optimum-rbln 0.7.4a6__tar.gz → 0.7.4a8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/ISSUE_TEMPLATE/model_request.md +1 -1
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/scripts/auto_code_review.py +1 -1
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/PKG-INFO +2 -2
- optimum_rbln-0.7.4a8/examples/image-to-text/run_idefics3.py +67 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/pyproject.toml +1 -1
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/__init__.py +8 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/__version__.py +2 -2
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/configuration_utils.py +18 -1
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/modeling_diffusers.py +41 -15
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/modeling_base.py +4 -3
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/__init__.py +8 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/__init__.py +12 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/auto/auto_factory.py +3 -3
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +2 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +6 -0
- optimum_rbln-0.7.4a8/src/optimum/rbln/transformers/models/idefics3/__init__.py +16 -0
- optimum_rbln-0.7.4a8/src/optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +51 -0
- optimum_rbln-0.7.4a8/src/optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +459 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +6 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/hub.py +2 -2
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/model_utils.py +4 -4
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/submodule.py +10 -1
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/test_base.py +36 -30
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/test_llm.py +49 -1
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/ISSUE_TEMPLATE/config.yml +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/pull_request_template.md +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/scripts/validate_pr_checklist.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/version.yaml +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/auto_code_review.yml +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/check_code_quality.yml +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/deploy-on-tag.yaml +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/deploy.yaml +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/pr-title-check.yaml +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/pr_checklist_validator.yml +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/rbln_check_compiler.yaml +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/rbln_dispatch_pytest.yaml +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/rbln_optimum_inference_test.yaml +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/rbln_optimum_pytest.yaml +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/rbln_scheduled_test.yaml +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/rbln_trigger_on_pr.yaml +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.gitignore +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/CODE_OF_CONDUCT.md +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/CONTRIBUTING.md +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/LICENSE +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/README.md +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/assets/rbln_logo.png +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/audio-classification/run_ast_audio_classification.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/depth-estimation/run_dpt.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/image-classification/run_image_classification.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/image-classification/run_vit_image_classification.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/image-to-text/run_llava_next_image_to_text.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/kandinsky2_2/run_kandinsky2_2.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/kandinsky2_2/run_kandinsky2_2_combined.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/kandinsky2_2/run_kandinsky2_2_img2img.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/kandinsky2_2/run_kandinsky2_2_img2img_combined.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/kandinsky2_2/run_kandinsky2_2_inpaint.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/kandinsky2_2/run_kandinsky2_2_inpaint_combined.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/kandinsky2_2/run_kandinsky2_2_prior_interpolate.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/question-answering/run_question_answering.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/speech-recognition/run_wav2vec2.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/speech-recognition/run_whisper.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/stable-diffusion/run_stable_diffusion.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/stable-diffusion/run_stable_diffusion_controlnet.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/stable-diffusion/run_stable_diffusion_img2img.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/stable-diffusion/run_stable_diffusion_img2img_controlnet.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/stable-diffusion/run_stable_diffusion_inpaint.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/stable-diffusion/run_stable_diffusion_lora.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/stable-diffusion/run_stable_diffusion_multicontrolnet.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text-classification/run_bge_m3_text_classification.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text-classification/run_bge_reranker_v2_m3_text_classification.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text-classification/run_secureBERT.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text-classification/run_t5_classification.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text-classification/run_twitter_roberta_text_classification.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text2text-generation/run_bart_text2text_generation.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text2text-generation/run_llama_peft.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text2text-generation/run_llama_text2text_generation.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/time-series-forecasting/run_time_series_forecasting.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/scripts/uv-lock.sh +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/scripts/uv-sync.sh +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/models/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/autoencoders/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/autoencoders/vae.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/autoencoders/vq_model.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/controlnet.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/transformers/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/transformers/prior_transformer.