optimum-rbln 0.7.4a0__tar.gz → 0.7.4a1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (193) hide show
  1. optimum_rbln-0.7.4a1/.github/version.yaml +1 -0
  2. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/PKG-INFO +5 -5
  3. optimum_rbln-0.7.4a1/examples/time-series-forecasting/run_time_series_forecasting.py +43 -0
  4. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/pyproject.toml +6 -4
  5. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/__init__.py +2 -0
  6. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/__version__.py +1 -1
  7. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/ops/__init__.py +1 -0
  8. optimum_rbln-0.7.4a1/src/optimum/rbln/ops/linear.py +25 -0
  9. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/__init__.py +2 -0
  10. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/__init__.py +2 -0
  11. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/bart/modeling_bart.py +2 -3
  12. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +20 -17
  13. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +2 -2
  14. optimum_rbln-0.7.4a1/src/optimum/rbln/transformers/models/time_series_transformers/__init__.py +24 -0
  15. optimum_rbln-0.7.4a1/src/optimum/rbln/transformers/models/time_series_transformers/modeling_time_series_transformers.py +422 -0
  16. optimum_rbln-0.7.4a1/src/optimum/rbln/transformers/models/time_series_transformers/time_series_transformers_architecture.py +341 -0
  17. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/whisper/modeling_whisper.py +86 -47
  18. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/whisper/whisper_architecture.py +62 -27
  19. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/test_transformers.py +75 -17
  20. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/uv.lock +385 -133
  21. optimum_rbln-0.7.4a0/.github/version.yaml +0 -1
  22. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
  23. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/ISSUE_TEMPLATE/config.yml +0 -0
  24. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
  25. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/ISSUE_TEMPLATE/model_request.md +0 -0
  26. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/pull_request_template.md +0 -0
  27. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/scripts/auto_code_review.py +0 -0
  28. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/scripts/validate_pr_checklist.py +0 -0
  29. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/auto_code_review.yml +0 -0
  30. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/check_code_quality.yml +0 -0
  31. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/deploy-on-tag.yaml +0 -0
  32. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/deploy.yaml +0 -0
  33. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/pr-title-check.yaml +0 -0
  34. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/pr_checklist_validator.yml +0 -0
  35. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/rbln_check_compiler.yaml +0 -0
  36. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/rbln_dispatch_pytest.yaml +0 -0
  37. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/rbln_optimum_inference_test.yaml +0 -0
  38. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/rbln_optimum_pytest.yaml +0 -0
  39. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/rbln_scheduled_test.yaml +0 -0
  40. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/rbln_trigger_on_pr.yaml +0 -0
  41. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.gitignore +0 -0
  42. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/CODE_OF_CONDUCT.md +0 -0
  43. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/CONTRIBUTING.md +0 -0
  44. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/LICENSE +0 -0
  45. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/README.md +0 -0
  46. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/assets/rbln_logo.png +0 -0
  47. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/audio-classification/run_ast_audio_classification.py +0 -0
  48. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/depth-estimation/run_dpt.py +0 -0
  49. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/image-classification/run_image_classification.py +0 -0
  50. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/image-classification/run_vit_image_classification.py +0 -0
  51. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/image-to-text/run_llava_next_image_to_text.py +0 -0
  52. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/kandinsky2_2/run_kandinsky2_2.py +0 -0
  53. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/kandinsky2_2/run_kandinsky2_2_combined.py +0 -0
  54. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/kandinsky2_2/run_kandinsky2_2_img2img.py +0 -0
  55. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/kandinsky2_2/run_kandinsky2_2_img2img_combined.py +0 -0
  56. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/kandinsky2_2/run_kandinsky2_2_inpaint.py +0 -0
  57. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/kandinsky2_2/run_kandinsky2_2_inpaint_combined.py +0 -0
  58. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/kandinsky2_2/run_kandinsky2_2_prior_interpolate.py +0 -0
  59. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/question-answering/run_question_answering.py +0 -0
  60. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/speech-recognition/run_wav2vec2.py +0 -0
  61. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/speech-recognition/run_whisper.py +0 -0
  62. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/stable-diffusion/run_stable_diffusion.py +0 -0
  63. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/stable-diffusion/run_stable_diffusion_controlnet.py +0 -0
  64. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/stable-diffusion/run_stable_diffusion_img2img.py +0 -0
  65. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/stable-diffusion/run_stable_diffusion_img2img_controlnet.py +0 -0
  66. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/stable-diffusion/run_stable_diffusion_inpaint.py +0 -0
  67. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/stable-diffusion/run_stable_diffusion_lora.py +0 -0
  68. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/stable-diffusion/run_stable_diffusion_multicontrolnet.py +0 -0
  69. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text-classification/run_bge_m3_text_classification.py +0 -0
  70. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text-classification/run_bge_reranker_v2_m3_text_classification.py +0 -0
  71. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text-classification/run_secureBERT.py +0 -0
  72. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text-classification/run_t5_classification.py +0 -0
  73. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text-classification/run_twitter_roberta_text_classification.py +0 -0
  74. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text2text-generation/run_bart_text2text_generation.py +0 -0
  75. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text2text-generation/run_llama_peft.py +0 -0
  76. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text2text-generation/run_llama_text2text_generation.py +0 -0
  77. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/scripts/uv-lock.sh +0 -0
  78. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/scripts/uv-sync.sh +0 -0
  79. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/__init__.py +0 -0
  80. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/modeling_diffusers.py +0 -0
  81. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/__init__.py +0 -0
  82. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/autoencoders/__init__.py +0 -0
  83. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +0 -0
  84. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/autoencoders/vae.py +0 -0
  85. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/autoencoders/vq_model.py +0 -0
  86. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/controlnet.py +0 -0
  87. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/transformers/__init__.py +0 -0
  88. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/transformers/prior_transformer.py +0 -0
  89. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/transformers/transformer_sd3.py +0 -0
  90. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/unets/__init__.py +0 -0
  91. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/unets/unet_2d_condition.py +0 -0
  92. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/__init__.py +0 -0
