optimum-rbln 0.7.4a7__tar.gz → 0.7.4a9__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (237) hide show
  1. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/ISSUE_TEMPLATE/model_request.md +1 -1
  2. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/scripts/auto_code_review.py +1 -1
  3. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/PKG-INFO +2 -2
  4. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/pyproject.toml +1 -1
  5. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/__version__.py +2 -2
  6. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/configuration_utils.py +46 -2
  7. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +8 -0
  8. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +8 -0
  9. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +8 -0
  10. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +8 -0
  11. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +32 -17
  12. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +19 -15
  13. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +8 -8
  14. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +8 -8
  15. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +8 -8
  16. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/modeling_diffusers.py +50 -17
  17. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +2 -0
  18. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +2 -0
  19. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +2 -0
  20. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +2 -0
  21. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +2 -0
  22. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -0
  23. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +2 -0
  24. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +2 -0
  25. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +2 -0
  26. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +2 -0
  27. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +2 -0
  28. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +2 -0
  29. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +2 -0
  30. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +2 -0
  31. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +2 -0
  32. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +2 -0
  33. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +2 -0
  34. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +2 -0
  35. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/modeling_base.py +4 -3
  36. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/auto/auto_factory.py +3 -3
  37. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/utils/hub.py +2 -2
  38. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/utils/model_utils.py +4 -4
  39. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/tests/test_base.py +16 -10
  40. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/tests/test_diffusers.py +1 -0
  41. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/tests/test_llm.py +10 -1
  42. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
  43. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/ISSUE_TEMPLATE/config.yml +0 -0
  44. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
  45. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/pull_request_template.md +0 -0
  46. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/scripts/validate_pr_checklist.py +0 -0
  47. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/version.yaml +0 -0
  48. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/workflows/auto_code_review.yml +0 -0
  49. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/workflows/check_code_quality.yml +0 -0
  50. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/workflows/deploy-on-tag.yaml +0 -0
  51. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/workflows/deploy.yaml +0 -0
  52. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/workflows/pr-title-check.yaml +0 -0
  53. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/workflows/pr_checklist_validator.yml +0 -0
  54. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/workflows/rbln_check_compiler.yaml +0 -0
  55. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/workflows/rbln_dispatch_pytest.yaml +0 -0
  56. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/workflows/rbln_optimum_inference_test.yaml +0 -0
  57. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/workflows/rbln_optimum_pytest.yaml +0 -0
  58. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/workflows/rbln_scheduled_test.yaml +0 -0
  59. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.github/workflows/rbln_trigger_on_pr.yaml +0 -0
  60. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/.gitignore +0 -0
  61. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/CODE_OF_CONDUCT.md +0 -0
  62. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/CONTRIBUTING.md +0 -0
  63. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/LICENSE +0 -0
  64. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/README.md +0 -0
  65. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/assets/rbln_logo.png +0 -0
  66. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/audio-classification/run_ast_audio_classification.py +0 -0
  67. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/depth-estimation/run_dpt.py +0 -0
  68. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/image-classification/run_image_classification.py +0 -0
  69. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/image-classification/run_vit_image_classification.py +0 -0
  70. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/image-to-text/run_idefics3.py +0 -0
  71. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/image-to-text/run_llava_next_image_to_text.py +0 -0
  72. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/kandinsky2_2/run_kandinsky2_2.py +0 -0
  73. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/kandinsky2_2/run_kandinsky2_2_combined.py +0 -0
  74. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/kandinsky2_2/run_kandinsky2_2_img2img.py +0 -0
  75. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/kandinsky2_2/run_kandinsky2_2_img2img_combined.py +0 -0
  76. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/kandinsky2_2/run_kandinsky2_2_inpaint.py +0 -0
  77. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/kandinsky2_2/run_kandinsky2_2_inpaint_combined.py +0 -0
  78. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/kandinsky2_2/run_kandinsky2_2_prior_interpolate.py +0 -0
  79. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/question-answering/run_question_answering.py +0 -0
  80. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/speech-recognition/run_wav2vec2.py +0 -0
  81. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/speech-recognition/run_whisper.py +0 -0
  82. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/stable-diffusion/run_stable_diffusion.py +0 -0
  83. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/stable-diffusion/run_stable_diffusion_controlnet.py +0 -0
  84. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/stable-diffusion/run_stable_diffusion_img2img.py +0 -0
  85. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/stable-diffusion/run_stable_diffusion_img2img_controlnet.py +0 -0
  86. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/stable-diffusion/run_stable_diffusion_inpaint.py +0 -0
  87. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/stable-diffusion/run_stable_diffusion_lora.py +0 -0
  88. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/stable-diffusion/run_stable_diffusion_multicontrolnet.py +0 -0
  89. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/text-classification/run_bge_m3_text_classification.py +0 -0
  90. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/text-classification/run_bge_reranker_v2_m3_text_classification.py +0 -0
  91. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/text-classification/run_secureBERT.py +0 -0
  92. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/text-classification/run_t5_classification.py +0 -0
  93. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/text-classification/run_twitter_roberta_text_classification.py +0 -0
  94. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/text2text-generation/run_bart_text2text_generation.py +0 -0
  95. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/text2text-generation/run_llama_peft.py +0 -0
  96. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/text2text-generation/run_llama_text2text_generation.py +0 -0
  97. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/examples/time-series-forecasting/run_time_series_forecasting.py +0 -0
  98. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/scripts/uv-lock.sh +0 -0
  99. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/scripts/uv-sync.sh +0 -0
  100. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/__init__.py +0 -0
  101. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/__init__.py +0 -0
  102. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/configurations/__init__.py +0 -0
  103. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/configurations/models/__init__.py +0 -0
  104. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +0 -0
  105. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +0 -0
  106. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/configurations/pipelines/__init__.py +0 -0
  107. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/models/__init__.py +0 -0
  108. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/models/autoencoders/__init__.py +0 -0
  109. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +0 -0
  110. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/models/autoencoders/vae.py +0 -0
  111. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/models/autoencoders/vq_model.py +0 -0
  112. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/models/controlnet.py +0 -0
  113. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/models/transformers/__init__.py +0 -0
  114. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/models/transformers/prior_transformer.py +0 -0
  115. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/models/transformers/transformer_sd3.py +0 -0
