable_diffusion_img2img.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/stable-diffusion/run_stable_diffusion_img2img_controlnet.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/stable-diffusion/run_stable_diffusion_inpaint.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/stable-diffusion/run_stable_diffusion_lora.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/stable-diffusion/run_stable_diffusion_multicontrolnet.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/text-classification/run_bge_m3_text_classification.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/text-classification/run_bge_reranker_v2_m3_text_classification.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/text-classification/run_secureBERT.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/text-classification/run_t5_classification.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/text-classification/run_twitter_roberta_text_classification.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/text2text-generation/run_bart_text2text_generation.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/text2text-generation/run_llama_peft.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/text2text-generation/run_llama_text2text_generation.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/examples/time-series-forecasting/run_time_series_forecasting.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/pyproject.toml +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/scripts/uv-lock.sh +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/scripts/uv-sync.sh +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/models/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/pipelines/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/models/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/models/autoencoders/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/models/autoencoders/vae.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/models/controlnet.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/models/transformers/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/models/transformers/prior_transformer.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/models/transformers/transformer_sd3.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/models/unets/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/models/unets/unet_2d_condition.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/controlnet/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/cosmos/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/ops/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/ops/attn.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/ops/flash_attn.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/ops/kv_cache_update.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/ops/linear.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/ops/sliding_window_attn.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/configuration_generic.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/modeling_generic.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/modeling_rope_utils.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/auto/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/auto/auto_factory.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/auto/modeling_auto.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/bart/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/bart/bart_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/bart/configuration_bart.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/bart/modeling_bart.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/bert/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/bert/configuration_bert.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/bert/modeling_bert.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/blip_2/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/clip/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/colpali/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/colpali/colpali_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/colpali/configuration_colpali.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/colpali/modeling_colpali.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/decoderonly/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/distilbert/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/dpt/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/dpt/configuration_dpt.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/exaone/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/exaone/configuration_exaone.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/exaone/exaone_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/exaone/modeling_exaone.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/gemma/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/gemma/configuration_gemma.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/gemma/gemma_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/gemma/modeling_gemma.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/gemma3/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/gpt2/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/idefics3/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/llama/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/llama/configuration_llama.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/llama/llama_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/llama/modeling_llama.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/llava_next/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/midm/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/midm/configuration_midm.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/midm/midm_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/midm/modeling_midm.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/mistral/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/mistral/configuration_mistral.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/mistral/mistral_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/mistral/modeling_mistral.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/opt/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/opt/configuration_opt.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/opt/modeling_opt.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/opt/opt_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/phi/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/phi/configuration_phi.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/phi/modeling_phi.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/phi/phi_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/qwen2/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/resnet/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/resnet/configuration_resnet.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/resnet/modeling_resnet.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/roberta/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/roberta/configuration_roberta.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/roberta/modeling_roberta.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/seq2seq/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/siglip/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/siglip/configuration_siglip.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/siglip/modeling_siglip.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/t5/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/t5/configuration_t5.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/t5/modeling_t5.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/t5/t5_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/time_series_transformer/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/vit/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/vit/configuration_vit.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/vit/modeling_vit.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/wav2vec2/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/whisper/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/whisper/configuration_whisper.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/whisper/generation_whisper.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/whisper/whisper_architecture.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/xlm_roberta/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/utils/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/utils/rbln_quantization.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/utils/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/utils/decorator_utils.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/utils/import_utils.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/utils/logging.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/utils/model_utils.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/utils/save_utils.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/utils/submodule.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/tests/__init__.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/tests/psnr.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/tests/requirements_sdxl.txt +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/tests/run_stable_diffusion_xl_base.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/tests/test_config.py +0 -0
- {optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/uv.lock +0 -0
|
@@ -20,12 +20,19 @@ on:
|
|
|
20
20
|
required: false
|
|
21
21
|
type: string
|
|
22
22
|
default: "default"
|
|
23
|
+
enable_hf_hub_tests:
|
|
24
|
+
description: "Whether to enable HF Hub tests (requires HF credentials)"
|
|
25
|
+
required: false
|
|
26
|
+
type: boolean
|
|
27
|
+
default: false
|
|
23
28
|
|
|
24
29
|
env:
|
|
25
30
|
REBEL_PYPI_ENDPOINT: ${{ vars.REBEL_PYPI_INTERNAL_ENDPOINT }}
|
|
26
31
|
REBEL_PYPI_USERNAME: ${{ secrets.REBEL_PYPI_USERNAME }}
|
|
27
32
|
REBEL_PYPI_PASSWORD: ${{ secrets.REBEL_PYPI_PASSWORD }}
|
|
28
33
|
HF_HOME: ${{ secrets.HF_HOME }}
|
|
34
|
+
HF_USER_ID: ${{ inputs.enable_hf_hub_tests && secrets.HF_USER_ID || '' }}
|
|
35
|
+
HF_AUTH_TOKEN: ${{ inputs.enable_hf_hub_tests && secrets.HF_AUTH_TOKEN || '' }}
|
|
29
36
|
|
|
30
37
|
jobs:
|
|
31
38
|
pytest:
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: optimum-rbln
|
|
3
|
-
Version: 0.8.