  93. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/controlnet/__init__.py +0 -0
  94. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +0 -0
  95. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +0 -0
  96. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +0 -0
  97. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +0 -0
  98. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +0 -0
  99. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +0 -0
  100. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +0 -0
  101. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +0 -0
  102. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +0 -0
  103. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +0 -0
  104. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +0 -0
  105. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +0 -0
  106. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +0 -0
  107. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +0 -0
  108. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +0 -0
  109. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +0 -0
  110. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +0 -0
  111. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +0 -0
  112. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +0 -0
  113. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +0 -0
  114. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -0
  115. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -0
  116. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -0
  117. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/modeling.py +0 -0
  118. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/modeling_base.py +0 -0
  119. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/modeling_config.py +0 -0
  120. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/ops/attn.py +0 -0
  121. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/ops/flash_attn.py +0 -0
  122. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/ops/kv_cache_update.py +0 -0
  123. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/modeling_alias.py +0 -0
  124. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/modeling_generic.py +0 -0
  125. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/modeling_rope_utils.py +0 -0
  126. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/auto/__init__.py +0 -0
  127. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/auto/auto_factory.py +0 -0
  128. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/auto/modeling_auto.py +0 -0
  129. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/bart/__init__.py +0 -0
  130. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/bart/bart_architecture.py +0 -0
  131. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/bert/__init__.py +0 -0
  132. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/bert/modeling_bert.py +0 -0
  133. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/clip/__init__.py +0 -0
  134. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/clip/modeling_clip.py +0 -0
  135. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/decoderonly/__init__.py +0 -0
  136. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +0 -0
  137. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/dpt/__init__.py +0 -0
  138. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -0
  139. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/exaone/__init__.py +0 -0
  140. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/exaone/exaone_architecture.py +0 -0
  141. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/exaone/modeling_exaone.py +0 -0
  142. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/gemma/__init__.py +0 -0
  143. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/gemma/gemma_architecture.py +0 -0
  144. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/gemma/modeling_gemma.py +0 -0
  145. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/gpt2/__init__.py +0 -0
  146. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +0 -0
  147. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +0 -0
  148. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/llama/__init__.py +0 -0
  149. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/llama/llama_architecture.py +0 -0
  150. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/llama/modeling_llama.py +0 -0
  151. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/llava_next/__init__.py +0 -0
  152. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +0 -0
  153. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/midm/__init__.py +0 -0
  154. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/midm/midm_architecture.py +0 -0
  155. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/midm/modeling_midm.py +0 -0
  156. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/mistral/__init__.py +0 -0
  157. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/mistral/mistral_architecture.py +0 -0
  158. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/mistral/modeling_mistral.py +0 -0
  159. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/phi/__init__.py +0 -0
  160. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/phi/modeling_phi.py +0 -0
  161. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/phi/phi_architecture.py +0 -0
  162. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/qwen2/__init__.py +0 -0
  163. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +0 -0
  164. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +0 -0
  165. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/seq2seq/__init__.py +0 -0
  166. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +0 -0
  167. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/t5/__init__.py +0 -0
  168. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/t5/modeling_t5.py +0 -0
  169. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/t5/t5_architecture.py +0 -0
  170. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/wav2vec2/__init__.py +0 -0
  171. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +0 -0
  172. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/whisper/__init__.py +0 -0
  173. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/whisper/generation_whisper.py +0 -0
  174. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/xlm_roberta/__init__.py +0 -0
  175. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +0 -0
  176. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/utils/__init__.py +0 -0
  177. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/utils/rbln_quantization.py +0 -0
  178. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/__init__.py +0 -0
  179. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/decorator_utils.py +0 -0
  180. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/hub.py +0 -0
  181. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/import_utils.py +0 -0
  182. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/logging.py +0 -0
  183. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/model_utils.py +0 -0
  184. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/runtime_utils.py +0 -0
  185. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/save_utils.py +0 -0
  186. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/submodule.py +0 -0
  187. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/__init__.py +0 -0
  188. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/psnr.py +0 -0
  189. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/requirements_sdxl.txt +0 -0
  190. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/run_stable_diffusion_xl_base.py +0 -0
  191. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/test_base.py +0 -0
  192. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/test_diffusers.py +0 -0
  193. {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/test_llm.py +0 -0
@@ -0,0 +1 @@
1
+ rebel_compiler_version: 0.7.4.dev61+gb562a7f0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.7.4a0
3
+ Version: 0.7.4a1
4
4
  Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
@@ -25,10 +25,10 @@ Requires-Python: <3.13,>=3.9
25
25
  Requires-Dist: accelerate>=1.0.1
26
26
  Requires-Dist: diffusers<=0.31.0
27
27
  Requires-Dist: packaging>=24.1
28
- Requires-Dist: torch<=2.5.1
29
- Requires-Dist: torchaudio<=2.5.1
30
- Requires-Dist: torchvision<=0.20.1
31
- Requires-Dist: transformers==4.48.3
28
+ Requires-Dist: torch==2.6.0
29
+ Requires-Dist: torchaudio<=2.6.0
30
+ Requires-Dist: torchvision<=0.21.0
31
+ Requires-Dist: transformers==4.50.3
32
32
  Description-Content-Type: text/markdown
33
33
 
