optimum-rbln 0.7.4a0__tar.gz → 0.7.4a1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum_rbln-0.7.4a1/.github/version.yaml +1 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/PKG-INFO +5 -5
- optimum_rbln-0.7.4a1/examples/time-series-forecasting/run_time_series_forecasting.py +43 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/pyproject.toml +6 -4
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/__init__.py +2 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/__version__.py +1 -1
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/ops/__init__.py +1 -0
- optimum_rbln-0.7.4a1/src/optimum/rbln/ops/linear.py +25 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/__init__.py +2 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/__init__.py +2 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/bart/modeling_bart.py +2 -3
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +20 -17
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +2 -2
- optimum_rbln-0.7.4a1/src/optimum/rbln/transformers/models/time_series_transformers/__init__.py +24 -0
- optimum_rbln-0.7.4a1/src/optimum/rbln/transformers/models/time_series_transformers/modeling_time_series_transformers.py +422 -0
- optimum_rbln-0.7.4a1/src/optimum/rbln/transformers/models/time_series_transformers/time_series_transformers_architecture.py +341 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/whisper/modeling_whisper.py +86 -47
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/whisper/whisper_architecture.py +62 -27
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/test_transformers.py +75 -17
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/uv.lock +385 -133
- optimum_rbln-0.7.4a0/.github/version.yaml +0 -1
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/ISSUE_TEMPLATE/config.yml +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/ISSUE_TEMPLATE/model_request.md +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/pull_request_template.md +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/scripts/auto_code_review.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/scripts/validate_pr_checklist.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/auto_code_review.yml +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/check_code_quality.yml +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/deploy-on-tag.yaml +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/deploy.yaml +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/pr-title-check.yaml +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/pr_checklist_validator.yml +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/rbln_check_compiler.yaml +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/rbln_dispatch_pytest.yaml +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/rbln_optimum_inference_test.yaml +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/rbln_optimum_pytest.yaml +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/rbln_scheduled_test.yaml +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.github/workflows/rbln_trigger_on_pr.yaml +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/.gitignore +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/CODE_OF_CONDUCT.md +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/CONTRIBUTING.md +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/LICENSE +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/README.md +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/assets/rbln_logo.png +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/audio-classification/run_ast_audio_classification.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/depth-estimation/run_dpt.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/image-classification/run_image_classification.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/image-classification/run_vit_image_classification.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/image-to-text/run_llava_next_image_to_text.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/kandinsky2_2/run_kandinsky2_2.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/kandinsky2_2/run_kandinsky2_2_combined.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/kandinsky2_2/run_kandinsky2_2_img2img.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/kandinsky2_2/run_kandinsky2_2_img2img_combined.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/kandinsky2_2/run_kandinsky2_2_inpaint.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/kandinsky2_2/run_kandinsky2_2_inpaint_combined.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/kandinsky2_2/run_kandinsky2_2_prior_interpolate.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/question-answering/run_question_answering.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/speech-recognition/run_wav2vec2.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/speech-recognition/run_whisper.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/stable-diffusion/run_stable_diffusion.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/stable-diffusion/run_stable_diffusion_controlnet.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/stable-diffusion/run_stable_diffusion_img2img.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/stable-diffusion/run_stable_diffusion_img2img_controlnet.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/stable-diffusion/run_stable_diffusion_inpaint.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/stable-diffusion/run_stable_diffusion_lora.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/stable-diffusion/run_stable_diffusion_multicontrolnet.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text-classification/run_bge_m3_text_classification.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text-classification/run_bge_reranker_v2_m3_text_classification.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text-classification/run_secureBERT.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text-classification/run_t5_classification.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text-classification/run_twitter_roberta_text_classification.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text2text-generation/run_bart_text2text_generation.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text2text-generation/run_llama_peft.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/examples/text2text-generation/run_llama_text2text_generation.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/scripts/uv-lock.sh +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/scripts/uv-sync.sh +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/modeling_diffusers.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/autoencoders/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/autoencoders/vae.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/autoencoders/vq_model.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/controlnet.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/transformers/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/transformers/prior_transformer.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/transformers/transformer_sd3.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/unets/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/models/unets/unet_2d_condition.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/controlnet/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/modeling.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/modeling_base.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/modeling_config.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/ops/attn.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/ops/flash_attn.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/ops/kv_cache_update.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/modeling_alias.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/modeling_generic.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/modeling_rope_utils.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/auto/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/auto/auto_factory.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/auto/modeling_auto.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/bart/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/bart/bart_architecture.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/bert/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/bert/modeling_bert.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/clip/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/clip/modeling_clip.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/decoderonly/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/dpt/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/exaone/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/exaone/exaone_architecture.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/exaone/modeling_exaone.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/gemma/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/gemma/gemma_architecture.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/gemma/modeling_gemma.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/gpt2/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/llama/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/llama/llama_architecture.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/llama/modeling_llama.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/llava_next/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/midm/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/midm/midm_architecture.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/midm/modeling_midm.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/mistral/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/mistral/mistral_architecture.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/mistral/modeling_mistral.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/phi/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/phi/modeling_phi.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/phi/phi_architecture.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/qwen2/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/seq2seq/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/t5/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/t5/modeling_t5.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/t5/t5_architecture.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/wav2vec2/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/whisper/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/whisper/generation_whisper.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/xlm_roberta/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/utils/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/utils/rbln_quantization.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/decorator_utils.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/hub.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/import_utils.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/logging.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/model_utils.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/runtime_utils.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/save_utils.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/utils/submodule.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/__init__.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/psnr.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/requirements_sdxl.txt +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/run_stable_diffusion_xl_base.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/test_base.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/test_diffusers.py +0 -0
- {optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/tests/test_llm.py +0 -0
@@ -0,0 +1 @@
|
|
1
|
+
rebel_compiler_version: 0.7.4.dev61+gb562a7f0
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: optimum-rbln
|
3
|
-
Version: 0.7.