  116. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/models/unets/__init__.py +0 -0
  117. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/models/unets/unet_2d_condition.py +0 -0
  118. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/__init__.py +0 -0
  119. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/controlnet/__init__.py +0 -0
  120. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +0 -0
  121. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +0 -0
  122. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +0 -0
  123. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +0 -0
  124. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +0 -0
  125. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/modeling.py +0 -0
  126. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/ops/__init__.py +0 -0
  127. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/ops/attn.py +0 -0
  128. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/ops/flash_attn.py +0 -0
  129. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/ops/kv_cache_update.py +0 -0
  130. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/ops/linear.py +0 -0
  131. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/__init__.py +0 -0
  132. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/configuration_alias.py +0 -0
  133. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/configuration_generic.py +0 -0
  134. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/modeling_alias.py +0 -0
  135. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/modeling_generic.py +0 -0
  136. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/modeling_rope_utils.py +0 -0
  137. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/__init__.py +0 -0
  138. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/auto/__init__.py +0 -0
  139. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/auto/modeling_auto.py +0 -0
  140. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/bart/__init__.py +0 -0
  141. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/bart/bart_architecture.py +0 -0
  142. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/bart/configuration_bart.py +0 -0
  143. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/bart/modeling_bart.py +0 -0
  144. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/bert/__init__.py +0 -0
  145. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/bert/configuration_bert.py +0 -0
  146. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/bert/modeling_bert.py +0 -0
  147. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/clip/__init__.py +0 -0
  148. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/clip/configuration_clip.py +0 -0
  149. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/clip/modeling_clip.py +0 -0
  150. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/decoderonly/__init__.py +0 -0
  151. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +0 -0
  152. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +0 -0
  153. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +0 -0
  154. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/dpt/__init__.py +0 -0
  155. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/dpt/configuration_dpt.py +0 -0
  156. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -0
  157. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/exaone/__init__.py +0 -0
  158. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/exaone/configuration_exaone.py +0 -0
  159. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/exaone/exaone_architecture.py +0 -0
  160. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/exaone/modeling_exaone.py +0 -0
  161. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/gemma/__init__.py +0 -0
  162. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/gemma/configuration_gemma.py +0 -0
  163. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/gemma/gemma_architecture.py +0 -0
  164. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/gemma/modeling_gemma.py +0 -0
  165. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/gpt2/__init__.py +0 -0
  166. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +0 -0
  167. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +0 -0
  168. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +0 -0
  169. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/idefics3/__init__.py +0 -0
  170. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +0 -0
  171. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +0 -0
  172. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/llama/__init__.py +0 -0
  173. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/llama/configuration_llama.py +0 -0
  174. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/llama/llama_architecture.py +0 -0
  175. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/llama/modeling_llama.py +0 -0
  176. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/llava_next/__init__.py +0 -0
  177. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +0 -0
  178. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +0 -0
  179. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/midm/__init__.py +0 -0
  180. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/midm/configuration_midm.py +0 -0
  181. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/midm/midm_architecture.py +0 -0
  182. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/midm/modeling_midm.py +0 -0
  183. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/mistral/__init__.py +0 -0
  184. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/mistral/configuration_mistral.py +0 -0
  185. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/mistral/mistral_architecture.py +0 -0
  186. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/mistral/modeling_mistral.py +0 -0
  187. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/phi/__init__.py +0 -0
  188. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/phi/configuration_phi.py +0 -0
  189. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/phi/modeling_phi.py +0 -0
  190. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/phi/phi_architecture.py +0 -0
  191. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/qwen2/__init__.py +0 -0
  192. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +0 -0
  193. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +0 -0
  194. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +0 -0
  195. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +0 -0
  196. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +0 -0
  197. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +0 -0
  198. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +0 -0
  199. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/seq2seq/__init__.py +0 -0
  200. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/seq2seq/configuration_seq2seq2.py +0 -0
  201. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +0 -0
  202. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +0 -0
  203. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/t5/__init__.py +0 -0
  204. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/t5/configuration_t5.py +0 -0
  205. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/t5/modeling_t5.py +0 -0
  206. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/t5/t5_architecture.py +0 -0
  207. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/time_series_transformers/__init__.py +0 -0
  208. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/time_series_transformers/configuration_time_series_transformer.py +0 -0
  209. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/time_series_transformers/modeling_time_series_transformers.py +0 -0
  210. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/time_series_transformers/time_series_transformers_architecture.py +0 -0
  211. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/wav2vec2/__init__.py +0 -0
  212. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec.py +0 -0
  213. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +0 -0
  214. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/whisper/__init__.py +0 -0
  215. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/whisper/configuration_whisper.py +0 -0
  216. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/whisper/generation_whisper.py +0 -0
  217. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/whisper/modeling_whisper.py +0 -0
  218. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/whisper/whisper_architecture.py +0 -0
  219. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/xlm_roberta/__init__.py +0 -0
  220. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +0 -0
  221. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +0 -0
  222. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/utils/__init__.py +0 -0
  223. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/transformers/utils/rbln_quantization.py +0 -0
  224. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/utils/__init__.py +0 -0
  225. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/utils/decorator_utils.py +0 -0
  226. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/utils/import_utils.py +0 -0
  227. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/utils/logging.py +0 -0
  228. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/utils/runtime_utils.py +0 -0
  229. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/utils/save_utils.py +0 -0
  230. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/src/optimum/rbln/utils/submodule.py +0 -0
  231. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/tests/__init__.py +0 -0
  232. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/tests/psnr.py +0 -0
  233. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/tests/requirements_sdxl.txt +0 -0
  234. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/tests/run_stable_diffusion_xl_base.py +0 -0
  235. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/tests/test_config.py +0 -0
  236. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/tests/test_transformers.py +0 -0
  237. {optimum_rbln-0.7.4a7 → optimum_rbln-0.7.4a9}/uv.lock +0 -0
@@ -8,7 +8,7 @@ assignees: ''
8
8
 
