optimum-rbln 0.7.3a4__tar.gz → 0.7.3a6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (190) hide show
  1. optimum_rbln-0.7.3a6/.github/version.yaml +1 -0
  2. optimum_rbln-0.7.3a6/.github/workflows/deploy-on-tag.yaml +34 -0
  3. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/PKG-INFO +1 -1
  4. optimum_rbln-0.7.3a6/examples/kandinsky2_2/run_kandinsky2_2.py +57 -0
  5. optimum_rbln-0.7.3a6/examples/kandinsky2_2/run_kandinsky2_2_combined.py +31 -0
  6. optimum_rbln-0.7.3a6/examples/kandinsky2_2/run_kandinsky2_2_img2img.py +61 -0
  7. optimum_rbln-0.7.3a6/examples/kandinsky2_2/run_kandinsky2_2_img2img_combined.py +46 -0
  8. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/kandinsky2_2/run_kandinsky2_2_inpaint.py +6 -2
  9. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/kandinsky2_2/run_kandinsky2_2_inpaint_combined.py +13 -8
  10. optimum_rbln-0.7.3a6/examples/kandinsky2_2/run_kandinsky2_2_prior_interpolate.py +64 -0
  11. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/__init__.py +8 -0
  12. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/__version__.py +2 -2
  13. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/__init__.py +8 -0
  14. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/models/autoencoders/vq_model.py +11 -3
  15. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/models/unets/unet_2d_condition.py +15 -8
  16. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/__init__.py +8 -0
  17. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +7 -1
  18. optimum_rbln-0.7.3a6/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +25 -0
  19. optimum_rbln-0.7.3a6/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +189 -0
  20. optimum_rbln-0.7.3a6/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +25 -0
  21. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +3 -0
  22. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/modeling_base.py +0 -11
  23. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +59 -62
  24. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/phi/phi_architecture.py +3 -3
  25. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/tests/test_diffusers.py +8 -10
  26. optimum_rbln-0.7.3a4/.github/version.yaml +0 -1
  27. optimum_rbln-0.7.3a4/.github/workflows/deploy-on-tag.yaml +0 -14
  28. optimum_rbln-0.7.3a4/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +0 -83
  29. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
  30. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/ISSUE_TEMPLATE/config.yml +0 -0
  31. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
  32. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/ISSUE_TEMPLATE/model_request.md +0 -0
  33. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/pull_request_template.md +0 -0
  34. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/scripts/auto_code_review.py +0 -0
  35. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/scripts/validate_pr_checklist.py +0 -0
  36. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/workflows/auto_code_review.yml +0 -0
  37. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/workflows/check_code_quality.yml +0 -0
  38. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/workflows/deploy.yaml +0 -0
  39. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/workflows/pr-title-check.yaml +0 -0
  40. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/workflows/pr_checklist_validator.yml +0 -0
  41. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/workflows/rbln_check_compiler.yaml +0 -0
  42. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/workflows/rbln_dispatch_pytest.yaml +0 -0
  43. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/workflows/rbln_optimum_inference_test.yaml +0 -0
  44. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/workflows/rbln_optimum_pytest.yaml +0 -0
  45. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/workflows/rbln_scheduled_test.yaml +0 -0
  46. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.github/workflows/rbln_trigger_on_pr.yaml +0 -0
  47. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/.gitignore +0 -0
  48. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/CODE_OF_CONDUCT.md +0 -0
  49. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/CONTRIBUTING.md +0 -0
  50. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/LICENSE +0 -0
