optimum-rbln 0.7.4a6__tar.gz → 0.7.4a8__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (237) hide show
  1. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/ISSUE_TEMPLATE/model_request.md +1 -1
  2. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/scripts/auto_code_review.py +1 -1
  3. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/PKG-INFO +2 -2
  4. optimum_rbln-0.7.4a8/examples/image-to-text/run_idefics3.py +67 -0
  5. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/pyproject.toml +1 -1
  6. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/__init__.py +8 -0
  7. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/__version__.py +2 -2
  8. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/configuration_utils.py +18 -1
  9. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/modeling_diffusers.py +41 -15
  10. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/modeling_base.py +4 -3
  11. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/__init__.py +8 -0
  12. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/__init__.py +12 -0
  13. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/auto/auto_factory.py +3 -3
  14. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +2 -0
  15. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +6 -0
  16. optimum_rbln-0.7.4a8/src/optimum/rbln/transformers/models/idefics3/__init__.py +16 -0
  17. optimum_rbln-0.7.4a8/src/optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +51 -0
  18. optimum_rbln-0.7.4a8/src/optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +459 -0
  19. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +6 -0
  20. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/hub.py +2 -2
  21. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/model_utils.py +4 -4
  22. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/submodule.py +10 -1
  23. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/test_base.py +36 -30
  24. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/test_llm.py +49 -1
  25. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
  26. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/ISSUE_TEMPLATE/config.yml +0 -0
  27. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
  28. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/pull_request_template.md +0 -0
  29. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/scripts/validate_pr_checklist.py +0 -0
  30. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/version.yaml +0 -0
  31. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/auto_code_review.yml +0 -0
  32. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/check_code_quality.yml +0 -0
  33. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/deploy-on-tag.yaml +0 -0
  34. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/deploy.yaml +0 -0
  35. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/pr-title-check.yaml +0 -0
  36. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/pr_checklist_validator.yml +0 -0
  37. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/rbln_check_compiler.yaml +0 -0
  38. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/rbln_dispatch_pytest.yaml +0 -0
  39. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/rbln_optimum_inference_test.yaml +0 -0
  40. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/rbln_optimum_pytest.yaml +0 -0
  41. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/rbln_scheduled_test.yaml +0 -0
  42. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.github/workflows/rbln_trigger_on_pr.yaml +0 -0
  43. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/.gitignore +0 -0
  44. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/CODE_OF_CONDUCT.md +0 -0
  45. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/CONTRIBUTING.md +0 -0
  46. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/LICENSE +0 -0
  47. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/README.md +0 -0
  48. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/assets/rbln_logo.png +0 -0
  49. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/audio-classification/run_ast_audio_classification.py +0 -0
  50. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/depth-estimation/run_dpt.py +0 -0
  51. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/image-classification/run_image_classification.py +0 -0
  52. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/image-classification/run_vit_image_classification.py +0 -0
  53. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/image-to-text/run_llava_next_image_to_text.py +0 -0
  54. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/kandinsky2_2/run_kandinsky2_2.py +0 -0
  55. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/kandinsky2_2/run_kandinsky2_2_combined.py +0 -0
  56. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/kandinsky2_2/run_kandinsky2_2_img2img.py +0 -0
  57. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/kandinsky2_2/run_kandinsky2_2_img2img_combined.py +0 -0
  58. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/kandinsky2_2/run_kandinsky2_2_inpaint.py +0 -0
  59. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/kandinsky2_2/run_kandinsky2_2_inpaint_combined.py +0 -0
  60. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/kandinsky2_2/run_kandinsky2_2_prior_interpolate.py +0 -0
  61. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/question-answering/run_question_answering.py +0 -0
  62. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/speech-recognition/run_wav2vec2.py +0 -0
  63. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/speech-recognition/run_whisper.py +0 -0
  64. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/stable-diffusion/run_stable_diffusion.py +0 -0
  65. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/stable-diffusion/run_stable_diffusion_controlnet.py +0 -0
  66. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/stable-diffusion/run_stable_diffusion_img2img.py +0 -0
  67. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/stable-diffusion/run_stable_diffusion_img2img_controlnet.py +0 -0
  68. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/stable-diffusion/run_stable_diffusion_inpaint.py +0 -0
  69. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/stable-diffusion/run_stable_diffusion_lora.py +0 -0
  70. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/stable-diffusion/run_stable_diffusion_multicontrolnet.py +0 -0
  71. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text-classification/run_bge_m3_text_classification.py +0 -0
  72. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text-classification/run_bge_reranker_v2_m3_text_classification.py +0 -0