9
9
  ### Model Information
10
10
  - Model name:
11
- - Model link (Hugging Face/Paper/GitHub):
11
+ - Model link (HuggingFace/Paper/GitHub):
12
12
  - Task type (e.g., Text Generation, Image Classification):
13
13
 
14
14
  ### Model Details
@@ -36,7 +36,7 @@ def get_pr_diff():
36
36
 
37
37
 
38
38
  def get_prompt(diff, pr):
39
- system_prompt = """You are an experienced software engineer specializing in code reviews for deep learning libraries. Your task is to review code changes and related pull request (PR) information for `optimum-rbln`, a Python library that optimizes Hugging Face models for execution on RBLN NPUs.
39
+ system_prompt = """You are an experienced software engineer specializing in code reviews for deep learning libraries. Your task is to review code changes and related pull request (PR) information for `optimum-rbln`, a Python library that optimizes HuggingFace models for execution on RBLN NPUs.
40
40
 
41
41
  Focus on providing actionable and constructive feedback. Don't make generalized suggestions."""
42
42
 
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.7.4a7
4
- Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
3
+ Version: 0.7.4a9
4
+ Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
7
7
  Project-URL: Repository, https://github.com/rebellions-sw/optimum-rbln
@@ -1,7 +1,7 @@
1
1
  [project]
2
2
  name = "optimum-rbln"
3
3
  description = """
4
- Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators.
4
+ Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators.
5
5
  It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
6
6
  """
7
7
  authors = [
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.7.4a7'
21
- __version_tuple__ = version_tuple = (0, 7, 4, 'a7')
20
+ __version__ = version = '0.7.4a9'
21
+ __version_tuple__ = version_tuple = (0, 7, 4, 'a9')
@@ -174,6 +174,14 @@ class RBLNAutoConfig:
174
174
  cls = getattr(importlib.import_module("optimum.rbln"), cls_name)
175
175
  return cls(**kwargs)
176
176
 