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/transformers/transformer_sd3.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/unets/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/unets/unet_2d_condition.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/modeling.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/ops/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/ops/attn.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/ops/flash_attn.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/ops/kv_cache_update.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/ops/linear.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/configuration_alias.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/configuration_generic.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/modeling_alias.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/modeling_generic.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/modeling_rope_utils.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/auto/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/auto/modeling_auto.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/bart/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/bart/bart_architecture.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/bart/configuration_bart.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/bart/modeling_bart.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/bert/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/bert/configuration_bert.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/bert/modeling_bert.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/clip/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/clip/configuration_clip.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/clip/modeling_clip.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/decoderonly/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/dpt/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/dpt/configuration_dpt.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/exaone/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/exaone/configuration_exaone.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/exaone/exaone_architecture.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/exaone/modeling_exaone.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gemma/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gemma/configuration_gemma.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gemma/gemma_architecture.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gemma/modeling_gemma.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gpt2/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/llama/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/llama/configuration_llama.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/llama/llama_architecture.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/llama/modeling_llama.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/llava_next/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/midm/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/midm/configuration_midm.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/midm/midm_architecture.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/midm/modeling_midm.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/mistral/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/mistral/configuration_mistral.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/mistral/mistral_architecture.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/mistral/modeling_mistral.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/phi/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/phi/configuration_phi.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/phi/modeling_phi.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/phi/phi_architecture.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/seq2seq/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/seq2seq/configuration_seq2seq2.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/t5/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/t5/configuration_t5.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/t5/modeling_t5.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/t5/t5_architecture.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/time_series_transformers/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/time_series_transformers/configuration_time_series_transformer.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/time_series_transformers/modeling_time_series_transformers.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/time_series_transformers/time_series_transformers_architecture.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/wav2vec2/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/whisper/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/whisper/configuration_whisper.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/whisper/generation_whisper.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/whisper/modeling_whisper.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/whisper/whisper_architecture.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/xlm_roberta/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/utils/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/utils/rbln_quantization.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/decorator_utils.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/import_utils.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/logging.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/runtime_utils.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/save_utils.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/__init__.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/psnr.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/requirements_sdxl.txt +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/run_stable_diffusion_xl_base.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/test_config.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/test_diffusers.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/test_transformers.py +0 -0
- {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/uv.lock +0 -0
@@ -36,7 +36,7 @@ def get_pr_diff():
|
|
36
36
|
|
37
37
|
|
38
38
|
def get_prompt(diff, pr):
|
39
|
-
system_prompt = """You are an experienced software engineer specializing in code reviews for deep learning libraries. Your task is to review code changes and related pull request (PR) information for `optimum-rbln`, a Python library that optimizes
|
39
|
+
system_prompt = """You are an experienced software engineer specializing in code reviews for deep learning libraries. Your task is to review code changes and related pull request (PR) information for `optimum-rbln`, a Python library that optimizes HuggingFace models for execution on RBLN NPUs.
|
40
40
|
|
41
41
|
Focus on providing actionable and constructive feedback. Don't make generalized suggestions."""
|
42
42
|
|
@@ -1,7 +1,7 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: optimum-rbln
|
3
|
-
Version: 0.7.