  73. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text-classification/run_secureBERT.py +0 -0
  74. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text-classification/run_t5_classification.py +0 -0
  75. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text-classification/run_twitter_roberta_text_classification.py +0 -0
  76. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text2text-generation/run_bart_text2text_generation.py +0 -0
  77. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text2text-generation/run_llama_peft.py +0 -0
  78. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/text2text-generation/run_llama_text2text_generation.py +0 -0
  79. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/examples/time-series-forecasting/run_time_series_forecasting.py +0 -0
  80. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/scripts/uv-lock.sh +0 -0
  81. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/scripts/uv-sync.sh +0 -0
  82. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/__init__.py +0 -0
  83. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/__init__.py +0 -0
  84. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/models/__init__.py +0 -0
  85. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +0 -0
  86. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +0 -0
  87. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +0 -0
  88. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +0 -0
  89. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +0 -0
  90. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +0 -0
  91. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/__init__.py +0 -0
  92. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +0 -0
  93. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +0 -0
  94. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +0 -0
  95. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +0 -0
  96. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +0 -0
  97. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/__init__.py +0 -0
  98. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/autoencoders/__init__.py +0 -0
  99. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +0 -0
  100. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/autoencoders/vae.py +0 -0
  101. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/autoencoders/vq_model.py +0 -0
  102. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/controlnet.py +0 -0
  103. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/transformers/__init__.py +0 -0
  104. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/transformers/prior_transformer.py +0 -0
  105. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/transformers/transformer_sd3.py +0 -0
  106. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/unets/__init__.py +0 -0
  107. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/models/unets/unet_2d_condition.py +0 -0
  108. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/__init__.py +0 -0
  109. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/__init__.py +0 -0
  110. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +0 -0
  111. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +0 -0
  112. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +0 -0
  113. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +0 -0
  114. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +0 -0
  115. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +0 -0
  116. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +0 -0
  117. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +0 -0
  118. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +0 -0
  119. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +0 -0
  120. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +0 -0
  121. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +0 -0
  122. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +0 -0
  123. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +0 -0
  124. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +0 -0
  125. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +0 -0
  126. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +0 -0
  127. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +0 -0
  128. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +0 -0
  129. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +0 -0
  130. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -0
  131. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -0
  132. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -0
  133. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/modeling.py +0 -0
  134. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/ops/__init__.py +0 -0
  135. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/ops/attn.py +0 -0
  136. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/ops/flash_attn.py +0 -0
  137. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/ops/kv_cache_update.py +0 -0
  138. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/ops/linear.py +0 -0
  139. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/configuration_alias.py +0 -0
  140. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/configuration_generic.py +0 -0
  141. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/modeling_alias.py +0 -0
  142. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/modeling_generic.py +0 -0
  143. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/modeling_rope_utils.py +0 -0
  144. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/auto/__init__.py +0 -0
  145. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/auto/modeling_auto.py +0 -0
  146. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/bart/__init__.py +0 -0
  147. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/bart/bart_architecture.py +0 -0
  148. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/bart/configuration_bart.py +0 -0
  149. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/bart/modeling_bart.py +0 -0
  150. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/bert/__init__.py +0 -0
  151. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/bert/configuration_bert.py +0 -0
  152. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/bert/modeling_bert.py +0 -0
  153. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/clip/__init__.py +0 -0
  154. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/clip/configuration_clip.py +0 -0
  155. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/clip/modeling_clip.py +0 -0
  156. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/decoderonly/__init__.py +0 -0
  157. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +0 -0
  158. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/dpt/__init__.py +0 -0