  51. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/README.md +0 -0
  52. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/assets/rbln_logo.png +0 -0
  53. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/audio-classification/run_ast_audio_classification.py +0 -0
  54. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/depth-estimation/run_dpt.py +0 -0
  55. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/image-classification/run_image_classification.py +0 -0
  56. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/image-classification/run_vit_image_classification.py +0 -0
  57. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/image-to-text/run_llava_next_image_to_text.py +0 -0
  58. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/question-answering/run_question_answering.py +0 -0
  59. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/speech-recognition/run_wav2vec2.py +0 -0
  60. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/speech-recognition/run_whisper.py +0 -0
  61. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/stable-diffusion/run_stable_diffusion.py +0 -0
  62. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/stable-diffusion/run_stable_diffusion_controlnet.py +0 -0
  63. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/stable-diffusion/run_stable_diffusion_img2img.py +0 -0
  64. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/stable-diffusion/run_stable_diffusion_img2img_controlnet.py +0 -0
  65. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/stable-diffusion/run_stable_diffusion_inpaint.py +0 -0
  66. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/stable-diffusion/run_stable_diffusion_lora.py +0 -0
  67. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/stable-diffusion/run_stable_diffusion_multicontrolnet.py +0 -0
  68. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/text-classification/run_bge_m3_text_classification.py +0 -0
  69. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/text-classification/run_bge_reranker_v2_m3_text_classification.py +0 -0
  70. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/text-classification/run_secureBERT.py +0 -0
  71. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/text-classification/run_t5_classification.py +0 -0
  72. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/text-classification/run_twitter_roberta_text_classification.py +0 -0
  73. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/text2text-generation/run_bart_text2text_generation.py +0 -0
  74. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/text2text-generation/run_llama_peft.py +0 -0
  75. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/examples/text2text-generation/run_llama_text2text_generation.py +0 -0
  76. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/pyproject.toml +0 -0
  77. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/scripts/uv-lock.sh +0 -0
  78. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/scripts/uv-sync.sh +0 -0
  79. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/modeling_diffusers.py +0 -0
  80. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/models/__init__.py +0 -0
  81. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/models/autoencoders/__init__.py +0 -0
  82. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +0 -0
  83. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/models/autoencoders/vae.py +0 -0
  84. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/models/controlnet.py +0 -0
  85. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/models/transformers/__init__.py +0 -0
  86. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/models/transformers/prior_transformer.py +0 -0
  87. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/models/transformers/transformer_sd3.py +0 -0
  88. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/models/unets/__init__.py +0 -0
  89. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/controlnet/__init__.py +0 -0
  90. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +0 -0
  91. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +0 -0
  92. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +0 -0
  93. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +0 -0
  94. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +0 -0
  95. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +0 -0
  96. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +0 -0