|
4
|
-
Summary: Optimum RBLN is the interface between the
|
3
|
+
Version: 0.7.4a8
|
4
|
+
Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
7
7
|
Project-URL: Repository, https://github.com/rebellions-sw/optimum-rbln
|
@@ -0,0 +1,67 @@
|
|
1
|
+
import os
|
2
|
+
import typing
|
3
|
+
|
4
|
+
import fire
|
5
|
+
from datasets import load_dataset
|
6
|
+
from transformers import AutoProcessor
|
7
|
+
|
8
|
+
from optimum.rbln import RBLNIdefics3ForConditionalGeneration
|
9
|
+
|
10
|
+
|
11
|
+
def main(
|
12
|
+
model_id: str = "HuggingFaceM4/Idefics3-8B-Llama3",
|
13
|
+
batch_size: int = 1,
|
14
|
+
from_transformers: bool = False,
|
15
|
+
prompt: typing.Optional[str] = None,
|
16
|
+
max_seq_len: typing.Optional[int] = None,
|
17
|
+
tensor_parallel_size: typing.Optional[int] = 4,
|
18
|
+
):
|
19
|
+
processor = AutoProcessor.from_pretrained(model_id)
|
20
|
+
|
21
|
+
if from_transformers:
|
22
|
+
model = RBLNIdefics3ForConditionalGeneration.from_pretrained(
|
23
|
+
model_id,
|
24
|
+
export=True,
|
25
|
+
rbln_config={
|
26
|
+
"text_model": {
|
27
|
+
"attn_impl": "flash_attn",
|
28
|
+
"max_seq_len": max_seq_len,
|
29
|
+
"use_inputs_embeds": True,
|
30
|
+
"tensor_parallel_size": tensor_parallel_size,
|
31
|
+
"batch_size": batch_size,
|
32
|
+
}
|
33
|
+
},
|
34
|
+
)
|
35
|
+
model.save_pretrained(os.path.basename(model_id))
|
36
|
+
else:
|
37
|
+
model = RBLNIdefics3ForConditionalGeneration.from_pretrained(
|
38
|
+
os.path.basename(model_id),
|
39
|
+
export=False,
|
40
|
+
)
|
41
|
+
|
42
|
+
ds = load_dataset("HuggingFaceM4/the_cauldron", "ai2d", split="train")
|
43
|
+
samples = ds.select(range(batch_size))
|
44
|
+
images = []
|
45
|
+
prompts = []
|
46
|
+
|
47
|
+
for sample in samples:
|
48
|
+
img = sample["images"]
|
49
|
+
images.append(img)
|
50
|
+
|
51
|
+
message = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe this image."}]}]
|
52
|
+
prompt = processor.apply_chat_template(message, add_generation_prompt=True)
|
53
|
+
prompts.append(prompt)
|
54
|
+
|
55
|
+
inputs = processor(text=prompts, images=images, return_tensors="pt", padding=True)
|
56
|
+
inputs = dict(inputs)
|
57
|
+
# Generate
|
58
|
+
|
59
|
+
generated_ids = model.generate(**inputs, max_new_tokens=500)
|
60
|
+
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
61
|
+
|
62
|
+
for i, text in enumerate(generated_texts):
|
63
|
+
print(f"Sample {i + 1} generate:\n{text}\n")
|
64
|
+
|
65
|
+
|
66
|
+
if __name__ == "__main__":
|
67
|
+
fire.Fire(main)
|
@@ -1,7 +1,7 @@
|
|
1
1
|
[project]
|
2
2
|
name = "optimum-rbln"
|
3
3
|
description = """
|
4
|
-
Optimum RBLN is the interface between the
|
4
|
+
Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators.
|
5
5
|
It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
6
6
|
"""
|
7
7
|
authors = [
|
@@ -74,6 +74,10 @@ _import_structure = {
|
|
74
74
|
"RBLNGemmaForCausalLMConfig",
|
75
75
|
"RBLNGPT2LMHeadModel",
|
76
76
|
"RBLNGPT2LMHeadModelConfig",
|
77
|
+
"RBLNIdefics3VisionTransformer",
|
78
|
+
"RBLNIdefics3ForConditionalGeneration",
|
79
|
+
"RBLNIdefics3ForConditionalGenerationConfig",
|
80
|
+
"RBLNIdefics3VisionTransformerConfig",
|
77
81
|
"RBLNLlamaForCausalLM",
|
78
82
|
"RBLNLlamaForCausalLMConfig",
|
79
83
|
"RBLNLlavaNextForConditionalGeneration",
|
@@ -281,6 +285,10 @@ if TYPE_CHECKING:
|
|
281
285
|
RBLNGemmaForCausalLMConfig,
|
282
286
|
RBLNGPT2LMHeadModel,
|
283
287
|
RBLNGPT2LMHeadModelConfig,
|
288
|
+
RBLNIdefics3ForConditionalGeneration,
|
289
|
+
RBLNIdefics3ForConditionalGenerationConfig,
|
290
|
+
RBLNIdefics3VisionTransformer,
|
291
|
+
RBLNIdefics3VisionTransformerConfig,
|
284
292
|
RBLNLlamaForCausalLM,
|
285
293
|
RBLNLlamaForCausalLMConfig,
|
286
294
|
RBLNLlavaNextForConditionalGeneration,
|
@@ -17,5 +17,5 @@ __version__: str
|
|
17
17
|
__version_tuple__: VERSION_TUPLE
|
18
18
|
version_tuple: VERSION_TUPLE
|
19
19
|
|
20
|
-
__version__ = version = '0.7.
|
21
|
-
__version_tuple__ = version_tuple = (0, 7, 4, '
|
20
|
+
__version__ = version = '0.7.4a8'
|
21
|
+
__version_tuple__ = version_tuple = (0, 7, 4, 'a8')
|
@@ -174,6 +174,14 @@ class RBLNAutoConfig:
|
|
174
174
|
cls = getattr(importlib.import_module("optimum.rbln"), cls_name)
|
175
175
|
return cls(**kwargs)
|
176
176
|
|
177
|
+
@staticmethod
|
178
|
+
def load_from_dict(config_dict: Dict[str, Any]) -> "RBLNModelConfig":
|
179
|
+
cls_name = config_dict.get("cls_name")
|
180
|
+
if cls_name is None:
|
181
|
+
raise ValueError("`cls_name` is required.")
|
182
|
+
cls = getattr(importlib.import_module("optimum.rbln"), cls_name)
|
183
|
+
return cls(**config_dict)
|
184
|
+
|
177
185
|
@staticmethod
|
178
186
|
def load(
|
179
187
|
path: str,
|
@@ -195,8 +203,9 @@ class RBLNAutoConfig:
|
|
195
203
|
cls, config_file = load_config(path)
|
196
204
|
|
197
205
|
rbln_keys = [key for key in kwargs.keys() if key.startswith("rbln_")]
|
198
|
-
|
199
206
|
rbln_runtime_kwargs = {key[5:]: kwargs.pop(key) for key in rbln_keys if key[5:] in RUNTIME_KEYWORDS}
|
207
|
+
rbln_submodule_kwargs = {key[5:]: kwargs.pop(key) for key in rbln_keys if key[5:] in cls.submodules}
|
208
|
+
|
200
209
|
rbln_kwargs = {
|
201
210
|
key[5:]: kwargs.pop(key)
|
202
211
|
for key in rbln_keys
|
@@ -206,6 +215,14 @@ class RBLNAutoConfig:
|
|
206
215
|
if len(rbln_kwargs) > 0:
|
207
216
|
raise ValueError(f"Cannot set the following arguments: {list(rbln_kwargs.keys())}")
|
208
217
|
|
218
|
+
# Process submodule's rbln_config
|
219
|
+
for submodule in cls.submodules:
|
220
|
+
if submodule not in config_file:
|
221
|
+
raise ValueError(f"Submodule {submodule} not found in rbln_config.json.")
|
222
|
+
submodule_config = config_file[submodule]
|
223
|
+
submodule_config.update(rbln_submodule_kwargs.pop(submodule, {}))
|
224
|
+
config_file[submodule] = RBLNAutoConfig.load_from_dict(submodule_config)
|
225
|
+
|
209
226
|
if passed_rbln_config is not None:
|
210
227
|
config_file.update(passed_rbln_config._runtime_options)
|
211
228
|
# TODO(jongho): Reject if the passed_rbln_config has different attributes from the config_file
|
{optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/modeling_diffusers.py
RENAMED
@@ -47,17 +47,11 @@ class RBLNDiffusionMixin:
|
|
47
47
|
|
48
48
|
1. Create a new pipeline class that inherits from both this mixin and the original StableDiffusionPipeline.
|
49
49
|
2. Define the required _submodules class variable listing the components to be compiled.
|
50
|
-
3. If needed, implement get_default_rbln_config for custom configuration of submodules.
|
51
50
|
|
52
51
|
Example:
|
53
52
|
```python
|
54
53
|
class RBLNStableDiffusionPipeline(RBLNDiffusionMixin, StableDiffusionPipeline):
|
55
54
|
_submodules = ["text_encoder", "unet", "vae"]
|
56
|
-
|
57
|
-
@classmethod
|
58
|
-
def get_default_rbln_config(cls, model, submodule_name, rbln_config):
|
59
|
-
# Configuration for other submodules...
|
60
|
-
pass
|
61
55
|
```
|
62
56
|
|
63
57
|
Class Variables:
|
@@ -77,14 +71,6 @@ class RBLNDiffusionMixin:
|
|
77
71
|
_prefix = {}
|
78
72
|
_rbln_config_class = None
|
79
73
|
|
80
|
-
@classmethod
|
81
|
-
def is_img2img_pipeline(cls):
|
82
|
-
return "Img2Img" in cls.__name__
|
83
|
-
|
84
|
-
@classmethod
|
85
|
-
def is_inpaint_pipeline(cls):
|
86
|
-
return "Inpaint" in cls.__name__
|
87
|
-
|
88
74
|
@staticmethod
|
89
75
|
def _maybe_apply_and_fuse_lora(
|
90
76
|
model: torch.nn.Module,
|
@@ -151,7 +137,47 @@ class RBLNDiffusionMixin:
|
|
151
137
|
lora_weights_names: Optional[Union[str, List[str]]] = None,
|
152
138
|
lora_scales: Optional[Union[float, List[float]]] = None,
|
153
139
|
**kwargs,
|
154
|
-
) ->
|
140
|
+
) -> "RBLNDiffusionMixin":
|
141
|
+
"""
|
142
|
+
Load a pretrained diffusion pipeline from a model checkpoint, with optional compilation for RBLN NPUs.
|
143
|
+
|
144
|
+
This method has two distinct operating modes:
|
145
|
+
- When `export=True`: Takes a PyTorch-based diffusion model, compiles it for RBLN NPUs, and loads the compiled model
|
146
|
+
- When `export=False`: Loads an already compiled RBLN model from `model_id` without recompilation
|
147
|
+
|
148
|
+
It supports various diffusion pipelines including Stable Diffusion, Kandinsky, ControlNet, and other diffusers-based models.
|
149
|
+
|
150
|
+
Args:
|
151
|
+
model_id (`str`):
|
152
|
+
The model ID or path to the pretrained model to load. Can be either:
|
153
|
+
- A model ID from the HuggingFace Hub
|
154
|
+
- A local path to a saved model directory
|
155
|
+
export (`bool`, *optional*, defaults to `False`):
|
156
|
+
If True, takes a PyTorch model from `model_id` and compiles it for RBLN NPU execution.
|
157
|
+
If False, loads an already compiled RBLN model from `model_id` without recompilation.
|
158
|
+
model_save_dir (`os.PathLike`, *optional*):
|
159
|
+
Directory to save the compiled model artifacts. Only used when `export=True`.
|
160
|
+
If not provided and `export=True`, a temporary directory is used.
|
161
|
+
rbln_config (`Dict[str, Any]`, *optional*, defaults to `{}`):
|
162
|
+
Configuration options for RBLN compilation. Can include settings for specific submodules
|
163
|
+
such as `text_encoder`, `unet`, and `vae`. Configuration can be tailored to the specific
|
164
|
+
pipeline being compiled.
|
165
|
+
lora_ids (`str` or `List[str]`, *optional*):
|
166
|
+
LoRA adapter ID(s) to load and apply before compilation. LoRA weights are fused
|
167
|
+
into the model weights during compilation. Only used when `export=True`.
|
168
|
+
lora_weights_names (`str` or `List[str]`, *optional*):
|
169
|
+
Names of specific LoRA weight files to load, corresponding to lora_ids. Only used when `export=True`.