  159. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/dpt/configuration_dpt.py +0 -0
  160. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -0
  161. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/exaone/__init__.py +0 -0
  162. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/exaone/configuration_exaone.py +0 -0
  163. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/exaone/exaone_architecture.py +0 -0
  164. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/exaone/modeling_exaone.py +0 -0
  165. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gemma/__init__.py +0 -0
  166. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gemma/configuration_gemma.py +0 -0
  167. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gemma/gemma_architecture.py +0 -0
  168. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gemma/modeling_gemma.py +0 -0
  169. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gpt2/__init__.py +0 -0
  170. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +0 -0
  171. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +0 -0
  172. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +0 -0
  173. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/llama/__init__.py +0 -0
  174. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/llama/configuration_llama.py +0 -0
  175. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/llama/llama_architecture.py +0 -0
  176. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/llama/modeling_llama.py +0 -0
  177. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/llava_next/__init__.py +0 -0
  178. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +0 -0
  179. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/midm/__init__.py +0 -0
  180. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/midm/configuration_midm.py +0 -0
  181. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/midm/midm_architecture.py +0 -0
  182. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/midm/modeling_midm.py +0 -0
  183. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/mistral/__init__.py +0 -0
  184. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/mistral/configuration_mistral.py +0 -0
  185. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/mistral/mistral_architecture.py +0 -0
  186. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/mistral/modeling_mistral.py +0 -0
  187. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/phi/__init__.py +0 -0
  188. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/phi/configuration_phi.py +0 -0
  189. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/phi/modeling_phi.py +0 -0
  190. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/phi/phi_architecture.py +0 -0
  191. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2/__init__.py +0 -0
  192. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +0 -0
  193. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +0 -0
  194. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +0 -0
  195. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +0 -0
  196. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +0 -0
  197. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +0 -0
  198. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +0 -0
  199. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/seq2seq/__init__.py +0 -0
  200. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/seq2seq/configuration_seq2seq2.py +0 -0
  201. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +0 -0
  202. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +0 -0
  203. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/t5/__init__.py +0 -0
  204. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/t5/configuration_t5.py +0 -0
  205. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/t5/modeling_t5.py +0 -0
  206. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/t5/t5_architecture.py +0 -0
  207. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/time_series_transformers/__init__.py +0 -0
  208. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/time_series_transformers/configuration_time_series_transformer.py +0 -0
  209. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/time_series_transformers/modeling_time_series_transformers.py +0 -0
  210. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/time_series_transformers/time_series_transformers_architecture.py +0 -0
  211. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/wav2vec2/__init__.py +0 -0
  212. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec.py +0 -0
  213. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +0 -0
  214. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/whisper/__init__.py +0 -0
  215. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/whisper/configuration_whisper.py +0 -0
  216. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/whisper/generation_whisper.py +0 -0
  217. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/whisper/modeling_whisper.py +0 -0
  218. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/whisper/whisper_architecture.py +0 -0
  219. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/xlm_roberta/__init__.py +0 -0
  220. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +0 -0
  221. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +0 -0
  222. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/utils/__init__.py +0 -0
  223. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/transformers/utils/rbln_quantization.py +0 -0
  224. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/__init__.py +0 -0
  225. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/decorator_utils.py +0 -0
  226. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/import_utils.py +0 -0
  227. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/logging.py +0 -0
  228. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/runtime_utils.py +0 -0
  229. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/src/optimum/rbln/utils/save_utils.py +0 -0
  230. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/__init__.py +0 -0
  231. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/psnr.py +0 -0
  232. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/requirements_sdxl.txt +0 -0
  233. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/run_stable_diffusion_xl_base.py +0 -0
  234. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/test_config.py +0 -0
  235. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/test_diffusers.py +0 -0
  236. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/tests/test_transformers.py +0 -0
  237. {optimum_rbln-0.7.4a6 → optimum_rbln-0.7.4a8}/uv.lock +0 -0
@@ -8,7 +8,7 @@ assignees: ''
8
8
 