  97. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +0 -0
  98. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +0 -0
  99. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +0 -0
  100. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +0 -0
  101. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +0 -0
  102. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +0 -0
  103. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +0 -0
  104. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +0 -0
  105. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -0
  106. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -0
  107. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -0
  108. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/modeling.py +0 -0
  109. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/modeling_config.py +0 -0
  110. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/ops/__init__.py +0 -0
  111. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/ops/attn.py +0 -0
  112. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/ops/flash_attn.py +0 -0
  113. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/ops/kv_cache_update.py +0 -0
  114. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/__init__.py +0 -0
  115. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/modeling_alias.py +0 -0
  116. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/modeling_generic.py +0 -0
  117. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/modeling_rope_utils.py +0 -0
  118. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/__init__.py +0 -0
  119. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/auto/__init__.py +0 -0
  120. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/auto/auto_factory.py +0 -0
  121. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/auto/modeling_auto.py +0 -0
  122. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/bart/__init__.py +0 -0
  123. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/bart/bart_architecture.py +0 -0
  124. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/bart/modeling_bart.py +0 -0
  125. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/bert/__init__.py +0 -0
  126. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/bert/modeling_bert.py +0 -0
  127. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/clip/__init__.py +0 -0
  128. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/clip/modeling_clip.py +0 -0
  129. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/decoderonly/__init__.py +0 -0
  130. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +0 -0
  131. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/dpt/__init__.py +0 -0
  132. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -0
  133. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/exaone/__init__.py +0 -0
  134. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/exaone/exaone_architecture.py +0 -0
  135. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/exaone/modeling_exaone.py +0 -0
  136. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/gemma/__init__.py +0 -0
  137. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/gemma/gemma_architecture.py +0 -0
  138. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/gemma/modeling_gemma.py +0 -0
  139. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/gpt2/__init__.py +0 -0
  140. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +0 -0
  141. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +0 -0
  142. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/llama/__init__.py +0 -0
  143. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/llama/llama_architecture.py +0 -0
  144. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/llama/modeling_llama.py +0 -0
  145. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/llava_next/__init__.py +0 -0
  146. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +0 -0
  147. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/midm/__init__.py +0 -0
  148. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/midm/midm_architecture.py +0 -0
  149. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/midm/modeling_midm.py +0 -0
  150. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/mistral/__init__.py +0 -0
  151. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/mistral/mistral_architecture.py +0 -0