|
3
|
+
Version: 0.7.4a1
|
4
4
|
Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
@@ -25,10 +25,10 @@ Requires-Python: <3.13,>=3.9
|
|
25
25
|
Requires-Dist: accelerate>=1.0.1
|
26
26
|
Requires-Dist: diffusers<=0.31.0
|
27
27
|
Requires-Dist: packaging>=24.1
|
28
|
-
Requires-Dist: torch
|
29
|
-
Requires-Dist: torchaudio<=2.
|
30
|
-
Requires-Dist: torchvision<=0.
|
31
|
-
Requires-Dist: transformers==4.
|
28
|
+
Requires-Dist: torch==2.6.0
|
29
|
+
Requires-Dist: torchaudio<=2.6.0
|
30
|
+
Requires-Dist: torchvision<=0.21.0
|
31
|
+
Requires-Dist: transformers==4.50.3
|
32
32
|
Description-Content-Type: text/markdown
|
33
33
|
|
34
34
|
|
@@ -0,0 +1,43 @@
|
|
1
|
+
import os
|
2
|
+
|
3
|
+
import fire
|
4
|
+
import torch
|
5
|
+
from huggingface_hub import hf_hub_download
|
6
|
+
|
7
|
+
from optimum.rbln import RBLNTimeSeriesTransformerForPrediction
|
8
|
+
|
9
|
+
|
10
|
+
def main(
|
11
|
+
model_id: str = "huggingface/time-series-transformer-tourism-monthly",
|
12
|
+
batch_size: int = 1,
|
13
|
+
num_parallel_samples: int = 100,
|
14
|
+
from_transformers: bool = False,
|
15
|
+
):
|
16
|
+
if from_transformers:
|
17
|
+
model = RBLNTimeSeriesTransformerForPrediction.from_pretrained(
|
18
|
+
model_id, export=True, rbln_batch_size=batch_size, num_parallel_samples=num_parallel_samples
|
19
|
+
)
|
20
|
+
model.save_pretrained(os.path.basename(model_id))
|
21
|
+
else:
|
22
|
+
model = RBLNTimeSeriesTransformerForPrediction.from_pretrained(
|
23
|
+
os.path.basename(model_id),
|
24
|
+
export=False,
|
25
|
+
)
|
26
|
+
|
27
|
+
dataset = hf_hub_download(
|
28
|
+
repo_id="hf-internal-testing/tourism-monthly-batch", filename="val-batch.pt", repo_type="dataset"
|
29
|
+
)
|
30
|
+
data = torch.load(dataset, weights_only=True)
|
31
|
+
|
32
|
+
batched_data = {}
|
33
|
+
for k, v in data.items():
|
34
|
+
batched_data[k] = v[:batch_size]
|
35
|
+
|
36
|
+
rbln_outputs = model.generate(**batched_data)
|
37
|
+
mean_prediction = rbln_outputs.sequences.mean(dim=1)
|
38
|
+
|
39
|
+
print(mean_prediction)
|
40
|
+
|
41
|
+
|
42
|
+
if __name__ == "__main__":
|
43
|
+
fire.Fire(main)
|
@@ -28,11 +28,11 @@ classifiers = [
|
|
28
28
|
]
|
29
29
|
keywords = ["transformers", "diffusers", "inference", "rbln", "atom", "rebel"]
|
30
30
|
dependencies = [
|
31
|
-
"torch
|
32
|
-
"torchaudio<=2.