9
9
  ### Model Information
10
10
  - Model name:
11
- - Model link (Hugging Face/Paper/GitHub):
11
+ - Model link (HuggingFace/Paper/GitHub):
12
12
  - Task type (e.g., Text Generation, Image Classification):
13
13
 
14
14
  ### Model Details
@@ -36,7 +36,7 @@ def get_pr_diff():
36
36
 
37
37
 
38
38
  def get_prompt(diff, pr):
39
- system_prompt = """You are an experienced software engineer specializing in code reviews for deep learning libraries. Your task is to review code changes and related pull request (PR) information for `optimum-rbln`, a Python library that optimizes Hugging Face models for execution on RBLN NPUs.
39
+ system_prompt = """You are an experienced software engineer specializing in code reviews for deep learning libraries. Your task is to review code changes and related pull request (PR) information for `optimum-rbln`, a Python library that optimizes HuggingFace models for execution on RBLN NPUs.
40
40
 
41
41
  Focus on providing actionable and constructive feedback. Don't make generalized suggestions."""
42
42
 
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.7.4a6
4
- Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
3
+ Version: 0.7.4a8
4
+ Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
7
7
  Project-URL: Repository, https://github.com/rebellions-sw/optimum-rbln
@@ -0,0 +1,67 @@
1
+ import os
2
+ import typing
3
+
4
+ import fire
5
+ from datasets import load_dataset
6
+ from transformers import AutoProcessor
7
+
8
+ from optimum.rbln import RBLNIdefics3ForConditionalGeneration
9
+
10
+
11
+ def main(
12
+ model_id: str = "HuggingFaceM4/Idefics3-8B-Llama3",
13
+ batch_size: int = 1,
14
+ from_transformers: bool = False,
15
+ prompt: typing.Optional[str] = None,
16
+ max_seq_len: typing.Optional[int] = None,
17
+ tensor_parallel_size: typing.Optional[int] = 4,
18
+ ):
19
+ processor = AutoProcessor.from_pretrained(model_id)
20
+
21
+ if from_transformers:
22
+ model = RBLNIdefics3ForConditionalGeneration.from_pretrained(
23
+ model_id,
24
+ export=True,
25
+ rbln_config={
26
+ "text_model": {
27
+ "attn_impl": "flash_attn",
28
+ "max_seq_len": max_seq_len,
29
+ "use_inputs_embeds": True,
30
+ "tensor_parallel_size": tensor_parallel_size,
31
+ "batch_size": batch_size,
32
+ }
33
+ },
34
+ )
35
+ model.save_pretrained(os.path.basename(model_id))
36
+ else:
37
+ model = RBLNIdefics3ForConditionalGeneration.from_pretrained(
38
+ os.path.basename(model_id),
39
+ export=False,
40
+ )
41
+
42
+ ds = load_dataset("HuggingFaceM4/the_cauldron", "ai2d", split="train")
43
+ samples = ds.select(range(batch_size))
44
+ images = []
45
+ prompts = []
46
+
47
+ for sample in samples:
48
+ img = sample["images"]
49
+ images.append(img)
50
+
51
+ message = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe this image."}]}]
52
+ prompt = processor.apply_chat_template(message, add_generation_prompt=True)
53
+ prompts.append(prompt)
54
+
55
+ inputs = processor(text=prompts, images=images, return_tensors="pt", padding=True)
56
+ inputs = dict(inputs)
57
+ # Generate
58
+
59
+ generated_ids = model.generate(**inputs, max_new_tokens=500)
60
+ generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
61
+
62
+ for i, text in enumerate(generated_texts):
63
+ print(f"Sample {i + 1} generate:\n{text}\n")
64
+
65
+
66
+ if __name__ == "__main__":
67
+ fire.Fire(main)
@@ -1,7 +1,7 @@
1
1
  [project]
2
2
  name = "optimum-rbln"
3
3
  description = """
4
- Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators.
4
+ Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators.
5
5
  It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
6
6
  """
7
7
  authors = [
@@ -74,6 +74,10 @@ _import_structure = {
74
74
  "RBLNGemmaForCausalLMConfig",
75
75
  "RBLNGPT2LMHeadModel",
76
76
  "RBLNGPT2LMHeadModelConfig",
77
+ "RBLNIdefics3VisionTransformer",
78
+ "RBLNIdefics3ForConditionalGeneration",
79
+ "RBLNIdefics3ForConditionalGenerationConfig",
80
+ "RBLNIdefics3VisionTransformerConfig",
77
81
  "RBLNLlamaForCausalLM",
78
82
  "RBLNLlamaForCausalLMConfig",
79
83
  "RBLNLlavaNextForConditionalGeneration",
@@ -281,6 +285,10 @@ if TYPE_CHECKING:
281
285
  RBLNGemmaForCausalLMConfig,
282
286
  RBLNGPT2LMHeadModel,
283
287
  RBLNGPT2LMHeadModelConfig,
288
+ RBLNIdefics3ForConditionalGeneration,
289
+ RBLNIdefics3ForConditionalGenerationConfig,
290
+ RBLNIdefics3VisionTransformer,
291
+ RBLNIdefics3VisionTransformerConfig,
284
292
  RBLNLlamaForCausalLM,
285
293
  RBLNLlamaForCausalLMConfig,
286
294
  RBLNLlavaNextForConditionalGeneration,
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.7.4a6'
21
- __version_tuple__ = version_tuple = (0, 7, 4, 'a6')
20
+ __version__ = version = '0.7.4a8'
21
+ __version_tuple__ = version_tuple = (0, 7, 4, 'a8')
@@ -174,6 +174,14 @@ class RBLNAutoConfig:
174
174
  cls = getattr(importlib.import_module("optimum.rbln"), cls_name)
175
175
  return cls(**kwargs)
176
176
 