  152. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/mistral/modeling_mistral.py +0 -0
  153. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/phi/__init__.py +0 -0
  154. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/phi/modeling_phi.py +0 -0
  155. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/qwen2/__init__.py +0 -0
  156. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +0 -0
  157. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +0 -0
  158. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/seq2seq/__init__.py +0 -0
  159. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +0 -0
  160. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +0 -0
  161. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/t5/__init__.py +0 -0
  162. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/t5/modeling_t5.py +0 -0
  163. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/t5/t5_architecture.py +0 -0
  164. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/wav2vec2/__init__.py +0 -0
  165. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +0 -0
  166. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/whisper/__init__.py +0 -0
  167. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/whisper/generation_whisper.py +0 -0
  168. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/whisper/modeling_whisper.py +0 -0
  169. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/whisper/whisper_architecture.py +0 -0
  170. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/xlm_roberta/__init__.py +0 -0
  171. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +0 -0
  172. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/utils/__init__.py +0 -0
  173. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/transformers/utils/rbln_quantization.py +0 -0
  174. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/utils/__init__.py +0 -0
  175. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/utils/decorator_utils.py +0 -0
  176. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/utils/hub.py +0 -0
  177. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/utils/import_utils.py +0 -0
  178. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/utils/logging.py +0 -0
  179. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/utils/model_utils.py +0 -0
  180. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/utils/runtime_utils.py +0 -0
  181. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/utils/save_utils.py +0 -0
  182. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/src/optimum/rbln/utils/submodule.py +0 -0
  183. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/tests/__init__.py +0 -0
  184. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/tests/psnr.py +0 -0
  185. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/tests/requirements_sdxl.txt +0 -0
  186. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/tests/run_stable_diffusion_xl_base.py +0 -0
  187. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/tests/test_base.py +0 -0
  188. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/tests/test_llm.py +0 -0
  189. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/tests/test_transformers.py +0 -0
  190. {optimum_rbln-0.7.3a4 → optimum_rbln-0.7.3a6}/uv.lock +0 -0
@@ -0,0 +1 @@
1
+ rebel_compiler_version: 0.7.3.dev166+g05e9b26d
@@ -0,0 +1,34 @@
1
+ name: Deploy package on tag released
2
+
3
+ on:
4
+ push:
5
+ tags:
6
+ - 'v*'
7
+ workflow_dispatch:
8
+
9
+ jobs:
10
+ deploy-on-tag:
11
+ uses: ./.github/workflows/deploy.yaml
12
+ with:
13
+ version: ${{ github.ref_name }}
14
+ secrets: inherit
15
+
16
+ trigger-vllm-model-compilation:
17
+ name: trigger vllm model compile and generation ci
18
+ needs: [deploy-on-tag]
19
+ runs-on: rebel-k8s-runner
20
+ steps:
21
+ - uses: actions/github-script@v6
22
+ with:
23
+ github-token: ${{ secrets.GIT_PAT }}
24
+ script: |
25
+ const result = await github.rest.actions.createWorkflowDispatch({
26
+ owner: 'rebellions-sw',
27
+ repo: 'rebel_compiler',
28
+ workflow_id: 'rebel_dispatch_model_generation_for_vllm.yaml',
29
+ ref: 'dev',
30
+ inputs: {
31
+ optimum_rbln_version: ${{ github.ref_name }},
32
+ }
33
+ })
34
+ console.log(result)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.7.3a4
3
+ Version: 0.7.3a6
4
4
  Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
@@ -0,0 +1,57 @@
1
+ import os
2
+
3