|
170
|
+
lora_scales (`float` or `List[float]`, *optional*):
|
171
|
+
Scaling factor(s) to apply to the LoRA adapter(s). Only used when `export=True`.
|
172
|
+
**kwargs:
|
173
|
+
Additional arguments to pass to the underlying diffusion pipeline constructor or the
|
174
|
+
RBLN compilation process. These may include parameters specific to individual submodules
|
175
|
+
or the particular diffusion pipeline being used.
|
176
|
+
|
177
|
+
Returns:
|
178
|
+
`RBLNDiffusionMixin`: A compiled or loaded diffusion pipeline that can be used for inference on RBLN NPU.
|
179
|
+
The returned object is an instance of the class that called this method, inheriting from RBLNDiffusionMixin.
|
180
|
+
"""
|
155
181
|
rbln_config, kwargs = cls.get_rbln_config_class().initialize_from_kwargs(rbln_config, **kwargs)
|
156
182
|
|
157
183
|
if export:
|
@@ -216,6 +216,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
216
216
|
if isinstance(rbln_config, dict):
|
217
217
|
rbln_config_as_kwargs = {f"rbln_{key}": value for key, value in rbln_config.items()}
|
218
218
|
kwargs.update(rbln_config_as_kwargs)
|
219
|
+
rbln_config = None
|
219
220
|
elif isinstance(rbln_config, RBLNModelConfig) and rbln_config.rbln_model_cls_name != cls.__name__:
|
220
221
|
raise ValueError(
|
221
222
|
f"Cannot use the passed rbln_config. Its model class name ({rbln_config.rbln_model_cls_name}) "
|
@@ -392,13 +393,13 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
392
393
|
@classmethod
|
393
394
|
def get_hf_class(cls):
|
394
395
|
"""
|
395
|
-
Lazily loads and caches the corresponding
|
396
|
+
Lazily loads and caches the corresponding HuggingFace model class.
|
396
397
|
Removes 'RBLN' prefix from the class name to get the original class name
|
397
398
|
(e.g., RBLNLlamaForCausalLM -> LlamaForCausalLM) and imports it from
|
398
399
|
the transformers/diffusers module.
|
399
400
|
|
400
401
|
Returns:
|
401
|
-
type: The original
|
402
|
+
type: The original HuggingFace model class
|
402
403
|
"""
|
403
404
|
if cls._hf_class is None:
|
404
405
|
hf_cls_name = cls.__name__[4:]
|
@@ -478,7 +479,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
478
479
|
save_directory (`Union[str, Path]`):
|
479
480
|
Directory where to save the model file.
|
480
481
|
push_to_hub (`bool`, *optional*, defaults to `False`):
|
481
|
-
Whether or not to push your model to the
|
482
|
+
Whether or not to push your model to the HuggingFace model hub after saving it.
|
482
483
|
|
483
484
|
"""
|
484
485
|
if os.path.isfile(save_directory):
|
@@ -68,6 +68,10 @@ _import_structure = {
|
|
68
68
|
"RBLNGemmaForCausalLMConfig",
|
69
69
|
"RBLNGPT2LMHeadModel",
|
70
70
|
"RBLNGPT2LMHeadModelConfig",
|
71
|
+
"RBLNIdefics3VisionTransformer",
|
72
|
+
"RBLNIdefics3ForConditionalGeneration",
|
73
|
+
"RBLNIdefics3ForConditionalGenerationConfig",
|
74
|
+
"RBLNIdefics3VisionTransformerConfig",
|
71
75
|
"RBLNLlamaForCausalLM",
|
72
76
|
"RBLNLlamaForCausalLMConfig",