177
+ @staticmethod
178
+ def load_from_dict(config_dict: Dict[str, Any]) -> "RBLNModelConfig":
179
+ cls_name = config_dict.get("cls_name")
180
+ if cls_name is None:
181
+ raise ValueError("`cls_name` is required.")
182
+ cls = getattr(importlib.import_module("optimum.rbln"), cls_name)
183
+ return cls(**config_dict)
184
+
177
185
  @staticmethod
178
186
  def load(
179
187
  path: str,
@@ -195,8 +203,9 @@ class RBLNAutoConfig:
195
203
  cls, config_file = load_config(path)
196
204
 
197
205
  rbln_keys = [key for key in kwargs.keys() if key.startswith("rbln_")]
198
-
199
206
  rbln_runtime_kwargs = {key[5:]: kwargs.pop(key) for key in rbln_keys if key[5:] in RUNTIME_KEYWORDS}
207
+ rbln_submodule_kwargs = {key[5:]: kwargs.pop(key) for key in rbln_keys if key[5:] in cls.submodules}
208
+
200
209
  rbln_kwargs = {
201
210
  key[5:]: kwargs.pop(key)
202
211
  for key in rbln_keys
@@ -206,6 +215,14 @@ class RBLNAutoConfig:
206
215
  if len(rbln_kwargs) > 0:
207
216
  raise ValueError(f"Cannot set the following arguments: {list(rbln_kwargs.keys())}")
208
217
 
218
+ # Process submodule's rbln_config
219
+ for submodule in cls.submodules:
220
+ if submodule not in config_file:
221
+ raise ValueError(f"Submodule {submodule} not found in rbln_config.json.")
222
+ submodule_config = config_file[submodule]
223
+ submodule_config.update(rbln_submodule_kwargs.pop(submodule, {}))
224
+ config_file[submodule] = RBLNAutoConfig.load_from_dict(submodule_config)
225
+
209
226
  if passed_rbln_config is not None:
210
227
  config_file.update(passed_rbln_config._runtime_options)
211
228
  # TODO(jongho): Reject if the passed_rbln_config has different attributes from the config_file
@@ -435,6 +452,7 @@ class RBLNModelConfig:
435
452
  "activate_profiler",
436
453
  ]
437
454
  submodules: List[str] = []
455
+ subclass_non_save_attributes = []
438
456
 
439
457
  def init_submodule_config(
440
458
  self,
@@ -463,7 +481,11 @@ class RBLNModelConfig:
463
481
  return submodule_config
464
482
 
465
483
  def __setattr__(self, key, value):
466
- if key != "_attributes_map" and key not in self.non_save_attributes:
484
+ if (
485
+ key != "_attributes_map"
486
+ and key not in self.non_save_attributes
487
+ and key not in self.subclass_non_save_attributes
488
+ ):
467
489
  self._attributes_map[key] = value
468
490
 
469
491
  if hasattr(self, "_frozen") and self._frozen:
@@ -706,6 +728,28 @@ class RBLNModelConfig:
706
728
 
707
729
  return rbln_config, kwargs
708
730
 
731
+ def get_default_values_for_original_cls(self, func_name: str, keys: List[str]) -> Dict[str, Any]:
732
+ """
733
+ Get default values for original class attributes from RBLNModelConfig.
734
+
735
+ Args:
736
+ func_name (str): The name of the function to get the default values for.
737
+ keys (List[str]): The keys of the attributes to get.
738
+
739
+ Returns:
740
+ Dict[str, Any]: The default values for the attributes.
741
+ """
742
+ model_cls = self.rbln_model_cls.get_hf_class()
743
+ func = getattr(model_cls, func_name)
744
+ func_signature = inspect.signature(func)
745
+ default_values = {}
746
+ for key in keys:
747
+ if key in func_signature.parameters:
748
+ default_values[key] = func_signature.parameters[key].default
749
+ else:
750
+ raise ValueError(f"Default value for `{key}` is not set for the model class.")
751
+ return default_values
752
+
709
753
  @property
710
754
  def create_runtimes(self):
711
755
  context = ContextRblnConfig.get_current_context()["create_runtimes"]
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
18
18
 