|
|
3
|
+
Version: 0.8.2a3
|
|
4
4
|
Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
|
@@ -110,6 +110,10 @@ _import_structure = {
|
|
|
110
110
|
"RBLNQwen2_5_VisionTransformerPretrainedModelConfig",
|
|
111
111
|
"RBLNQwen2_5_VLForConditionalGeneration",
|
|
112
112
|
"RBLNQwen2_5_VLForConditionalGenerationConfig",
|
|
113
|
+
"RBLNQwen3ForCausalLM",
|
|
114
|
+
"RBLNQwen3ForCausalLMConfig",
|
|
115
|
+
"RBLNQwen3Model",
|
|
116
|
+
"RBLNQwen3ModelConfig",
|
|
113
117
|
"RBLNResNetForImageClassification",
|
|
114
118
|
"RBLNResNetForImageClassificationConfig",
|
|
115
119
|
"RBLNRobertaForMaskedLM",
|
|
@@ -357,6 +361,10 @@ if TYPE_CHECKING:
|
|
|
357
361
|
RBLNQwen2_5_VLForConditionalGenerationConfig,
|
|
358
362
|
RBLNQwen2ForCausalLM,
|
|
359
363
|
RBLNQwen2ForCausalLMConfig,
|
|
364
|
+
RBLNQwen3ForCausalLM,
|
|
365
|
+
RBLNQwen3ForCausalLMConfig,
|
|
366
|
+
RBLNQwen3Model,
|
|
367
|
+
RBLNQwen3ModelConfig,
|
|
360
368
|
RBLNResNetForImageClassification,
|
|
361
369
|
RBLNResNetForImageClassificationConfig,
|
|
362
370
|
RBLNRobertaForMaskedLM,
|
|
@@ -17,5 +17,5 @@ __version__: str
|
|
|
17
17
|
__version_tuple__: VERSION_TUPLE
|
|
18
18
|
version_tuple: VERSION_TUPLE
|
|
19
19
|
|
|
20
|
-
__version__ = version = '0.8.
|
|
21
|
-
__version_tuple__ = version_tuple = (0, 8, 2, '
|
|
20
|
+
__version__ = version = '0.8.2a3'
|
|
21
|
+
__version_tuple__ = version_tuple = (0, 8, 2, 'a3')
|
|
@@ -147,7 +147,7 @@ class RBLNCompileConfig:
|
|
|
147
147
|
return asdict(self)
|
|
148
148
|
|
|
149
149
|
|
|
150
|
-
RUNTIME_KEYWORDS = ["create_runtimes", "optimize_host_memory", "device", "device_map", "activate_profiler"]
|
|
150
|
+
RUNTIME_KEYWORDS = ["create_runtimes", "optimize_host_memory", "device", "device_map", "activate_profiler", "timeout"]
|
|
151
151
|
CONFIG_MAPPING: Dict[str, Type["RBLNModelConfig"]] = {}
|
|
152
152
|
|
|
153
153
|
|
|
@@ -481,6 +481,7 @@ class RBLNModelConfig(RBLNSerializableConfigProtocol):
|
|
|
481
481
|
"device",
|
|
482
482
|
"device_map",
|
|
483
483
|
"activate_profiler",
|
|
484
|
+
"timeout",
|
|
484
485
|
]
|
|
485
486
|
submodules: List[str] = []
|
|
486
487
|
subclass_non_save_attributes = []
|
|
@@ -561,6 +562,7 @@ class RBLNModelConfig(RBLNSerializableConfigProtocol):
|
|
|
561
562
|
activate_profiler: Optional[bool] = None,
|
|
562
563
|
npu: Optional[str] = None,
|
|
563
564
|
tensor_parallel_size: Optional[int] = None,
|
|
565
|
+
timeout: Optional[int] = None,
|
|
564
566
|
optimum_rbln_version: Optional[str] = None,
|
|
565
567
|
_compile_cfgs: List[RBLNCompileConfig] = [],
|
|
566
568
|
**kwargs: Dict[str, Any],
|
|
@@ -577,6 +579,7 @@ class RBLNModelConfig(RBLNSerializableConfigProtocol):
|
|
|
577
579
|
activate_profiler (Optional[bool]): Whether to activate the profiler for performance analysis.