177
+ @staticmethod
178
+ def load_from_dict(config_dict: Dict[str, Any]) -> "RBLNModelConfig":
179
+ cls_name = config_dict.get("cls_name")
180
+ if cls_name is None:
181
+ raise ValueError("`cls_name` is required.")
182
+ cls = getattr(importlib.import_module("optimum.rbln"), cls_name)
183
+ return cls(**config_dict)
184
+
177
185
  @staticmethod
178
186
  def load(
179
187
  path: str,
@@ -195,8 +203,9 @@ class RBLNAutoConfig:
195
203
  cls, config_file = load_config(path)
196
204
 
197
205
  rbln_keys = [key for key in kwargs.keys() if key.startswith("rbln_")]
198
-
199
206
  rbln_runtime_kwargs = {key[5:]: kwargs.pop(key) for key in rbln_keys if key[5:] in RUNTIME_KEYWORDS}
207
+ rbln_submodule_kwargs = {key[5:]: kwargs.pop(key) for key in rbln_keys if key[5:] in cls.submodules}
208
+
200
209
  rbln_kwargs = {
201
210
  key[5:]: kwargs.pop(key)
202
211
  for key in rbln_keys
@@ -206,6 +215,14 @@ class RBLNAutoConfig:
206
215
  if len(rbln_kwargs) > 0:
207
216
  raise ValueError(f"Cannot set the following arguments: {list(rbln_kwargs.keys())}")
208
217
 
218
+ # Process submodule's rbln_config
219
+ for submodule in cls.submodules:
220
+ if submodule not in config_file:
221
+ raise ValueError(f"Submodule {submodule} not found in rbln_config.json.")
222
+ submodule_config = config_file[submodule]
223
+ submodule_config.update(rbln_submodule_kwargs.pop(submodule, {}))
224
+ config_file[submodule] = RBLNAutoConfig.load_from_dict(submodule_config)
225
+
209
226
  if passed_rbln_config is not None:
210
227
  config_file.update(passed_rbln_config._runtime_options)
211
228
  # TODO(jongho): Reject if the passed_rbln_config has different attributes from the config_file
@@ -47,17 +47,11 @@ class RBLNDiffusionMixin:
47
47
 
48
48
  1. Create a new pipeline class that inherits from both this mixin and the original StableDiffusionPipeline.
49
49
  2. Define the required _submodules class variable listing the components to be compiled.
50
- 3. If needed, implement get_default_rbln_config for custom configuration of submodules.
51
50
 
52
51
  Example:
53
52
  ```python
54
53
  class RBLNStableDiffusionPipeline(RBLNDiffusionMixin, StableDiffusionPipeline):
55
54
  _submodules = ["text_encoder", "unet", "vae"]
56
-
57
- @classmethod
58
- def get_default_rbln_config(cls, model, submodule_name, rbln_config):
59
- # Configuration for other submodules...
60
- pass
61
55
  ```
62
56
 
63
57
  Class Variables:
@@ -77,14 +71,6 @@ class RBLNDiffusionMixin:
77
71
  _prefix = {}
78
72
  _rbln_config_class = None
79
73
 