|
33
|
-
"torchvision<=0.
|
31
|
+
"torch==2.6.0",
|
32
|
+
"torchaudio<=2.6.0",
|
33
|
+
"torchvision<=0.21.0",
|
34
34
|
"accelerate>=1.0.1",
|
35
|
-
"transformers==4.
|
35
|
+
"transformers==4.50.3",
|
36
36
|
"diffusers<=0.31.0",
|
37
37
|
"packaging>=24.1",
|
38
38
|
]
|
@@ -53,6 +53,8 @@ tests = [
|
|
53
53
|
"sacremoses>=0.1.1",
|
54
54
|
"safetensors>=0.4.2",
|
55
55
|
"protobuf>=5.27.2",
|
56
|
+
"soundfile>=0.13.1",
|
57
|
+
"librosa>=0.11.0",
|
56
58
|
]
|
57
59
|
quality = [
|
58
60
|
"ruff>=0.3.3",
|
@@ -73,6 +73,7 @@ _import_structure = {
|
|
73
73
|
"RBLNRobertaForMaskedLM",
|
74
74
|
"RBLNViTForImageClassification",
|
75
75
|
"RBLNBertForMaskedLM",
|
76
|
+
"RBLNTimeSeriesTransformerForPrediction",
|
76
77
|
],
|
77
78
|
"diffusers": [
|
78
79
|
"RBLNAutoencoderKL",
|
@@ -184,6 +185,7 @@ if TYPE_CHECKING:
|
|
184
185
|
RBLNRobertaForSequenceClassification,
|
185
186
|
RBLNT5EncoderModel,
|
186
187
|
RBLNT5ForConditionalGeneration,
|
188
|
+
RBLNTimeSeriesTransformerForPrediction,
|
187
189
|
RBLNViTForImageClassification,
|
188
190
|
RBLNWav2Vec2ForCTC,
|
189
191
|
RBLNWhisperForConditionalGeneration,
|
@@ -0,0 +1,25 @@
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Optional
|
16
|
+
|
17
|
+
import torch
|
18
|
+
from torch import Tensor
|
19
|
+
|
20
|
+
|
21
|
+
@torch.library.custom_op("rbln_custom_ops::linear", mutates_args=())
|
22
|
+
def linear(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor:
|
23
|
+
output_shape = list(input.shape[:-1])
|
24
|
+
output_shape += [weight.shape[0]]
|
25
|
+
return torch.empty(size=output_shape, dtype=input.dtype, device=input.device, requires_grad=input.requires_grad)
|
@@ -52,6 +52,7 @@ _import_structure = {
|
|
52
52
|
"RBLNPhiForCausalLM",
|
53
53
|
"RBLNT5EncoderModel",
|
54
54
|
"RBLNT5ForConditionalGeneration",
|
55
|
+
"RBLNTimeSeriesTransformerForPrediction",
|
55
56
|
"RBLNLlavaNextForConditionalGeneration",
|
56
57
|
"RBLNMidmLMHeadModel",
|
57
58
|
"RBLNXLMRobertaModel",
|
@@ -113,6 +114,7 @@ if TYPE_CHECKING:
|
|
113
114
|
RBLNQwen2ForCausalLM,
|
114
115
|
RBLNT5EncoderModel,
|
115
116
|
RBLNT5ForConditionalGeneration,
|
117
|
+
RBLNTimeSeriesTransformerForPrediction,
|
116
118
|
RBLNWav2Vec2ForCTC,
|
117
119
|
RBLNWhisperForConditionalGeneration,
|
118
120
|
RBLNXLMRobertaModel,
|
{optimum_rbln-0.7.4a0 → optimum_rbln-0.7.4a1}/src/optimum/rbln/transformers/models/__init__.py
RENAMED
@@ -50,6 +50,7 @@ _import_structure = {
|
|
50
50
|
"mistral": ["RBLNMistralForCausalLM"],
|
51
51
|
"phi": ["RBLNPhiForCausalLM"],
|
52
52
|
"qwen2": ["RBLNQwen2ForCausalLM"],
|
53
|
+
"time_series_transformers": ["RBLNTimeSeriesTransformerForPrediction"],
|
53
54
|
"t5": ["RBLNT5EncoderModel", "RBLNT5ForConditionalGeneration"],
|
54
55
|
"wav2vec2": ["RBLNWav2Vec2ForCTC"],
|
55
56
|
"whisper": ["RBLNWhisperForConditionalGeneration"],
|
@@ -90,6 +91,7 @@ if TYPE_CHECKING:
|
|
90
91
|
from .phi import RBLNPhiForCausalLM
|
91
92
|
from .qwen2 import RBLNQwen2ForCausalLM
|
92
93
|
from .t5 import RBLNT5EncoderModel, RBLNT5ForConditionalGeneration