|
73
77
|
"RBLNLlavaNextForConditionalGeneration",
|
@@ -169,6 +173,10 @@ if TYPE_CHECKING:
|
|
169
173
|
RBLNGemmaForCausalLMConfig,
|
170
174
|
RBLNGPT2LMHeadModel,
|
171
175
|
RBLNGPT2LMHeadModelConfig,
|
176
|
+
RBLNIdefics3ForConditionalGeneration,
|
177
|
+
RBLNIdefics3ForConditionalGenerationConfig,
|
178
|
+
RBLNIdefics3VisionTransformer,
|
179
|
+
RBLNIdefics3VisionTransformerConfig,
|
172
180
|
RBLNLlamaForCausalLM,
|
173
181
|
RBLNLlamaForCausalLMConfig,
|
174
182
|
RBLNLlavaNextForConditionalGeneration,
|
{optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/__init__.py
RENAMED
@@ -73,6 +73,12 @@ _import_structure = {
|
|
73
73
|
"exaone": ["RBLNExaoneForCausalLM", "RBLNExaoneForCausalLMConfig"],
|
74
74
|
"gemma": ["RBLNGemmaForCausalLM", "RBLNGemmaForCausalLMConfig"],
|
75
75
|
"gpt2": ["RBLNGPT2LMHeadModel", "RBLNGPT2LMHeadModelConfig"],
|
76
|
+
"idefics3": [
|
77
|
+
"RBLNIdefics3VisionTransformer",
|
78
|
+
"RBLNIdefics3ForConditionalGeneration",
|
79
|
+
"RBLNIdefics3ForConditionalGenerationConfig",
|
80
|
+
"RBLNIdefics3VisionTransformerConfig",
|
81
|
+
],
|
76
82
|
"llama": ["RBLNLlamaForCausalLM", "RBLNLlamaForCausalLMConfig"],
|
77
83
|
"llava_next": ["RBLNLlavaNextForConditionalGeneration", "RBLNLlavaNextForConditionalGenerationConfig"],
|
78
84
|
"midm": ["RBLNMidmLMHeadModel", "RBLNMidmLMHeadModelConfig"],
|
@@ -144,6 +150,12 @@ if TYPE_CHECKING:
|
|
144
150
|
from .exaone import RBLNExaoneForCausalLM, RBLNExaoneForCausalLMConfig
|
145
151
|
from .gemma import RBLNGemmaForCausalLM, RBLNGemmaForCausalLMConfig
|
146
152
|
from .gpt2 import RBLNGPT2LMHeadModel, RBLNGPT2LMHeadModelConfig
|
153
|
+
from .idefics3 import (
|
154
|
+
RBLNIdefics3ForConditionalGeneration,
|
155
|
+
RBLNIdefics3ForConditionalGenerationConfig,
|
156
|
+
RBLNIdefics3VisionTransformer,
|
157
|
+
RBLNIdefics3VisionTransformerConfig,
|
158
|
+
)
|
147
159
|
from .llama import RBLNLlamaForCausalLM, RBLNLlamaForCausalLMConfig
|
148
160
|
from .llava_next import RBLNLlavaNextForConditionalGeneration, RBLNLlavaNextForConditionalGenerationConfig
|
149
161
|
from .midm import RBLNMidmLMHeadModel, RBLNMidmLMHeadModelConfig
|
@@ -48,7 +48,7 @@ class _BaseAutoModelClass:
|
|
48
48
|
|
49
49
|
Args:
|
50
50
|
pretrained_model_name_or_path (str): Identifier or path to the pretrained model.
|
51
|
-
export (bool): Whether to infer the class based on
|
51
|
+
export (bool): Whether to infer the class based on HuggingFace (HF) architecture.
|
52
52
|
kwargs: Additional arguments for configuration and loading.
|
53
53
|
|
54
54
|
Returns:
|
@@ -86,14 +86,14 @@ class _BaseAutoModelClass:
|
|
86
86
|
**kwargs,
|
87
87
|
):
|
88
88
|
"""
|
89
|
-
Infer the
|
89
|
+
Infer the HuggingFace model class based on the configuration or model name.
|
90
90
|
|
91
91
|
Args:
|
92
92
|
pretrained_model_name_or_path (str): Identifier or path to the pretrained model.
|
93
93
|
kwargs: Additional arguments for configuration and loading.