80
- @classmethod
81
- def is_img2img_pipeline(cls):
82
- return "Img2Img" in cls.__name__
83
-
84
- @classmethod
85
- def is_inpaint_pipeline(cls):
86
- return "Inpaint" in cls.__name__
87
-
88
74
  @staticmethod
89
75
  def _maybe_apply_and_fuse_lora(
90
76
  model: torch.nn.Module,
@@ -151,7 +137,47 @@ class RBLNDiffusionMixin:
151
137
  lora_weights_names: Optional[Union[str, List[str]]] = None,
152
138
  lora_scales: Optional[Union[float, List[float]]] = None,
153
139
  **kwargs,
154
- ) -> RBLNModel:
140
+ ) -> "RBLNDiffusionMixin":
141
+ """
142
+ Load a pretrained diffusion pipeline from a model checkpoint, with optional compilation for RBLN NPUs.
143
+
144
+ This method has two distinct operating modes:
145
+ - When `export=True`: Takes a PyTorch-based diffusion model, compiles it for RBLN NPUs, and loads the compiled model
146
+ - When `export=False`: Loads an already compiled RBLN model from `model_id` without recompilation
147
+
148
+ It supports various diffusion pipelines including Stable Diffusion, Kandinsky, ControlNet, and other diffusers-based models.
149
+
150
+ Args:
151
+ model_id (`str`):
152
+ The model ID or path to the pretrained model to load. Can be either:
153
+ - A model ID from the HuggingFace Hub
154
+ - A local path to a saved model directory
155
+ export (`bool`, *optional*, defaults to `False`):
156
+ If True, takes a PyTorch model from `model_id` and compiles it for RBLN NPU execution.
157
+ If False, loads an already compiled RBLN model from `model_id` without recompilation.
158
+ model_save_dir (`os.PathLike`, *optional*):
159
+ Directory to save the compiled model artifacts. Only used when `export=True`.
160
+ If not provided and `export=True`, a temporary directory is used.
161
+ rbln_config (`Dict[str, Any]`, *optional*, defaults to `{}`):
162
+ Configuration options for RBLN compilation. Can include settings for specific submodules
163
+ such as `text_encoder`, `unet`, and `vae`. Configuration can be tailored to the specific
164
+ pipeline being compiled.
165
+ lora_ids (`str` or `List[str]`, *optional*):
166
+ LoRA adapter ID(s) to load and apply before compilation. LoRA weights are fused
167
+ into the model weights during compilation. Only used when `export=True`.
168
+ lora_weights_names (`str` or `List[str]`, *optional*):
169
+ Names of specific LoRA weight files to load, corresponding to lora_ids. Only used when `export=True`.
170
+ lora_scales (`float` or `List[float]`, *optional*):
171
+ Scaling factor(s) to apply to the LoRA adapter(s). Only used when `export=True`.
172
+ **kwargs:
173
+ Additional arguments to pass to the underlying diffusion pipeline constructor or the
174
+ RBLN compilation process. These may include parameters specific to individual submodules
175
+ or the particular diffusion pipeline being used.
176
+
177
+ Returns:
178
+ `RBLNDiffusionMixin`: A compiled or loaded diffusion pipeline that can be used for inference on RBLN NPU.
179
+ The returned object is an instance of the class that called this method, inheriting from RBLNDiffusionMixin.
180
+ """
155
181
  rbln_config, kwargs = cls.get_rbln_config_class().initialize_from_kwargs(rbln_config, **kwargs)
156
182
 
157
183
  if export:
@@ -216,6 +216,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
216
216
  if isinstance(rbln_config, dict):
217
217
  rbln_config_as_kwargs = {f"rbln_{key}": value for key, value in rbln_config.items()}
218
218
  kwargs.update(rbln_config_as_kwargs)
219
+ rbln_config = None
219
220
  elif isinstance(rbln_config, RBLNModelConfig) and rbln_config.rbln_model_cls_name != cls.__name__:
220
221
  raise ValueError(
221
222
  f"Cannot use the passed rbln_config. Its model class name ({rbln_config.rbln_model_cls_name}) "
@@ -392,13 +393,13 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
392
393
  @classmethod
393
394
  def get_hf_class(cls):
394
395
  """
395
- Lazily loads and caches the corresponding Hugging Face model class.
396
+ Lazily loads and caches the corresponding HuggingFace model class.
396
397
  Removes 'RBLN' prefix from the class name to get the original class name
397
398
  (e.g., RBLNLlamaForCausalLM -> LlamaForCausalLM) and imports it from
398
399
  the transformers/diffusers module.
399
400
 