34
34
 
@@ -0,0 +1,43 @@
1
+ import os
2
+
3
+ import fire
4
+ import torch
5
+ from huggingface_hub import hf_hub_download
6
+
7
+ from optimum.rbln import RBLNTimeSeriesTransformerForPrediction
8
+
9
+
10
+ def main(
11
+ model_id: str = "huggingface/time-series-transformer-tourism-monthly",
12
+ batch_size: int = 1,
13
+ num_parallel_samples: int = 100,
14
+ from_transformers: bool = False,
15
+ ):
16
+ if from_transformers:
17
+ model = RBLNTimeSeriesTransformerForPrediction.from_pretrained(
18
+ model_id, export=True, rbln_batch_size=batch_size, num_parallel_samples=num_parallel_samples
19
+ )
20
+ model.save_pretrained(os.path.basename(model_id))
21
+ else:
22
+ model = RBLNTimeSeriesTransformerForPrediction.from_pretrained(
23
+ os.path.basename(model_id),
24
+ export=False,
25
+ )
26
+
27
+ dataset = hf_hub_download(
28
+ repo_id="hf-internal-testing/tourism-monthly-batch", filename="val-batch.pt", repo_type="dataset"
29
+ )
30
+ data = torch.load(dataset, weights_only=True)
31
+
32
+ batched_data = {}
33
+ for k, v in data.items():
34
+ batched_data[k] = v[:batch_size]
35
+
36
+ rbln_outputs = model.generate(**batched_data)
37
+ mean_prediction = rbln_outputs.sequences.mean(dim=1)
38
+
39
+ print(mean_prediction)
40
+
41
+
42
+ if __name__ == "__main__":
43
+ fire.Fire(main)
@@ -28,11 +28,11 @@ classifiers = [
28
28
  ]
29
29
  keywords = ["transformers", "diffusers", "inference", "rbln", "atom", "rebel"]
30
30
  dependencies = [
31
- "torch<=2.5.1",
32
- "torchaudio<=2.5.1",
33
- "torchvision<=0.20.1",
31
+ "torch==2.6.0",
32
+ "torchaudio<=2.6.0",
33
+ "torchvision<=0.21.0",
34
34
  "accelerate>=1.0.1",
35
- "transformers==4.48.3",
35
+ "transformers==4.50.3",
36
36
  "diffusers<=0.31.0",
37
37
  "packaging>=24.1",
38
38
  ]
@@ -53,6 +53,8 @@ tests = [
53
53
  "sacremoses>=0.1.1",
54
54
  "safetensors>=0.4.2",
55
55
  "protobuf>=5.27.2",
56
+ "soundfile>=0.13.1",
57
+ "librosa>=0.11.0",
56
58
  ]
57
59
  quality = [
58
60
  "ruff>=0.3.3",
@@ -73,6 +73,7 @@ _import_structure = {
73
73
  "RBLNRobertaForMaskedLM",
74
74
  "RBLNViTForImageClassification",
75
75
  "RBLNBertForMaskedLM",
76
+ "RBLNTimeSeriesTransformerForPrediction",
76
77
  ],
77
78
  "diffusers": [
78
79
  "RBLNAutoencoderKL",
@@ -184,6 +185,7 @@ if TYPE_CHECKING:
184
185
  RBLNRobertaForSequenceClassification,
185
186
  RBLNT5EncoderModel,
186
187
  RBLNT5ForConditionalGeneration,
188
+ RBLNTimeSeriesTransformerForPrediction,
187
189
  RBLNViTForImageClassification,
188
190
  RBLNWav2Vec2ForCTC,
189
191