|
94
94
|
|
95
95
|
Returns:
|
96
|
-
PretrainedModel: The inferred
|
96
|
+
PretrainedModel: The inferred HuggingFace model class.
|
97
97
|
"""
|
98
98
|
|
99
99
|
# Try to load configuration if provided or retrieve it from the model ID
|
@@ -184,6 +184,7 @@ class DecoderOnlyWrapper(nn.Module):
|
|
184
184
|
|
185
185
|
def convert_to_rbln_causal_lm(self, causal_lm: PreTrainedModel, max_seq_len: int):
|
186
186
|
new_layers = []
|
187
|
+
|
187
188
|
for layer in causal_lm.model.layers:
|
188
189
|
if self.attn_impl == "eager":
|
189
190
|
new_self_attn = DecoderOnlyAttention(
|
@@ -201,6 +202,7 @@ class DecoderOnlyWrapper(nn.Module):
|
|
201
202
|
|
202
203
|
new_layer = DecoderOnlyLayer(layer, new_self_attn)
|
203
204
|
new_layers.append(new_layer)
|
205
|
+
|
204
206
|
new_model = DecoderOnlyModel(
|
205
207
|
causal_lm.model,
|
206
208
|
new_layers,
|
@@ -451,6 +451,12 @@ class RBLNDecoderOnlyModelForCausalLM(RBLNModel):
|
|
451
451
|
def get_input_embeddings(self):
|
452
452
|
return self.embed_tokens
|
453
453
|
|
454
|
+
def get_attn_impl(self) -> str:
|
455
|
+
return self.rbln_config.attn_impl
|
456
|
+
|
457
|
+
def get_kvcache_num_blocks(self) -> int:
|
458
|
+
return self.rbln_config.kvcache_num_blocks
|
459
|
+
|
454
460
|
@classmethod
|
455
461
|
def get_quantized_model(
|
456
462
|
cls,
|
@@ -0,0 +1,16 @@
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from .configuration_idefics3 import RBLNIdefics3ForConditionalGenerationConfig, RBLNIdefics3VisionTransformerConfig
|
16
|
+
from .modeling_idefics3 import RBLNIdefics3ForConditionalGeneration, RBLNIdefics3VisionTransformer
|
@@ -0,0 +1,51 @@
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Optional
|
16
|
+
|
17
|
+
from ....configuration_utils import RBLNModelConfig
|
18
|
+
|
19
|
+
|
20
|
+
class RBLNIdefics3VisionTransformerConfig(RBLNModelConfig):
|
21
|
+
pass
|
22
|
+
|
23
|
+
|
24
|
+
class RBLNIdefics3ForConditionalGenerationConfig(RBLNModelConfig):
|
25
|
+
submodules = ["vision_model", "text_model"]
|
26
|
+
|
27
|
+
def __init__(
|
28
|
+
self,
|
29
|
+
batch_size: Optional[int] = None,
|
30
|
+
vision_model: Optional[RBLNModelConfig] = None,
|
31
|
+
text_model: Optional[RBLNModelConfig] = None,
|
32
|
+
**kwargs,
|
33
|
+
):
|
34
|
+
"""
|
35
|
+
Args:
|
36
|
+
batch_size (Optional[int]): The batch size for inference. Defaults to 1.
|
37
|
+
vision_model (Optional[RBLNModelConfig]): Configuration for the vision transformer component.
|
38
|
+
text_model (Optional[RBLNModelConfig]): Configuration for the text model component.
|
39
|
+
**kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
40
|
+
|
41
|
+
Raises:
|
42
|
+
ValueError: If batch_size is not a positive integer.
|
43
|
+
"""
|
44
|
+
|
45
|
+
super().__init__(**kwargs)
|
46
|
+
self.batch_size = batch_size or 1
|
47
|
+
if not isinstance(self.batch_size, int) or self.batch_size < 0:
|
48
|
+
raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
|
49
|
+
|
50
|
+
self.vision_model = vision_model
|
51
|
+
self.text_model = text_model
|