400
401
  Returns:
401
- type: The original Hugging Face model class
402
+ type: The original HuggingFace model class
402
403
  """
403
404
  if cls._hf_class is None:
404
405
  hf_cls_name = cls.__name__[4:]
@@ -478,7 +479,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
478
479
  save_directory (`Union[str, Path]`):
479
480
  Directory where to save the model file.
480
481
  push_to_hub (`bool`, *optional*, defaults to `False`):
481
- Whether or not to push your model to the Hugging Face model hub after saving it.
482
+ Whether or not to push your model to the HuggingFace model hub after saving it.
482
483
 
483
484
  """
484
485
  if os.path.isfile(save_directory):
@@ -68,6 +68,10 @@ _import_structure = {
68
68
  "RBLNGemmaForCausalLMConfig",
69
69
  "RBLNGPT2LMHeadModel",
70
70
  "RBLNGPT2LMHeadModelConfig",
71
+ "RBLNIdefics3VisionTransformer",
72
+ "RBLNIdefics3ForConditionalGeneration",
73
+ "RBLNIdefics3ForConditionalGenerationConfig",
74
+ "RBLNIdefics3VisionTransformerConfig",
71
75
  "RBLNLlamaForCausalLM",
72
76
  "RBLNLlamaForCausalLMConfig",
73
77
  "RBLNLlavaNextForConditionalGeneration",
@@ -169,6 +173,10 @@ if TYPE_CHECKING:
169
173
  RBLNGemmaForCausalLMConfig,
170
174
  RBLNGPT2LMHeadModel,
171
175
  RBLNGPT2LMHeadModelConfig,
176
+ RBLNIdefics3ForConditionalGeneration,
177
+ RBLNIdefics3ForConditionalGenerationConfig,
178
+ RBLNIdefics3VisionTransformer,
179
+ RBLNIdefics3VisionTransformerConfig,
172
180
  RBLNLlamaForCausalLM,
173
181
  RBLNLlamaForCausalLMConfig,
174
182
  RBLNLlavaNextForConditionalGeneration,
@@ -73,6 +73,12 @@ _import_structure = {
73
73
  "exaone": ["RBLNExaoneForCausalLM", "RBLNExaoneForCausalLMConfig"],
74
74
  "gemma": ["RBLNGemmaForCausalLM", "RBLNGemmaForCausalLMConfig"],
75
75
  "gpt2": ["RBLNGPT2LMHeadModel", "RBLNGPT2LMHeadModelConfig"],
76
+ "idefics3": [
77
+ "RBLNIdefics3VisionTransformer",
78
+ "RBLNIdefics3ForConditionalGeneration",
79
+ "RBLNIdefics3ForConditionalGenerationConfig",
80
+ "RBLNIdefics3VisionTransformerConfig",
81
+ ],
76
82
  "llama": ["RBLNLlamaForCausalLM", "RBLNLlamaForCausalLMConfig"],
77
83
  "llava_next": ["RBLNLlavaNextForConditionalGeneration", "RBLNLlavaNextForConditionalGenerationConfig"],
78
84
  "midm": ["RBLNMidmLMHeadModel", "RBLNMidmLMHeadModelConfig"],
@@ -144,6 +150,12 @@ if TYPE_CHECKING:
144
150
  from .exaone import RBLNExaoneForCausalLM, RBLNExaoneForCausalLMConfig
145
151
  from .gemma import RBLNGemmaForCausalLM, RBLNGemmaForCausalLMConfig
146
152
  from .gpt2 import RBLNGPT2LMHeadModel, RBLNGPT2LMHeadModelConfig
153
+ from .idefics3 import (
154
+ RBLNIdefics3ForConditionalGeneration,
155
+ RBLNIdefics3ForConditionalGenerationConfig,
156
+ RBLNIdefics3VisionTransformer,
157
+ RBLNIdefics3VisionTransformerConfig,
158
+ )
147
159
  from .llama import RBLNLlamaForCausalLM, RBLNLlamaForCausalLMConfig
148
160
  from .llava_next import RBLNLlavaNextForConditionalGeneration, RBLNLlavaNextForConditionalGenerationConfig
149
161
  from .midm import RBLNMidmLMHeadModel, RBLNMidmLMHeadModelConfig
@@ -48,7 +48,7 @@ class _BaseAutoModelClass:
48
48
 