|
|
578
580
|
npu (Optional[str]): The NPU device name to use for compilation.
|
|
579
581
|
tensor_parallel_size (Optional[int]): Size for tensor parallelism to distribute the model across devices.
|
|
582
|
+
timeout (Optional[int]): The timeout for the runtime in seconds. If it isn't provided, it will be set to 60 by default.
|
|
580
583
|
optimum_rbln_version (Optional[str]): The optimum-rbln version used for this configuration.
|
|
581
584
|
_compile_cfgs (List[RBLNCompileConfig]): List of compilation configurations for the model.
|
|
582
585
|
**kwargs: Additional keyword arguments.
|
|
@@ -599,6 +602,7 @@ class RBLNModelConfig(RBLNSerializableConfigProtocol):
|
|
|
599
602
|
self._runtime_options["device"] = device
|
|
600
603
|
self._runtime_options["device_map"] = device_map
|
|
601
604
|
self._runtime_options["activate_profiler"] = activate_profiler
|
|
605
|
+
self._runtime_options["timeout"] = timeout
|
|
602
606
|
|
|
603
607
|
# Automatically pass npu, tensor_parallel_size to compile_cfgs
|
|
604
608
|
self.npu = npu
|
|
@@ -838,3 +842,14 @@ class RBLNModelConfig(RBLNSerializableConfigProtocol):
|
|
|
838
842
|
@activate_profiler.setter
|
|
839
843
|
def activate_profiler(self, activate_profiler: bool):
|
|
840
844
|
self._runtime_options["activate_profiler"] = activate_profiler
|
|
845
|
+
|
|
846
|
+
@property
|
|
847
|
+
def timeout(self):
|
|
848
|
+
context = ContextRblnConfig.get_current_context()["timeout"]
|
|
849
|
+
if context is not None:
|
|
850
|
+
return context
|
|
851
|
+
return self._runtime_options["timeout"]
|
|
852
|
+
|
|
853
|
+
@timeout.setter
|
|
854
|
+
def timeout(self, timeout: int):
|
|
855
|
+
self._runtime_options["timeout"] = timeout
|
|
@@ -52,6 +52,9 @@ class RBLNCosmosTransformer3DModelConfig(RBLNModelConfig):
|
|
|
52
52
|
Raises:
|
|
53
53
|
ValueError: If batch_size is not a positive integer.
|
|
54
54
|
"""
|
|
55
|
+
if kwargs.get("timeout") is None:
|
|
56
|
+
kwargs["timeout"] = 80
|
|
57
|
+
|
|
55
58
|
super().__init__(**kwargs)
|
|
56
59
|
self.batch_size = batch_size or 1
|
|
57
60
|
self.num_frames = num_frames or 121
|
{optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/diffusers/modeling_diffusers.py
RENAMED
|
@@ -70,8 +70,6 @@ class RBLNDiffusionMixin:
|
|
|
70
70
|
_submodules = []
|
|
71
71
|
_optional_submodules = []
|
|
72
72
|
_prefix = {}
|
|
73
|
-
_rbln_config_class = None
|
|
74
|
-
_hf_class = None
|
|
75
73
|
|
|
76
74
|
@staticmethod
|
|
77
75
|
def _maybe_apply_and_fuse_lora(
|
|
@@ -114,14 +112,14 @@ class RBLNDiffusionMixin:
|
|
|
114
112
|
@classmethod
|
|
115
113
|
def get_rbln_config_class(cls) -> Type[RBLNModelConfig]:
|
|
116
114
|
# Lazily loads and caches the corresponding RBLN model config class.
|
|
117
|
-
if cls._rbln_config_class is None:
|
|
115
|
+
if "_rbln_config_class" not in cls.__dict__ or cls._rbln_config_class is None:
|
|
118
116
|
rbln_config_class_name = cls.__name__ + "Config"
|
|
119
117
|
cls._rbln_config_class = get_rbln_config_class(rbln_config_class_name)
|
|
120
118
|
return cls._rbln_config_class
|
|
121
119
|
|
|
122
120
|
@classmethod
|
|
123
121
|
def get_hf_class(cls):
|
|
124
|
-
if cls._hf_class is None:
|
|
122
|
+
if "_hf_class" not in cls.__dict__ or cls._hf_class is None:
|
|
125
123
|
hf_cls_name = cls.__name__[4:]
|
|
126
124
|
library = importlib.import_module("diffusers")
|
|
127
125
|
cls._hf_class = getattr(library, hf_cls_name, None)
|
|
@@ -230,6 +228,7 @@ class RBLNDiffusionMixin:
|
|
|
230
228
|
create_runtimes=rbln_config.create_runtimes,
|
|
231
229
|
optimize_host_mem=rbln_config.optimize_host_memory,
|
|
232
230
|
activate_profiler=rbln_config.activate_profiler,
|
|
231
|
+
timeout=rbln_config.timeout,
|
|
233
232
|
):
|
|
234
233
|
model = super().from_pretrained(pretrained_model_name_or_path=model_id, **kwargs)
|
|
235
234
|
|
|
@@ -200,6 +200,7 @@ class RBLNAutoencoderKLCosmos(RBLNModel):
|
|
|
200
200
|
tensor_type="pt",
|
|
201
201
|
device=device_val,
|
|
202
202
|
activate_profiler=rbln_config.activate_profiler,
|
|
203
|
+
timeout=rbln_config.timeout,
|
|
203
204
|
)
|
|
204
205
|
for compiled_model, device_val in zip(compiled_models, device_vals)
|
|
205
206
|
]
|
|
@@ -279,7 +279,7 @@ class RBLNCosmosTransformer3DModel(RBLNModel):
|
|
|
279
279
|
tensor_type="pt",
|
|
280
280
|
device=rbln_config.device_map[DEFAULT_COMPILED_MODEL_NAME],
|
|
281
281
|
activate_profiler=rbln_config.activate_profiler,
|
|
282
|
-
timeout=
|
|
282
|
+
timeout=rbln_config.timeout,
|
|
283
283
|
)
|
|
284
284
|
for compiled_model in compiled_models
|
|
285
285
|
]
|
|
@@ -15,7 +15,7 @@
|
|
|
15
15
|
from typing import Any, Dict, Optional, Tuple
|
|
16
16
|
|
|
17
17
|
from ....configuration_utils import RBLNAutoConfig, RBLNModelConfig
|
|
18
|
-
from ....transformers import RBLNSiglipVisionModelConfig
|
|
18
|
+
from ....transformers import RBLNLlamaForCausalLMConfig, RBLNSiglipVisionModelConfig
|
|
19
19
|
|
|
20
20
|
|
|
21
21
|
class RBLNVideoSafetyModelConfig(RBLNModelConfig):
|
|
@@ -75,7 +75,15 @@ class RBLNCosmosSafetyCheckerConfig(RBLNModelConfig):
|
|
|
75
75
|
if height is not None and width is not None:
|
|
76
76
|
image_size = (height, width)
|
|
77
77
|
|
|
78
|
-
|
|
78
|
+
tensor_parallel_size = kwargs.get("tensor_parallel_size")
|
|
79
|
+
|
|
80
|
+
self.aegis = self.init_submodule_config(
|
|
81
|
+
RBLNLlamaForCausalLMConfig,
|
|
82
|
+
aegis,
|
|
83
|
+
batch_size=batch_size,
|
|
84
|
+
tensor_parallel_size=tensor_parallel_size,
|
|
85
|
+
)
|
|
86
|
+
|
|
79
87
|
self.siglip_encoder = self.init_submodule_config(
|
|
80
88
|
RBLNSiglipVisionModelConfig,
|
|
81
89
|
siglip_encoder,
|
|
@@ -127,25 +127,13 @@ class RBLNSigLIPEncoder(SigLIPEncoder):
|
|
|
127
127
|
|
|
128
128
|
# We don't use RBLNSiglipModel, but we need to override get_image_features to return pooler_output
|
|
129