+ import fire
4
+ import torch
5
+
6
+ from optimum.rbln import RBLNKandinskyV22Pipeline, RBLNKandinskyV22PriorPipeline
7
+
8
+
9
+ def main(
10
+ prior_model_id: str = "kandinsky-community/kandinsky-2-2-prior",
11
+ inpaint_model_id: str = "kandinsky-community/kandinsky-2-2-decoder",
12
+ from_diffusers: bool = False,
13
+ prompt: str = "red cat, 4k photo",
14
+ ):
15
+ if from_diffusers:
16
+ prior_pipe = RBLNKandinskyV22PriorPipeline.from_pretrained(
17
+ model_id=prior_model_id,
18
+ export=True,
19
+ )
20
+ prior_pipe.save_pretrained(os.path.basename(prior_model_id))
21
+
22
+ pipe = RBLNKandinskyV22Pipeline.from_pretrained(
23
+ model_id=inpaint_model_id,
24
+ export=True,
25
+ rbln_img_height=768,
26
+ rbln_img_width=768,
27
+ )
28
+ pipe.save_pretrained(os.path.basename(inpaint_model_id))
29
+ else:
30
+ prior_pipe = RBLNKandinskyV22PriorPipeline.from_pretrained(
31
+ model_id=os.path.basename(prior_model_id),
32
+ export=False,
33
+ )
34
+ pipe = RBLNKandinskyV22Pipeline.from_pretrained(
35
+ model_id=os.path.basename(inpaint_model_id),
36
+ export=False,
37
+ )
38
+
39
+ generator = torch.manual_seed(42)
40
+ out = prior_pipe(prompt, generator=generator)
41
+ image_emb = out.image_embeds
42
+ zero_image_emb = out.negative_image_embeds
43
+
44
+ out = pipe(
45
+ image_embeds=image_emb,
46
+ negative_image_embeds=zero_image_emb,
47
+ height=768,
48
+ width=768,
49
+ num_inference_steps=50,
50
+ generator=generator,
51
+ )
52
+ image = out.images[0]
53
+ image.save(f"{prompt}.png")
54
+
55
+
56
+ if __name__ == "__main__":
57
+ fire.Fire(main)
@@ -0,0 +1,31 @@
1
+ import os
2
+
3
+ import fire
4
+ import torch
5
+
6
+ from optimum.rbln import RBLNKandinskyV22CombinedPipeline
7
+
8
+
9
+ def main(
10
+ model_id: str = "kandinsky-community/kandinsky-2-2-decoder",
11
+ from_diffusers: bool = False,
12
+ prompt: str = "red cat, 4k photo",
13
+ ):
14
+ if from_diffusers:
15
+ pipe = RBLNKandinskyV22CombinedPipeline.from_pretrained(
16
+ model_id=model_id,
17
+ export=True,
18
+ rbln_img_height=768,
19
+ rbln_img_width=768,
20
+ )
21
+ pipe.save_pretrained(os.path.basename(model_id))
22
+ else:
23
+ pipe = RBLNKandinskyV22CombinedPipeline.from_pretrained(model_id=os.path.basename(model_id), export=False)
24
+
25
+ generator = torch.manual_seed(42)
26
+ image = pipe(prompt, height=768, width=768, num_inference_steps=50, generator=generator).images[0]
27
+ image.save(f"{prompt}.png")
28
+
29
+
30
+ if __name__ == "__main__":
31
+ fire.Fire(main)
@@ -0,0 +1,61 @@
1
+ import os
2
+
3
+ import fire
4
+ import torch
5
+ from diffusers.utils import load_image
6
+
7
+ from optimum.rbln import RBLNKandinskyV22Img2ImgPipeline, RBLNKandinskyV22PriorPipeline
8
+
9
+
10
+ def main(
11
+ prior_model_id: str = "kandinsky-community/kandinsky-2-2-prior",
12
+ inpaint_model_id: str = "kandinsky-community/kandinsky-2-2-decoder",
13
+ from_diffusers: bool = False,
14
+ prompt: str = "A red cartoon frog, 4k",
15
+ ):
16
+ img_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/frog.png"
17
+ init_image = load_image(img_url)
18
+
19
+ if from_diffusers:
20
+ prior_pipe = RBLNKandinskyV22PriorPipeline.from_pretrained(
21
+ model_id=prior_model_id,
22
+ export=True,
23
+ )
24
+ prior_pipe.save_pretrained(os.path.basename(prior_model_id))
25
+
26
+ pipe = RBLNKandinskyV22Img2ImgPipeline.from_pretrained(
27
+ model_id=inpaint_model_id,
28
+ export=True,
29
+ rbln_img_height=768,
30
+ rbln_img_width=768,
31
+ )
32
+ pipe.save_pretrained(os.path.basename(inpaint_model_id))
33
+ else:
34
+ prior_pipe = RBLNKandinskyV22PriorPipeline.from_pretrained(
35
+ model_id=os.path.basename(prior_model_id),
36
+ export=False,
37
+ )
38
+ pipe = RBLNKandinskyV22Img2ImgPipeline.from_pretrained(
39
+ model_id=os.path.basename(inpaint_model_id),
40
+ export=False,
41
+ )
42
+
43
+ generator = torch.manual_seed(42)
44
+ image_emb, zero_image_emb = prior_pipe(prompt, generator=generator, return_dict=False)
45
+
46
+ out = pipe(
47
+ image=init_image,
48
+ image_embeds=image_emb,
49
+ negative_image_embeds=zero_image_emb,
50
+ height=768,
51
+ width=768,
52
+ num_inference_steps=100,
53
+ strength=0.2,
54
+ generator=generator,
55
+ )
56
+ image = out.images[0]
57
+ image.save(f"{prompt}.png")
58
+
59
+
60
+ if __name__ == "__main__":
61
+ fire.Fire(main)
@@ -0,0 +1,46 @@
1
+ import os
2
+
3
+ import fire
4
+ import torch
5
+ from diffusers.utils import load_image
6
+
7