49
49
  Args:
50
50
  pretrained_model_name_or_path (str): Identifier or path to the pretrained model.
51
- export (bool): Whether to infer the class based on Hugging Face (HF) architecture.
51
+ export (bool): Whether to infer the class based on HuggingFace (HF) architecture.
52
52
  kwargs: Additional arguments for configuration and loading.
53
53
 
54
54
  Returns:
@@ -86,14 +86,14 @@ class _BaseAutoModelClass:
86
86
  **kwargs,
87
87
  ):
88
88
  """
89
- Infer the Hugging Face model class based on the configuration or model name.
89
+ Infer the HuggingFace model class based on the configuration or model name.
90
90
 
91
91
  Args:
92
92
  pretrained_model_name_or_path (str): Identifier or path to the pretrained model.
93
93
  kwargs: Additional arguments for configuration and loading.
94
94
 
95
95
  Returns:
96
- PretrainedModel: The inferred Hugging Face model class.
96
+ PretrainedModel: The inferred HuggingFace model class.
97
97
  """
98
98
 
99
99
  # Try to load configuration if provided or retrieve it from the model ID
@@ -184,6 +184,7 @@ class DecoderOnlyWrapper(nn.Module):
184
184
 
185
185
  def convert_to_rbln_causal_lm(self, causal_lm: PreTrainedModel, max_seq_len: int):
186
186
  new_layers = []
187
+
187
188
  for layer in causal_lm.model.layers:
188
189
  if self.attn_impl == "eager":
189
190
  new_self_attn = DecoderOnlyAttention(
@@ -201,6 +202,7 @@ class DecoderOnlyWrapper(nn.Module):
201
202
 
202
203
  new_layer = DecoderOnlyLayer(layer, new_self_attn)
203
204
  new_layers.append(new_layer)
205
+
204
206
  new_model = DecoderOnlyModel(
205
207
  causal_lm.model,
206
208
  new_layers,
@@ -451,6 +451,12 @@ class RBLNDecoderOnlyModelForCausalLM(RBLNModel):
451
451
  def get_input_embeddings(self):
452
452
  return self.embed_tokens
453
453
 
454
+ def get_attn_impl(self) -> str:
455
+ return self.rbln_config.attn_impl
456
+
457
+ def get_kvcache_num_blocks(self) -> int:
458
+ return self.rbln_config.kvcache_num_blocks
459
+
454
460
  @classmethod
455
461
  def get_quantized_model(
456
462
  cls,
@@ -0,0 +1,16 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .configuration_idefics3 import RBLNIdefics3ForConditionalGenerationConfig, RBLNIdefics3VisionTransformerConfig
16
+ from .modeling_idefics3 import RBLNIdefics3ForConditionalGeneration, RBLNIdefics3VisionTransformer
@@ -0,0 +1,51 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Optional
16
+
17
+ from ....configuration_utils import RBLNModelConfig
18
+
19
+
20
+ class RBLNIdefics3VisionTransformerConfig(RBLNModelConfig):
21
+ pass
22
+
23
+
24
+ class RBLNIdefics3ForConditionalGenerationConfig(RBLNModelConfig):
25
+ submodules = ["vision_model", "text_model"]
26
+
27
+ def __init__(
28
+ self,
29
+ batch_size: Optional[int] = None,
30
+ vision_model: Optional[RBLNModelConfig] = None,
31
+ text_model: Optional[RBLNModelConfig] = None,
32
+ **kwargs,
33
+ ):
34
+ """
35
+ Args:
36
+ batch_size (Optional[int]): The batch size for inference. Defaults to 1.
37
+ vision_model (Optional[RBLNModelConfig]): Configuration for the vision transformer component.
38
+ text_model (Optional[RBLNModelConfig]): Configuration for the text model component.
39
+ **kwargs: Additional arguments passed to the parent RBLNModelConfig.
40
+
41
+ Raises:
42
+ ValueError: If batch_size is not a positive integer.
43
+ """
44
+
45
+ super().__init__(**kwargs)
46
+ self.batch_size = batch_size or 1
47
+ if not isinstance(self.batch_size, int) or self.batch_size < 0:
48
+ raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
49
+
50
+ self.vision_model = vision_model
51
+ self.text_model = text_model