129
|
self.model = RBLNSiglipVisionModel.from_pretrained(
|
|
130
|
-
self.checkpoint_dir,
|
|
131
|
-
rbln_device=rbln_config.siglip_encoder.device,
|
|
132
|
-
rbln_create_runtimes=rbln_config.siglip_encoder.create_runtimes,
|
|
133
|
-
rbln_activate_profiler=rbln_config.siglip_encoder.activate_profiler,
|
|
134
|
-
rbln_optimize_host_memory=rbln_config.siglip_encoder.optimize_host_memory,
|
|
130
|
+
self.checkpoint_dir, rbln_config=rbln_config.siglip_encoder
|
|
135
131
|
)
|
|
136
132
|
else:
|
|
137
133
|
super().__init__(model_name, checkpoint_id)
|
|
138
134
|
model = self.model
|
|
139
135
|
del self.model
|
|
140
|
-
self.model = RBLNSiglipVisionModel.from_model(
|
|
141
|
-
model,
|
|
142
|
-
rbln_device=rbln_config.siglip_encoder.device,
|
|
143
|
-
rbln_image_size=rbln_config.siglip_encoder.image_size,
|
|
144
|
-
rbln_npu=rbln_config.siglip_encoder.npu,
|
|
145
|
-
rbln_create_runtimes=rbln_config.siglip_encoder.create_runtimes,
|
|
146
|
-
rbln_activate_profiler=rbln_config.siglip_encoder.activate_profiler,
|
|
147
|
-
rbln_optimize_host_memory=rbln_config.siglip_encoder.optimize_host_memory,
|
|
148
|
-
)
|
|
136
|
+
self.model = RBLNSiglipVisionModel.from_model(model, rbln_config=rbln_config.siglip_encoder)
|
|
149
137
|
self.rbln_config = rbln_config
|
|
150
138
|
|
|
151
139
|
# Override get_image_features to return pooler_output
|
|
@@ -336,28 +324,14 @@ class RBLNAegis(Aegis):
|
|
|
336
324
|
torch.nn.Module.__init__(self)
|
|
337
325
|
cache_dir = pathlib.Path(checkpoint_id) / "aegis"
|
|
338
326
|
self.tokenizer = AutoTokenizer.from_pretrained(cache_dir)
|
|
339
|
-
self.model = RBLNAutoModelForCausalLM.from_pretrained(
|
|
340
|
-
cache_dir,
|
|
341
|
-
rbln_device=rbln_config.aegis.device,
|
|
342
|
-
rbln_create_runtimes=rbln_config.aegis.create_runtimes,
|
|
343
|
-
rbln_activate_profiler=rbln_config.aegis.activate_profiler,
|
|
344
|
-
rbln_optimize_host_memory=rbln_config.aegis.optimize_host_memory,
|
|
345
|
-
)
|
|
327
|
+
self.model = RBLNAutoModelForCausalLM.from_pretrained(cache_dir, rbln_config=rbln_config.aegis)
|
|
346
328
|
|
|
347
329
|
else:
|
|
348
330
|
super().__init__(checkpoint_id, base_model_id, aegis_adapter)
|
|
349
331
|
model = self.model.merge_and_unload() # peft merge
|
|
350
332
|
del self.model
|
|
351
333
|
|
|
352
|
-
self.model = RBLNAutoModelForCausalLM.from_model(
|
|
353
|
-
model,
|
|
354
|
-
rbln_tensor_parallel_size=4,
|
|
355
|
-
rbln_device=rbln_config.aegis.device,
|
|
356
|
-
rbln_create_runtimes=rbln_config.aegis.create_runtimes,
|
|
357
|
-
rbln_npu=rbln_config.aegis.npu,
|
|
358
|
-
rbln_activate_profiler=rbln_config.aegis.activate_profiler,
|
|
359
|
-
rbln_optimize_host_memory=rbln_config.aegis.optimize_host_memory,
|
|
360
|
-
)
|
|
334
|
+
self.model = RBLNAutoModelForCausalLM.from_model(model, rbln_config=rbln_config.aegis)
|
|
361
335
|
|
|
362
336
|
self.rbln_config = rbln_config
|
|
363
337
|
self.dtype = torch.bfloat16
|
|
@@ -35,8 +35,6 @@ logger = get_logger(__name__)
|
|
|
35
35
|
|
|
36
36
|
|
|
37
37
|
class RBLNModel(RBLNBaseModel):
|
|
38
|
-
_output_class = None
|
|
39
|
-
|
|
40
38
|
@classmethod
|
|
41
39
|
def update_kwargs(cls, kwargs):