  RBLNWhisperForConditionalGeneration,
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.7.4a0'
20
+ __version__ = version = '0.7.4a1'
21
21
  __version_tuple__ = version_tuple = (0, 7, 4)
@@ -19,3 +19,4 @@ from .attn import (
19
19
  )
20
20
  from .flash_attn import register_rbln_custom_paged_flash_attention, register_rbln_custom_paged_flash_causal_attention
21
21
  from .kv_cache_update import register_rbln_custom_cache_update
22
+ from .linear import linear
@@ -0,0 +1,25 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Optional
16
+
17
+ import torch
18
+ from torch import Tensor
19
+
20
+
21
+ @torch.library.custom_op("rbln_custom_ops::linear", mutates_args=())
22
+ def linear(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor:
23
+ output_shape = list(input.shape[:-1])
24
+ output_shape += [weight.shape[0]]
25
+ return torch.empty(size=output_shape, dtype=input.dtype, device=input.device, requires_grad=input.requires_grad)
@@ -52,6 +52,7 @@ _import_structure = {
52
52
  "RBLNPhiForCausalLM",
53
53
  "RBLNT5EncoderModel",
54
54
  "RBLNT5ForConditionalGeneration",
55
+ "RBLNTimeSeriesTransformerForPrediction",
55
56
  "RBLNLlavaNextForConditionalGeneration",
56
57
  "RBLNMidmLMHeadModel",
57
58
  "RBLNXLMRobertaModel",
@@ -113,6 +114,7 @@ if TYPE_CHECKING:
113
114
  RBLNQwen2ForCausalLM,
114
115
  RBLNT5EncoderModel,
115
116
  RBLNT5ForConditionalGeneration,
117
+ RBLNTimeSeriesTransformerForPrediction,
116
118
  RBLNWav2Vec2ForCTC,
117
119
  RBLNWhisperForConditionalGeneration,
118
120
  RBLNXLMRobertaModel,
@@ -50,6 +50,7 @@ _import_structure = {
50
50
  "mistral": ["RBLNMistralForCausalLM"],
51
51
  "phi": ["RBLNPhiForCausalLM"],
52
52
  "qwen2": ["RBLNQwen2ForCausalLM"],
53
+ "time_series_transformers": ["RBLNTimeSeriesTransformerForPrediction"],
53
54
  "t5": ["RBLNT5EncoderModel", "RBLNT5ForConditionalGeneration"],
54
55
  "wav2vec2": ["RBLNWav2Vec2ForCTC"],
55
56
  "whisper": ["RBLNWhisperForConditionalGeneration"],
@@ -90,6 +91,7 @@ if TYPE_CHECKING:
90
91
  from .phi import RBLNPhiForCausalLM
91
92
  from .qwen2 import RBLNQwen2ForCausalLM
92
93
  from .t5 import RBLNT5EncoderModel, RBLNT5ForConditionalGeneration
94
+ from .time_series_transformers import RBLNTimeSeriesTransformerForPrediction
93
95
  from .wav2vec2 import RBLNWav2Vec2ForCTC
94
96
  from .whisper import RBLNWhisperForConditionalGeneration
95
97
  from .xlm_roberta import RBLNXLMRobertaModel
@@ -94,12 +94,11 @@ class RBLNBartModel(RBLNModel):
94
94
  for model_input_name in rbln_model_input_names
95
95
  ]
96
96
 