+ from optimum.rbln import RBLNKandinskyV22Img2ImgCombinedPipeline
8
+
9
+
10
+ def main(
11
+ model_id: str = "kandinsky-community/kandinsky-2-2-decoder",
12
+ from_diffusers: bool = False,
13
+ prompt: str = "A red cartoon frog, 4k",
14
+ ):
15
+ img_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/frog.png"
16
+ init_image = load_image(img_url)
17
+
18
+ if from_diffusers:
19
+ pipe = RBLNKandinskyV22Img2ImgCombinedPipeline.from_pretrained(
20
+ model_id=model_id,
21
+ export=True,
22
+ rbln_img_height=768,
23
+ rbln_img_width=768,
24
+ )
25
+ pipe.save_pretrained(os.path.basename(model_id))
26
+ else:
27
+ pipe = RBLNKandinskyV22Img2ImgCombinedPipeline.from_pretrained(
28
+ model_id=os.path.basename(model_id), export=False
29
+ )
30
+
31
+ generator = torch.manual_seed(42)
32
+
33
+ image = pipe(
34
+ prompt=prompt,
35
+ image=init_image,
36
+ height=768,
37
+ width=768,
38
+ num_inference_steps=100,
39
+ strength=0.2,
40
+ generator=generator,
41
+ ).images[0]
42
+ image.save(f"{prompt}.png")
43
+
44
+
45
+ if __name__ == "__main__":
46
+ fire.Fire(main)
@@ -27,6 +27,8 @@ def main(
27
27
  pipe = RBLNKandinskyV22InpaintPipeline.from_pretrained(
28
28
  model_id=inpaint_model_id,
29
29
  export=True,
30
+ rbln_img_width=768,
31
+ rbln_img_height=768,
30
32
  )
31
33
  pipe.save_pretrained(os.path.basename(inpaint_model_id))
32
34
  else:
@@ -42,8 +44,10 @@ def main(
42
44
  generator = torch.manual_seed(42)
43
45
  image_emb, zero_image_emb = prior_pipe(prompt, generator=generator, return_dict=False)
44
46
 
45
- mask = np.zeros((512, 512), dtype=np.float32)
46
- mask[:170, 170:-170] = 1
47
+ # Mask out the desired area to inpaint
48
+ # In this example, we will draw a hat on the cat's head
49
+ mask = np.zeros((768, 768), dtype=np.float32)
50
+ mask[:250, 250:-250] = 1
47
51
 
48
52
  out = pipe(
49
53
  image=init_image,
@@ -1,6 +1,7 @@
1
1
  import os
2
2
 
3
3
  import fire
4
+ import numpy as np
4
5
  import torch
5
6
  from diffusers.utils import load_image
6
7
 
@@ -10,19 +11,17 @@ from optimum.rbln import RBLNKandinskyV22InpaintCombinedPipeline
10
11
  def main(
11
12
  model_id: str = "kandinsky-community/kandinsky-2-2-decoder-inpaint",
12
13
  from_diffusers: bool = False,
13
- prompt: str = "concept art digital painting of an elven castle, inspired by lord of the rings, highly detailed, 8k",
14
+ prompt: str = "a hat",
14
15
  ):
15
- img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png"
16
- mask_url = (
17
- "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png"
18
- )
19
- source = load_image(img_url)
20
- mask = load_image(mask_url)
16
+ img_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png"
17
+ init_image = load_image(img_url)
21
18
 
22
19
  if from_diffusers:
23
20
  pipe = RBLNKandinskyV22InpaintCombinedPipeline.from_pretrained(
24
21
  model_id=model_id,
25
22
  export=True,
23
+ rbln_img_height=768,
24
+ rbln_img_width=768,
26
25
  )
27
26
  pipe.save_pretrained(os.path.basename(model_id))
28
27
  else:
@@ -30,7 +29,13 @@ def main(
30
29
  model_id=os.path.basename(model_id), export=False
31
30
  )
32
31
 
33
- image = pipe(prompt, image=source, mask_image=mask, generator=torch.manual_seed(42)).images[0]
32
+ generator = torch.manual_seed(42)
33
+ # Mask out the desired area to inpaint
34
+ # In this example, we will draw a hat on the cat's head
35
+ mask = np.zeros((768, 768), dtype=np.float32)
36
+ mask[:250, 250:-250] = 1
37
+
38
+ image = pipe(prompt, image=init_image, mask_image=mask, generator=generator).images[0]
34
39
  image.save(f"{prompt}.png")
35
40
 
36
41
 
@@ -0,0 +1,64 @@
1
+ import os
2
+
3
+ import fire
4
+ import torch
5
+ from diffusers.utils import load_image
6
+
7
+ from optimum.rbln import RBLNKandinskyV22Pipeline, RBLNKandinskyV22PriorPipeline
8
+
9
+
10
+ def main(
11
+ prior_model_id: str = "kandinsky-community/kandinsky-2-2-prior",
12
+ inpaint_model_id: str = "kandinsky-community/kandinsky-2-2-decoder",
13
+ from_diffusers: bool = False,
14
+ ):
15
+ img1 = load_image(
16
+ "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png"
17
+ )
18
+ img2 = load_image(
19
+ "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/starry_night.jpeg"
20
+ )
21
+
22
+ if from_diffusers:
23
+ prior_pipe = RBLNKandinskyV22PriorPipeline.from_pretrained(
24
+ model_id=prior_model_id,
25
+ export=True,
26
+ )
27
+ prior_pipe.save_pretrained(os.path.basename(prior_model_id))
28
+
29