|
|
42
40
|
# Update user-given kwargs to get proper pytorch model.
|
|
@@ -238,6 +236,7 @@ class RBLNModel(RBLNBaseModel):
|
|
|
238
236
|
tensor_type="pt",
|
|
239
237
|
device=rbln_config.device_map[DEFAULT_COMPILED_MODEL_NAME],
|
|
240
238
|
activate_profiler=rbln_config.activate_profiler,
|
|
239
|
+
timeout=rbln_config.timeout,
|
|
241
240
|
)
|
|
242
241
|
for compiled_model in compiled_models
|
|
243
242
|
]
|
|
@@ -288,7 +287,7 @@ class RBLNModel(RBLNBaseModel):
|
|
|
288
287
|
@classmethod
|
|
289
288
|
def get_hf_output_class(cls):
|
|
290
289
|
# Dynamically gets the output class from the corresponding HuggingFace model class.
|
|
291
|
-
if cls._output_class:
|
|
290
|
+
if "_output_class" in cls.__dict__ and cls._output_class is not None:
|
|
292
291
|
return cls._output_class
|
|
293
292
|
|
|
294
293
|
hf_class = cls.get_hf_class()
|
|
@@ -23,9 +23,10 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type, Union
|
|
|
23
23
|
import rebel
|
|
24
24
|
import torch
|
|
25
25
|
from transformers import AutoConfig, AutoModel, GenerationConfig, PretrainedConfig
|
|
26
|
+
from transformers.utils.hub import PushToHubMixin
|
|
26
27
|
|
|
27
28
|
from .configuration_utils import RBLNAutoConfig, RBLNCompileConfig, RBLNModelConfig, get_rbln_config_class
|
|
28
|
-
from .utils.hub import
|
|
29
|
+
from .utils.hub import pull_compiled_model_from_hub, validate_files
|
|
29
30
|
from .utils.logging import get_logger
|
|
30
31
|
from .utils.runtime_utils import UnavailableRuntime, tp_and_devices_are_ok
|
|
31
32
|
from .utils.save_utils import maybe_load_preprocessors
|
|
@@ -50,11 +51,8 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
|
50
51
|
model_type = "rbln_model"
|
|
51
52
|
auto_model_class = AutoModel
|
|
52
53
|
config_class = AutoConfig
|
|
53
|
-
|
|
54
54
|
config_name = "config.json"
|
|
55
55
|
hf_library_name = "transformers"
|
|
56
|
-
_hf_class = None
|
|
57
|
-
_rbln_config_class = None
|
|
58
56
|
|
|
59
57
|
def __init__(
|
|
60
58
|
self,
|
|
@@ -115,7 +113,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
|
115
113
|
def _load_compiled_model_dir(
|
|
116
114
|
cls,
|
|
117
115
|
model_id: Union[str, Path],
|
|
118
|
-
|
|
116
|
+
token: Optional[Union[bool, str]] = None,
|
|
119
117
|
revision: Optional[str] = None,
|
|
120
118
|
force_download: bool = False,
|
|
121
119
|
cache_dir: Optional[str] = None,
|
|
@@ -134,7 +132,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
|
134
132
|
model_path = pull_compiled_model_from_hub(
|
|
135
133
|
model_id=model_id,
|
|
136
134
|
subfolder=subfolder,
|
|
137
|
-
|
|
135
|
+
token=token,
|
|
138
136
|
revision=revision,
|
|
139
137
|
cache_dir=cache_dir,
|
|
140
138
|
force_download=force_download,
|
|
@@ -172,7 +170,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
|
172
170
|
cls,
|
|
173
171
|
model_id: Union[str, Path],
|
|
174
172
|
config: Optional["PretrainedConfig"] = None,
|
|
175
|
-
|
|
173
|
+
token: Optional[Union[bool, str]] = None,
|
|
176
174
|
revision: Optional[str] = None,
|
|
177
175
|
force_download: bool = False,