19
19
 
20
20
  class RBLNControlNetModelConfig(RBLNModelConfig):
21
+ subclass_non_save_attributes = ["_batch_size_is_specified"]
22
+
21
23
  def __init__(
22
24
  self,
23
25
  batch_size: Optional[int] = None,
@@ -44,6 +46,8 @@ class RBLNControlNetModelConfig(RBLNModelConfig):
44
46
  ValueError: If batch_size is not a positive integer.
45
47
  """
46
48
  super().__init__(**kwargs)
49
+ self._batch_size_is_specified = batch_size is not None
50
+
47
51
  self.batch_size = batch_size or 1
48
52
  if not isinstance(self.batch_size, int) or self.batch_size < 0:
49
53
  raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
@@ -52,3 +56,7 @@ class RBLNControlNetModelConfig(RBLNModelConfig):
52
56
  self.unet_sample_size = unet_sample_size
53
57
  self.vae_sample_size = vae_sample_size
54
58
  self.text_model_hidden_size = text_model_hidden_size
59
+
60
+ @property
61
+ def batch_size_is_specified(self):
62
+ return self._batch_size_is_specified
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
18
18
 
19
19
 
20
20
  class RBLNPriorTransformerConfig(RBLNModelConfig):
21
+ subclass_non_save_attributes = ["_batch_size_is_specified"]
22
+
21
23
  def __init__(
22
24
  self,
23
25
  batch_size: Optional[int] = None,
@@ -36,9 +38,15 @@ class RBLNPriorTransformerConfig(RBLNModelConfig):
36
38
  ValueError: If batch_size is not a positive integer.
37
39
  """
38
40
  super().__init__(**kwargs)
41
+ self._batch_size_is_specified = batch_size is not None
42
+
39
43
  self.batch_size = batch_size or 1
40
44
  if not isinstance(self.batch_size, int) or self.batch_size < 0:
41
45
  raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
42
46
 
43
47
  self.embedding_dim = embedding_dim
44
48
  self.num_embeddings = num_embeddings
49
+
50
+ @property
51
+ def batch_size_is_specified(self):
52
+ return self._batch_size_is_specified
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
18
18
 
19
19
 
20
20
  class RBLNSD3Transformer2DModelConfig(RBLNModelConfig):
21
+ subclass_non_save_attributes = ["_batch_size_is_specified"]
22
+
21
23
  def __init__(
22
24
  self,
23
25
  batch_size: Optional[int] = None,
@@ -38,6 +40,8 @@ class RBLNSD3Transformer2DModelConfig(RBLNModelConfig):
38
40
  ValueError: If batch_size is not a positive integer.
39
41
  """
40
42
  super().__init__(**kwargs)
43
+ self._batch_size_is_specified = batch_size is not None
44
+
41
45
  self.batch_size = batch_size or 1
42
46
  if not isinstance(self.batch_size, int) or self.batch_size < 0:
43
47
  raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
@@ -46,3 +50,7 @@ class RBLNSD3Transformer2DModelConfig(RBLNModelConfig):
46
50
  self.sample_size = sample_size
47
51
  if isinstance(self.sample_size, int):
48
52
  self.sample_size = (self.sample_size, self.sample_size)
53
+
54
+ @property
55
+ def batch_size_is_specified(self):
56
+ return self._batch_size_is_specified
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
18
18
 
19
19
 
20
20
  class RBLNUNet2DConditionModelConfig(RBLNModelConfig):
21
+ subclass_non_save_attributes = ["_batch_size_is_specified"]
22
+
21
23
  def __init__(
22
24
  self,
23
25
  batch_size: Optional[int] = None,
@@ -49,6 +51,8 @@ class RBLNUNet2DConditionModelConfig(RBLNModelConfig):
49
51
  ValueError: If batch_size is not a positive integer.
50
52
  """
51
53
  super().__init__(**kwargs)
54
+ self._batch_size_is_specified = batch_size is not None
55
+
52
56
  self.batch_size = batch_size or 1
53
57
  if not isinstance(self.batch_size, int) or self.batch_size < 0:
54
58
  raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
@@ -64,3 +68,7 @@ class RBLNUNet2DConditionModelConfig(RBLNModelConfig):
64
68
  self.sample_size = sample_size
65
69
  if isinstance(sample_size, int):
66
70
  self.sample_size = (sample_size, sample_size)
71
+
72
+ @property
73
+ def batch_size_is_specified(self):
74
+ return self._batch_size_is_specified
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ....transformers import RBLNCLIPTextModelConfig, RBLNCLIPTextModelWithProjectionConfig
19
- from ....utils.logging import get_logger
20
19
  from ..models import RBLNAutoencoderKLConfig, RBLNControlNetModelConfig, RBLNUNet2DConditionModelConfig
21
20
 
22
21
 
23
- logger = get_logger(__name__)
24
-
25
-
26
22
  class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
27
23
  submodules = ["text_encoder", "unet", "vae", "controlnet"]
28
24
  _vae_uses_encoder = False
@@ -58,7 +54,7 @@ class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
58
54
  sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
59
55
  image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
60
56
  Cannot be used together with img_height/img_width.
61
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
57
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
62
58
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
63
59
 