+ pipe = RBLNKandinskyV22Pipeline.from_pretrained(
30
+ model_id=inpaint_model_id,
31
+ export=True,
32
+ rbln_img_height=768,
33
+ rbln_img_width=768,
34
+ )
35
+ pipe.save_pretrained(os.path.basename(inpaint_model_id))
36
+ else:
37
+ prior_pipe = RBLNKandinskyV22PriorPipeline.from_pretrained(
38
+ model_id=os.path.basename(prior_model_id),
39
+ export=False,
40
+ )
41
+ pipe = RBLNKandinskyV22Pipeline.from_pretrained(
42
+ model_id=os.path.basename(inpaint_model_id),
43
+ export=False,
44
+ )
45
+
46
+ images_texts = ["a cat", img1, img2]
47
+ weights = [0.3, 0.3, 0.4]
48
+ generator = torch.manual_seed(42)
49
+ out = prior_pipe.interpolate(images_texts, weights, generator=generator)
50
+ image_emb = out.image_embeds
51
+ zero_image_emb = out.negative_image_embeds
52
+
53
+ out = pipe(
54
+ image_embeds=image_emb,
55
+ negative_image_embeds=zero_image_emb,
56
+ num_inference_steps=50,
57
+ generator=generator,
58
+ )
59
+ image = out.images[0]
60
+ image.save("starry_cat.png")
61
+
62
+
63
+ if __name__ == "__main__":
64
+ fire.Fire(main)
@@ -78,9 +78,13 @@ _import_structure = {
78
78
  "RBLNAutoencoderKL",
79
79
  "RBLNControlNetModel",
80
80
  "RBLNPriorTransformer",
81
+ "RBLNKandinskyV22CombinedPipeline",
82
+ "RBLNKandinskyV22Img2ImgCombinedPipeline",
81
83
  "RBLNKandinskyV22InpaintCombinedPipeline",
82
84
  "RBLNKandinskyV22InpaintPipeline",
85
+ "RBLNKandinskyV22Img2ImgPipeline",
83
86
  "RBLNKandinskyV22PriorPipeline",
87
+ "RBLNKandinskyV22Pipeline",
84
88
  "RBLNStableDiffusionPipeline",
85
89
  "RBLNStableDiffusionXLPipeline",
86
90
  "RBLNUNet2DConditionModel",
@@ -107,8 +111,12 @@ if TYPE_CHECKING:
107
111
  RBLNAutoencoderKL,
108
112
  RBLNControlNetModel,
109
113
  RBLNDiffusionMixin,
114
+ RBLNKandinskyV22CombinedPipeline,
115
+ RBLNKandinskyV22Img2ImgCombinedPipeline,
116
+ RBLNKandinskyV22Img2ImgPipeline,
110
117
  RBLNKandinskyV22InpaintCombinedPipeline,
111
118
  RBLNKandinskyV22InpaintPipeline,
119
+ RBLNKandinskyV22Pipeline,
112
120
  RBLNKandinskyV22PriorPipeline,
113
121
  RBLNMultiControlNetModel,
114
122
  RBLNPriorTransformer,
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.7.3a4'
21
- __version_tuple__ = version_tuple = (0, 7, 3, 'a4')
20
+ __version__ = version = '0.7.3a6'
21
+ __version_tuple__ = version_tuple = (0, 7, 3, 'a6')
@@ -24,9 +24,13 @@ ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES["optimum.rbln"])
24
24
 
25
25
  _import_structure = {
26
26
  "pipelines": [
27
+ "RBLNKandinskyV22CombinedPipeline",
28
+ "RBLNKandinskyV22Img2ImgCombinedPipeline",
27
29
  "RBLNKandinskyV22InpaintCombinedPipeline",
28
30
  "RBLNKandinskyV22InpaintPipeline",
31
+ "RBLNKandinskyV22Img2ImgPipeline",
29
32
  "RBLNKandinskyV22PriorPipeline",
33
+ "RBLNKandinskyV22Pipeline",
30
34
  "RBLNStableDiffusionPipeline",
31
35
  "RBLNStableDiffusionXLPipeline",
32
36
  "RBLNStableDiffusionImg2ImgPipeline",
@@ -66,8 +70,12 @@ if TYPE_CHECKING:
66
70
  RBLNVQModel,
67
71
  )
68
72
  from .pipelines import (
73
+ RBLNKandinskyV22CombinedPipeline,
74
+ RBLNKandinskyV22Img2ImgCombinedPipeline,
75
+ RBLNKandinskyV22Img2ImgPipeline,
69
76
  RBLNKandinskyV22InpaintCombinedPipeline,
70
77
  RBLNKandinskyV22InpaintPipeline,
78
+ RBLNKandinskyV22Pipeline,
71
79
  RBLNKandinskyV22PriorPipeline,
72
80
  RBLNMultiControlNetModel,
73
81
  RBLNStableDiffusion3Img2ImgPipeline,
@@ -90,9 +90,17 @@ class RBLNVQModel(RBLNModel):
90
90
  model_config: "PretrainedConfig",
91
91
  rbln_kwargs: Dict[str, Any] = {},
92
92
  ) -> RBLNConfig:
93
- batch_size = rbln_kwargs.get("batch_size") or 1
94
- height = rbln_kwargs.get("img_height") or 512
95
- width = rbln_kwargs.get("img_width") or 512
93
+ batch_size = rbln_kwargs.get("batch_size")
94
+ if batch_size is None:
95
+ batch_size = 1
96
+
97
+ height = rbln_kwargs.get("img_height")
98
+ if height is None:
99
+ height = 512
100
+
101
+ width = rbln_kwargs.get("img_width")
102
+ if width is None:
103
+ width = 512
96
104
 
97
105
  if hasattr(model_config, "block_out_channels"):
98
106
  scale_factor = 2 ** (len(model_config.block_out_channels) - 1)
@@ -176,15 +176,22 @@ class RBLNUNet2DConditionModel(RBLNModel):
176
176
  raise ValueError("Both image height and image width must be given or not given")
177
177
  elif image_size[0] is None and image_size[1] is None:
178
178
  if rbln_config["img2img_pipeline"]:
179
- # In case of img2img, sample size of unet is determined by vae encoder.