|
|
178
176
|
cache_dir: Optional[str] = None,
|
|
@@ -189,7 +187,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
|
189
187
|
if rbln_compiled_models is None:
|
|
190
188
|
model_path_subfolder = cls._load_compiled_model_dir(
|
|
191
189
|
model_id=model_id,
|
|
192
|
-
|
|
190
|
+
token=token,
|
|
193
191
|
revision=revision,
|
|
194
192
|
force_download=force_download,
|
|
195
193
|
cache_dir=cache_dir,
|
|
@@ -232,7 +230,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
|
232
230
|
cache_dir=cache_dir,
|
|
233
231
|
force_download=force_download,
|
|
234
232
|
revision=revision,
|
|
235
|
-
token=
|
|
233
|
+
token=token,
|
|
236
234
|
trust_remote_code=trust_remote_code,
|
|
237
235
|
)
|
|
238
236
|
elif cls.hf_library_name == "diffusers":
|
|
@@ -250,7 +248,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
|
250
248
|
force_download=force_download,
|
|
251
249
|
local_files_only=local_files_only,
|
|
252
250
|
revision=revision,
|
|
253
|
-
token=
|
|
251
|
+
token=token,
|
|
254
252
|
subfolder=subfolder,
|
|
255
253
|
)
|
|
256
254
|
config = PretrainedConfig(**config)
|
|
@@ -421,7 +419,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
|
421
419
|
|
|
422
420
|
# Returns:
|
|
423
421
|
# type: The original HuggingFace model class
|
|
424
|
-
if cls._hf_class is None:
|
|
422
|
+
if "_hf_class" not in cls.__dict__ or cls._hf_class is None:
|
|
425
423
|
hf_cls_name = cls.__name__[4:]
|
|
426
424
|
library = importlib.import_module(cls.hf_library_name)
|
|
427
425
|
cls._hf_class = getattr(library, hf_cls_name, None)
|
|
@@ -430,7 +428,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
|
430
428
|
@classmethod
|
|
431
429
|
def get_rbln_config_class(cls) -> Type[RBLNModelConfig]:
|
|
432
430
|
# Lazily loads and caches the corresponding RBLN model config class.
|
|
433
|
-
if cls._rbln_config_class is None:
|
|
431
|
+
if "_rbln_config_class" not in cls.__dict__ or cls._rbln_config_class is None:
|
|
434
432
|
rbln_config_class_name = cls.__name__ + "Config"
|
|
435
433
|
cls._rbln_config_class = get_rbln_config_class(rbln_config_class_name)
|
|
436
434
|
return cls._rbln_config_class
|
|
@@ -507,6 +505,9 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
|
507
505
|
f"Please ensure the model directory exists and you have the necessary permissions to access it."
|
|
508
506
|
)
|
|
509
507
|
|
|
508
|
+
if isinstance(self.config, PretrainedConfig):
|
|
509
|
+
self.config.save_pretrained(real_save_dir)
|
|
510
|
+
|
|
510
511
|
if save_directory_path == real_save_dir:
|
|
511
512
|
raise FileExistsError(
|
|
512
513
|
f"Cannot save model to '{save_directory}'. This directory already exists and contains the model files."
|
|
@@ -534,7 +535,10 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
|
534
535
|
raise e # Re-raise the exception after cleanup
|
|
535
536
|
|
|
536
537
|
if push_to_hub:
|
|
537
|
-
|
|
538
|
+
repo_id = kwargs.pop("repo_id", None)
|
|
539
|
+
if repo_id is None:
|
|
540
|
+
raise ValueError("`repo_id` must be provided to push the model to the HuggingFace model hub.")