|
94
|
+
from .time_series_transformers import RBLNTimeSeriesTransformerForPrediction
|
93
95
|
from .wav2vec2 import RBLNWav2Vec2ForCTC
|
94
96
|
from .whisper import RBLNWhisperForConditionalGeneration
|
95
97
|
from .xlm_roberta import RBLNXLMRobertaModel
|
@@ -94,12 +94,11 @@ class RBLNBartModel(RBLNModel):
|
|
94
94
|
for model_input_name in rbln_model_input_names
|
95
95
|
]
|
96
96
|
|
97
|
-
|
98
|
-
dec_compile_config = RBLNCompileConfig(input_info=input_info, compiled_model_name="decoder")
|
97
|
+
rbln_compile_config = RBLNCompileConfig(input_info=input_info)
|
99
98
|
|
100
99
|
rbln_config = RBLNConfig(
|
101
100
|
rbln_cls=cls.__name__,
|
102
|
-
compile_cfgs=[
|
101
|
+
compile_cfgs=[rbln_compile_config],
|
103
102
|
rbln_kwargs=rbln_kwargs,
|
104
103
|
)
|
105
104
|
|
@@ -222,8 +222,6 @@ class RBLNRuntimeModel(RBLNPytorchRuntime):
|
|
222
222
|
|
223
223
|
attention_mask = self.dec_attn_mask
|
224
224
|
|
225
|
-
attention_mask = self.dec_attn_mask
|
226
|
-
|
227
225
|
logits = super().forward(
|
228
226
|
inputs,
|
229
227
|
cache_position,
|
@@ -547,22 +545,27 @@ class RBLNDecoderOnlyModelForCausalLM(RBLNModel):
|
|
547
545
|
|
548
546
|
@QuantizationManager.with_quantization_env
|
549
547
|
def compile_model(*args, **kwargs):
|
550
|
-
|
551
|
-
|
552
|
-
|
553
|
-
|
554
|
-
|
555
|
-
|
556
|
-
|
548
|
+
try:
|
549
|
+
original_linear = torch.nn.functional.linear
|
550
|
+
torch.nn.functional.linear = torch.ops.rbln_custom_ops.linear
|
551
|
+
wrapped_model.phase = "prefill"
|
552
|
+
compiled_prefill = RBLNModel.compile(
|
553
|
+
wrapped_model,
|
554
|
+
prefill_compile_config,
|
555
|
+
example_inputs=prefill_example_inputs,
|
556
|
+
compile_context=context,
|
557
|
+
)
|
557
558
|
|
558
|
-
|
559
|
-
|
560
|
-
|
561
|
-
|
562
|
-
|
563
|
-
|
564
|
-
|
565
|
-
|
559
|
+
wrapped_model.phase = "decode"
|
560
|
+
compiled_decoder = RBLNModel.compile(
|
561
|
+
wrapped_model,
|
562
|
+
dec_compile_config,
|
563
|
+
example_inputs=dec_example_inputs,
|
564
|
+
compile_context=context,
|
565
|
+
)
|
566
|
+
return {"prefill": compiled_prefill, "decoder": compiled_decoder}
|
567
|
+
finally:
|
568
|
+
torch.nn.functional.linear = original_linear
|
566
569
|
|
567
570
|
return compile_model(quantize_config=quantize_config)
|
568
571
|
|
@@ -38,8 +38,8 @@ class RBLNRuntimeEncoder(RBLNPytorchRuntime):
|
|
38
38
|
mandatory_members = ["main_input_name"]
|
39
39
|
|
40
40
|
def forward(self, *args: List[torch.Tensor], **kwargs: Dict[str, torch.Tensor]):
|
41
|
-
|
42
|
-
return BaseModelOutput(last_hidden_state=
|
41
|
+
output = super().forward(*args, **kwargs)
|
42
|
+
return BaseModelOutput(last_hidden_state=output)
|
43
43
|
|
44
44
|
|
45
45
|
class RBLNRuntimeDecoder(RBLNPytorchRuntime):
|
optimum_rbln-0.7.4a1/src/optimum/rbln/transformers/models/time_series_transformers/__init__.py
ADDED
@@ -0,0 +1,24 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
from .modeling_time_series_transformers import RBLNTimeSeriesTransformerForPrediction
|