97
- enc_compile_config = RBLNCompileConfig(input_info=input_info, compiled_model_name="encoder")
98
- dec_compile_config = RBLNCompileConfig(input_info=input_info, compiled_model_name="decoder")
97
+ rbln_compile_config = RBLNCompileConfig(input_info=input_info)
99
98
 
100
99
  rbln_config = RBLNConfig(
101
100
  rbln_cls=cls.__name__,
102
- compile_cfgs=[enc_compile_config, dec_compile_config],
101
+ compile_cfgs=[rbln_compile_config],
103
102
  rbln_kwargs=rbln_kwargs,
104
103
  )
105
104
 
@@ -222,8 +222,6 @@ class RBLNRuntimeModel(RBLNPytorchRuntime):
222
222
 
223
223
  attention_mask = self.dec_attn_mask
224
224
 
225
- attention_mask = self.dec_attn_mask
226
-
227
225
  logits = super().forward(
228
226
  inputs,
229
227
  cache_position,
@@ -547,22 +545,27 @@ class RBLNDecoderOnlyModelForCausalLM(RBLNModel):
547
545
 
548
546
  @QuantizationManager.with_quantization_env
549
547
  def compile_model(*args, **kwargs):
550
- wrapped_model.phase = "prefill"
551
- compiled_prefill = RBLNModel.compile(
552
- wrapped_model,
553
- prefill_compile_config,
554
- example_inputs=prefill_example_inputs,
555
- compile_context=context,
556
- )
548
+ try:
549
+ original_linear = torch.nn.functional.linear
550
+ torch.nn.functional.linear = torch.ops.rbln_custom_ops.linear
551
+ wrapped_model.phase = "prefill"
552
+ compiled_prefill = RBLNModel.compile(
553
+ wrapped_model,
554
+ prefill_compile_config,
555
+ example_inputs=prefill_example_inputs,
556
+ compile_context=context,
557
+ )
557
558
 
558
- wrapped_model.phase = "decode"
559
- compiled_decoder = RBLNModel.compile(
560
- wrapped_model,
561
- dec_compile_config,
562
- example_inputs=dec_example_inputs,
563
- compile_context=context,
564
- )
565
- return {"prefill": compiled_prefill, "decoder": compiled_decoder}
559
+ wrapped_model.phase = "decode"
560
+ compiled_decoder = RBLNModel.compile(
561
+ wrapped_model,
562
+ dec_compile_config,
563
+ example_inputs=dec_example_inputs,
564
+ compile_context=context,
565
+ )
566
+ return {"prefill": compiled_prefill, "decoder": compiled_decoder}
567
+ finally:
568
+ torch.nn.functional.linear = original_linear
566
569
 
567
570
  return compile_model(quantize_config=quantize_config)
568
571
 
@@ -38,8 +38,8 @@ class RBLNRuntimeEncoder(RBLNPytorchRuntime):
38
38
  mandatory_members = ["main_input_name"]
39
39
 
40
40
  def forward(self, *args: List[torch.Tensor], **kwargs: Dict[str, torch.Tensor]):
41
- _ = super().forward(*args, **kwargs)
42
- return BaseModelOutput(last_hidden_state=torch.tensor([1.0]))
41
+ output = super().forward(*args, **kwargs)
42
+ return BaseModelOutput(last_hidden_state=output)
43
43
 
44
44
 
45
45
  class RBLNRuntimeDecoder(RBLNPytorchRuntime):
@@ -0,0 +1,24 @@
1
+ # Copyright 2024 Rebellions Inc.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Portions of this software are licensed under the Apache License,
16
+ # Version 2.0. See the NOTICE file distributed with this work for
17
+ # additional information regarding copyright ownership.
18
+
19
+ # All other portions of this software, including proprietary code,
20
+ # are the intellectual property of Rebellions Inc. and may not be
21
+ # copied, modified, or distributed without prior written permission
22
+ # from Rebellions Inc.
23
+
24
+ from .modeling_time_series_transformers import RBLNTimeSeriesTransformerForPrediction