180
- vae_sample_size = pipe.vae.config.sample_size
181
- if isinstance(vae_sample_size, int):
182
- sample_size = vae_sample_size // scale_factor
183
- else:
184
- sample_size = (
185
- vae_sample_size[0] // scale_factor,
186
- vae_sample_size[1] // scale_factor,
179
+ if hasattr(pipe, "vae"):
180
+ # In case of img2img, sample size of unet is determined by vae encoder.
181
+ vae_sample_size = pipe.vae.config.sample_size
182
+ if isinstance(vae_sample_size, int):
183
+ sample_size = vae_sample_size // scale_factor
184
+ else:
185
+ sample_size = (
186
+ vae_sample_size[0] // scale_factor,
187
+ vae_sample_size[1] // scale_factor,
188
+ )
189
+ elif hasattr(pipe, "movq"):
190
+ logger.warning(
191
+ "RBLN config 'img_height' and 'img_width' should have been provided for this pipeline. "
192
+ "Both variable will be set 512 by default."
187
193
  )
194
+ sample_size = (512 // scale_factor, 512 // scale_factor)
188
195
  else:
189
196
  sample_size = pipe.unet.config.sample_size
190
197
  else:
@@ -26,9 +26,13 @@ _import_structure = {
26
26
  "RBLNStableDiffusionXLControlNetPipeline",
27
27
  ],
28
28
  "kandinsky2_2": [
29
+ "RBLNKandinskyV22CombinedPipeline",
30
+ "RBLNKandinskyV22Img2ImgCombinedPipeline",
29
31
  "RBLNKandinskyV22InpaintCombinedPipeline",
30
32
  "RBLNKandinskyV22InpaintPipeline",
33
+ "RBLNKandinskyV22Img2ImgPipeline",
31
34
  "RBLNKandinskyV22PriorPipeline",
35
+ "RBLNKandinskyV22Pipeline",
32
36
  ],
33
37
  "stable_diffusion": [
34
38
  "RBLNStableDiffusionImg2ImgPipeline",
@@ -55,8 +59,12 @@ if TYPE_CHECKING:
55
59
  RBLNStableDiffusionXLControlNetPipeline,
56
60
  )
57
61
  from .kandinsky2_2 import (
62
+ RBLNKandinskyV22CombinedPipeline,
63
+ RBLNKandinskyV22Img2ImgCombinedPipeline,
64
+ RBLNKandinskyV22Img2ImgPipeline,
58
65
  RBLNKandinskyV22InpaintCombinedPipeline,
59
66
  RBLNKandinskyV22InpaintPipeline,
67
+ RBLNKandinskyV22Pipeline,
60
68
  RBLNKandinskyV22PriorPipeline,
61
69
  )
62
70
  from .stable_diffusion import (
@@ -12,6 +12,12 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from .pipeline_kandinsky2_2_combined import RBLNKandinskyV22InpaintCombinedPipeline
15
+ from .pipeline_kandinsky2_2 import RBLNKandinskyV22Pipeline
16
+ from .pipeline_kandinsky2_2_combined import (
17
+ RBLNKandinskyV22CombinedPipeline,
18
+ RBLNKandinskyV22Img2ImgCombinedPipeline,
19
+ RBLNKandinskyV22InpaintCombinedPipeline,
20
+ )
21
+ from .pipeline_kandinsky2_2_img2img import RBLNKandinskyV22Img2ImgPipeline
16
22
  from .pipeline_kandinsky2_2_inpaint import RBLNKandinskyV22InpaintPipeline
17
23
  from .pipeline_kandinsky2_2_prior import RBLNKandinskyV22PriorPipeline
@@ -0,0 +1,25 @@
1
+ # Copyright 2024 Rebellions Inc.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from diffusers import KandinskyV22Pipeline
16
+
17
+ from ...modeling_diffusers import RBLNDiffusionMixin
18
+
19
+
20
+ class RBLNKandinskyV22Pipeline(RBLNDiffusionMixin, KandinskyV22Pipeline):
21
+ original_class = KandinskyV22Pipeline
22
+ _submodules = ["unet", "movq"]
23
+
24
+ def get_compiled_image_size(self):
25
+ return self.movq.image_size