64
60
  Raises:
@@ -79,7 +75,6 @@ class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
79
75
  self.unet = self.init_submodule_config(
80
76
  RBLNUNet2DConditionModelConfig,
81
77
  unet,
82
- batch_size=batch_size,
83
78
  sample_size=sample_size,
84
79
  )
85
80
  self.vae = self.init_submodule_config(
@@ -89,14 +84,24 @@ class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
89
84
  uses_encoder=self.__class__._vae_uses_encoder,
90
85
  sample_size=image_size, # image size is equal to sample size in vae
91
86
  )
92
- self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet, batch_size=batch_size)
87
+ self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet)
88
+
89
+ # Get default guidance scale from original class to set UNet and ControlNet batch size
90
+ if guidance_scale is None:
91
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
93
92
 
94
93
  if guidance_scale is not None:
95
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
96
94
  do_classifier_free_guidance = guidance_scale > 1.0
97
95
  if do_classifier_free_guidance:
98
- self.unet.batch_size = self.text_encoder.batch_size * 2
99
- self.controlnet.batch_size = self.text_encoder.batch_size * 2
96
+ if not self.unet.batch_size_is_specified:
97
+ self.unet.batch_size = self.text_encoder.batch_size * 2
98
+ if not self.controlnet.batch_size_is_specified:
99
+ self.controlnet.batch_size = self.text_encoder.batch_size * 2
100
+ else:
101
+ if not self.unet.batch_size_is_specified:
102
+ self.unet.batch_size = self.text_encoder.batch_size
103
+ if not self.controlnet.batch_size_is_specified:
104
+ self.controlnet.batch_size = self.text_encoder.batch_size
100
105
 
101
106
  @property
102
107
  def batch_size(self):
@@ -157,7 +162,7 @@ class _RBLNStableDiffusionXLControlNetPipelineBaseConfig(RBLNModelConfig):
157
162
  sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
158
163
  image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
159
164
  Cannot be used together with img_height/img_width.
160
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
165
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
161
166
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
162
167
 
163
168
  Raises:
@@ -181,7 +186,6 @@ class _RBLNStableDiffusionXLControlNetPipelineBaseConfig(RBLNModelConfig):
181
186
  self.unet = self.init_submodule_config(
182
187
  RBLNUNet2DConditionModelConfig,
183
188
  unet,
184
- batch_size=batch_size,
185
189
  sample_size=sample_size,
186
190
  )
187
191
  self.vae = self.init_submodule_config(
@@ -191,14 +195,25 @@ class _RBLNStableDiffusionXLControlNetPipelineBaseConfig(RBLNModelConfig):
191
195
  uses_encoder=self.__class__._vae_uses_encoder,
192
196
  sample_size=image_size, # image size is equal to sample size in vae
193
197
  )
194
- self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet, batch_size=batch_size)
198
+ self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet)
195
199
 
196
- if guidance_scale is not None:
197
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
198
- do_classifier_free_guidance = guidance_scale > 1.0
199
- if do_classifier_free_guidance:
200
+ # Get default guidance scale from original class to set UNet and ControlNet batch size
201
+ guidance_scale = (
202
+ guidance_scale
203
+ or self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
204
+ )
205
+
206
+ do_classifier_free_guidance = guidance_scale > 1.0
207
+ if do_classifier_free_guidance:
208
+ if not self.unet.batch_size_is_specified:
200
209
  self.unet.batch_size = self.text_encoder.batch_size * 2
210
+ if not self.controlnet.batch_size_is_specified:
201
211
  self.controlnet.batch_size = self.text_encoder.batch_size * 2
212
+ else:
213
+ if not self.unet.batch_size_is_specified:
214
+ self.unet.batch_size = self.text_encoder.batch_size
215
+ if not self.controlnet.batch_size_is_specified:
216
+ self.controlnet.batch_size = self.text_encoder.batch_size
202
217
 
203
218
  @property
204
219
  def batch_size(self):
@@ -16,14 +16,10 @@ from typing import Optional, Tuple
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ....transformers import RBLNCLIPTextModelWithProjectionConfig, RBLNCLIPVisionModelWithProjectionConfig
19
- from ....utils.logging import get_logger
20
19
  from ..models import RBLNUNet2DConditionModelConfig, RBLNVQModelConfig
21
20
  from ..models.configuration_prior_transformer import RBLNPriorTransformerConfig
22
21
 