|
|
541
|
+
return super().push_to_hub(repo_id=repo_id, **kwargs)
|
|
538
542
|
|
|
539
543
|
@staticmethod
|
|
540
544
|
def _raise_missing_compiled_file_error(missing_files: List[str]):
|
|
@@ -98,6 +98,10 @@ _import_structure = {
|
|
|
98
98
|
"RBLNQwen2_5_VLForConditionalGenerationConfig",
|
|
99
99
|
"RBLNQwen2ForCausalLM",
|
|
100
100
|
"RBLNQwen2ForCausalLMConfig",
|
|
101
|
+
"RBLNQwen3ForCausalLM",
|
|
102
|
+
"RBLNQwen3ForCausalLMConfig",
|
|
103
|
+
"RBLNQwen3Model",
|
|
104
|
+
"RBLNQwen3ModelConfig",
|
|
101
105
|
"RBLNResNetForImageClassification",
|
|
102
106
|
"RBLNResNetForImageClassificationConfig",
|
|
103
107
|
"RBLNRobertaForMaskedLM",
|
|
@@ -204,6 +208,10 @@ if TYPE_CHECKING:
|
|
|
204
208
|
RBLNQwen2_5_VLForConditionalGenerationConfig,
|
|
205
209
|
RBLNQwen2ForCausalLM,
|
|
206
210
|
RBLNQwen2ForCausalLMConfig,
|
|
211
|
+
RBLNQwen3ForCausalLM,
|
|
212
|
+
RBLNQwen3ForCausalLMConfig,
|
|
213
|
+
RBLNQwen3Model,
|
|
214
|
+
RBLNQwen3ModelConfig,
|
|
207
215
|
RBLNResNetForImageClassification,
|
|
208
216
|
RBLNResNetForImageClassificationConfig,
|
|
209
217
|
RBLNRobertaForMaskedLM,
|
{optimum_rbln-0.8.2a1 → optimum_rbln-0.8.2a3}/src/optimum/rbln/transformers/models/__init__.py
RENAMED
|
@@ -113,6 +113,7 @@ _import_structure = {
|
|
|
113
113
|
"mistral": ["RBLNMistralForCausalLM", "RBLNMistralForCausalLMConfig"],
|
|
114
114
|
"phi": ["RBLNPhiForCausalLM", "RBLNPhiForCausalLMConfig"],
|
|
115
115
|
"qwen2": ["RBLNQwen2ForCausalLM", "RBLNQwen2ForCausalLMConfig"],
|
|
116
|
+
"qwen3": ["RBLNQwen3ForCausalLM", "RBLNQwen3ForCausalLMConfig", "RBLNQwen3Model", "RBLNQwen3ModelConfig"],
|
|
116
117
|
"resnet": ["RBLNResNetForImageClassification", "RBLNResNetForImageClassificationConfig"],
|
|
117
118
|
"roberta": [
|
|
118
119
|
"RBLNRobertaForMaskedLM",
|
|
@@ -241,6 +242,7 @@ if TYPE_CHECKING:
|
|
|
241
242
|
RBLNQwen2_5_VLForConditionalGeneration,
|
|
242
243
|
RBLNQwen2_5_VLForConditionalGenerationConfig,
|
|
243
244
|
)
|
|
245
|
+
from .qwen3 import RBLNQwen3ForCausalLM, RBLNQwen3ForCausalLMConfig, RBLNQwen3Model, RBLNQwen3ModelConfig
|
|
244
246
|
from .resnet import RBLNResNetForImageClassification, RBLNResNetForImageClassificationConfig
|
|
245
247
|
from .roberta import (
|
|
246
248
|
RBLNRobertaForMaskedLM,
|
|
@@ -43,7 +43,15 @@ class RBLNCLIPTextModelWithProjectionConfig(RBLNCLIPTextModelConfig):
|
|
|
43
43
|
|
|
44
44
|
|
|
45
45
|
class RBLNCLIPVisionModelConfig(RBLNModelConfig):
|
|
46
|
-
def __init__(
|
|
46
|
+
def __init__(
|
|
47
|
+
self,
|
|
48
|
+
batch_size: Optional[int] = None,
|
|
49
|
+
image_size: Optional[int] = None,
|
|
50
|
+
interpolate_pos_encoding: Optional[bool] = None,
|
|
51
|
+
output_hidden_states: Optional[bool] = None,
|
|
52
|
+
output_attentions: Optional[bool] = None,
|
|
53
|
+
**kwargs: Dict[str, Any],
|
|
54
|
+
):
|
|
47
55
|
"""
|
|
48
56
|
Args:
|
|
49
57
|
batch_size (Optional[int]): The batch size for image processing. Defaults to 1.
|
|
@@ -60,6 +68,9 @@ class RBLNCLIPVisionModelConfig(RBLNModelConfig):
|
|
|
60
68
|
raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
|
|
61
69
|
|
|
62
70
|
self.image_size = image_size
|
|
71
|
+
self.interpolate_pos_encoding = interpolate_pos_encoding or False
|
|
72
|
+
self.output_hidden_states = output_hidden_states
|
|
73
|
+
self.output_attentions = output_attentions
|
|
63
74
|
|
|
64
75
|
@property
|
|
65
76
|
def image_width(self):
|