23
22
 
24
- logger = get_logger(__name__)
25
-
26
-
27
23
  class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
28
24
  submodules = ["unet", "movq"]
29
25
  _movq_uses_encoder = False
@@ -49,7 +45,7 @@ class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
49
45
  Initialized as RBLNVQModelConfig if not provided.
50
46
  sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
51
47
  batch_size (Optional[int]): Batch size for inference, applied to all submodules.
52
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
48
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
53
49
  image_size (Optional[Tuple[int, int]]): Dimensions for the generated images.
54
50
  Cannot be used together with img_height/img_width.
55
51
  img_height (Optional[int]): Height of the generated images.
@@ -70,9 +66,7 @@ class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
70
66
  if img_height is not None and img_width is not None:
71
67
  image_size = (img_height, img_width)
72
68
 
73
- self.unet = self.init_submodule_config(
74
- RBLNUNet2DConditionModelConfig, unet, batch_size=batch_size, sample_size=sample_size
75
- )
69
+ self.unet = self.init_submodule_config(RBLNUNet2DConditionModelConfig, unet, sample_size=sample_size)
76
70
  self.movq = self.init_submodule_config(
77
71
  RBLNVQModelConfig,
78
72
  movq,
@@ -81,11 +75,16 @@ class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
81
75
  uses_encoder=self._movq_uses_encoder,
82
76
  )
83
77
 
84
- if guidance_scale is not None:
85
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
78
+ # Get default guidance scale from original class to set UNet batch size
79
+ if guidance_scale is None:
80
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
81
+
82
+ if not self.unet.batch_size_is_specified:
86
83
  do_classifier_free_guidance = guidance_scale > 1.0
87
84
  if do_classifier_free_guidance:
88
85
  self.unet.batch_size = self.movq.batch_size * 2
86
+ else:
87
+ self.unet.batch_size = self.movq.batch_size
89
88
 
90
89
  @property
91
90
  def batch_size(self):
@@ -136,7 +135,7 @@ class RBLNKandinskyV22PriorPipelineConfig(RBLNModelConfig):
136
135
  prior (Optional[RBLNPriorTransformerConfig]): Configuration for the prior transformer component.
137
136
  Initialized as RBLNPriorTransformerConfig if not provided.
138
137
  batch_size (Optional[int]): Batch size for inference, applied to all submodules.
139
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
138
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
140
139
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
141
140
 
142
141
  Note:
@@ -151,13 +150,18 @@ class RBLNKandinskyV22PriorPipelineConfig(RBLNModelConfig):
151
150
  RBLNCLIPVisionModelWithProjectionConfig, image_encoder, batch_size=batch_size
152
151
  )
153
152
 
154
- self.prior = self.init_submodule_config(RBLNPriorTransformerConfig, prior, batch_size=batch_size)
153
+ self.prior = self.init_submodule_config(RBLNPriorTransformerConfig, prior)
154
+
155
+ # Get default guidance scale from original class to set UNet batch size
156
+ if guidance_scale is None:
157
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
155
158
 
156
- if guidance_scale is not None:
157
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
159
+ if not self.prior.batch_size_is_specified:
158
160
  do_classifier_free_guidance = guidance_scale > 1.0
159
161
  if do_classifier_free_guidance:
160
162
  self.prior.batch_size = self.text_encoder.batch_size * 2
163
+ else:
164
+ self.prior.batch_size = self.text_encoder.batch_size
161
165
 
162
166
  @property
163
167
  def batch_size(self):
@@ -208,7 +212,7 @@ class _RBLNKandinskyV22CombinedPipelineBaseConfig(RBLNModelConfig):
208
212
  batch_size (Optional[int]): Batch size for inference, applied to all submodules.
209
213
  img_height (Optional[int]): Height of the generated images.
210
214
  img_width (Optional[int]): Width of the generated images.
211
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
215
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
212
216
  prior_prior (Optional[RBLNPriorTransformerConfig]): Direct configuration for the prior transformer.
213
217
  Used if prior_pipe is not provided.
214
218
  prior_image_encoder (Optional[RBLNCLIPVisionModelWithProjectionConfig]): Direct configuration for the image encoder.
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ....transformers import RBLNCLIPTextModelConfig
19
- from ....utils.logging import get_logger
20
19
  from ..models import RBLNAutoencoderKLConfig, RBLNUNet2DConditionModelConfig
21
20
 
22
21
 
23
- logger = get_logger(__name__)
24
-
25
-
26
22
  class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
27
23
  submodules = ["text_encoder", "unet", "vae"]
28
24
  _vae_uses_encoder = False
@@ -55,7 +51,7 @@ class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
55
51
  sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
56
52
  image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
57
53
  Cannot be used together with img_height/img_width.
58
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
54
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
59
55
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
60
56
 
61
57
  Raises:
@@ -76,7 +72,6 @@ class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
76
72
  self.unet = self.init_submodule_config(
77
73
  RBLNUNet2DConditionModelConfig,
78
74
  unet,
79
- batch_size=batch_size,
80
75
  sample_size=sample_size,
81
76
  )
82
77
  self.vae = self.init_submodule_config(
@@ -87,11 +82,16 @@ class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
87
82
  sample_size=image_size, # image size is equal to sample size in vae
88
83
  )
89
84
 
90
- if guidance_scale is not None:
91
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
85
+ # Get default guidance scale from original class to set UNet batch size
86
+ if guidance_scale is None:
87
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
88
+
89
+ if not self.unet.batch_size_is_specified:
92
90
  do_classifier_free_guidance = guidance_scale > 1.0
93
91
  if do_classifier_free_guidance:
94
92
  self.unet.batch_size = self.text_encoder.batch_size * 2
93
+ else:
94
+ self.unet.batch_size = self.text_encoder.batch_size
95
95
 
96
96
  @property
97
97
  def batch_size(self):
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ....transformers import RBLNCLIPTextModelWithProjectionConfig, RBLNT5EncoderModelConfig
19
- from ....utils.logging import get_logger
20
19
  from ..models import RBLNAutoencoderKLConfig, RBLNSD3Transformer2DModelConfig
21
20
 
22
21
 
23
- logger = get_logger(__name__)
24
-
25
-
26
22
  class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
27
23
  submodules = ["transformer", "text_encoder", "text_encoder_2", "text_encoder_3", "vae"]
28
24
  _vae_uses_encoder = False
@@ -63,7 +59,7 @@ class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
63
59
  batch_size (Optional[int]): Batch size for inference, applied to all submodules.
64
60
  img_height (Optional[int]): Height of the generated images.
65
61
  img_width (Optional[int]): Width of the generated images.
66
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
62
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
67
63
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
68
64
 
69
65
  Raises:
@@ -97,7 +93,6 @@ class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
97
93
  self.transformer = self.init_submodule_config(
98
94
  RBLNSD3Transformer2DModelConfig,
99
95
  transformer,
100
- batch_size=batch_size,
101
96
  sample_size=sample_size,
102
97
  )
103
98
  self.vae = self.init_submodule_config(
@@ -108,11 +103,16 @@ class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
108
103
  sample_size=image_size,
109
104
  )
110
105
 
111
- if guidance_scale is not None:
112
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
106
+ # Get default guidance scale from original class to set Transformer batch size
107
+ if guidance_scale is None:
108
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
109
+
110
+ if not self.transformer.batch_size_is_specified:
113
111
  do_classifier_free_guidance = guidance_scale > 1.0
114
112
  if do_classifier_free_guidance:
115
113
  self.transformer.batch_size = self.text_encoder.batch_size * 2
114
+ else:
115
+ self.transformer.batch_size = self.text_encoder.batch_size
116
116
 
117
117
  @property
118
118
  def max_seq_len(self):
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ....transformers import RBLNCLIPTextModelConfig, RBLNCLIPTextModelWithProjectionConfig
19
- from ....utils.logging import get_logger
20
19
  from ..models import RBLNAutoencoderKLConfig, RBLNUNet2DConditionModelConfig
21
20
 
22
21
 
23
- logger = get_logger(__name__)
24
-
25
-
26
22
  class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
27
23
  submodules = ["text_encoder", "text_encoder_2", "unet", "vae"]
28
24
  _vae_uses_encoder = False
@@ -58,7 +54,7 @@ class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
58
54
  sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
59
55
  image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
60
56
  Cannot be used together with img_height/img_width.
61
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
57
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
62
58
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
63
59
 
64
60
  Raises:
@@ -82,7 +78,6 @@ class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
82
78
  self.unet = self.init_submodule_config(
83
79
  RBLNUNet2DConditionModelConfig,
84
80
  unet,
85
- batch_size=batch_size,
86
81
  sample_size=sample_size,
87
82
  )
88
83
  self.vae = self.init_submodule_config(
@@ -93,11 +88,16 @@ class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
93
88
  sample_size=image_size, # image size is equal to sample size in vae
94
89
  )
95
90
 
96
- if guidance_scale is not None:
97
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
91
+ # Get default guidance scale from original class to set UNet batch size
92
+ if guidance_scale is None:
93
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
94
+
95
+ if not self.unet.batch_size_is_specified:
98
96
  do_classifier_free_guidance = guidance_scale > 1.0
99
97
  if do_classifier_free_guidance:
100
98
  self.unet.batch_size = self.text_encoder.batch_size * 2
99
+ else:
100
+ self.unet.batch_size = self.text_encoder.batch_size
101
101
 
102
102
  @property
103
103
  def batch_size(self):