optimum-rbln 0.2.1a1__tar.gz → 0.2.1a2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (170) hide show
  1. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/workflows/rbln_trigger_on_pr.yaml +1 -1
  2. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/PKG-INFO +2 -2
  3. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/pyproject.toml +1 -1
  4. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/__init__.py +2 -0
  5. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/__version__.py +1 -1
  6. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/ops/attn.py +4 -4
  7. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/__init__.py +2 -0
  8. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/__init__.py +2 -2
  9. optimum_rbln-0.2.1a2/src/optimum/rbln/transformers/models/bert/__init__.py +15 -0
  10. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/bert/modeling_bert.py +5 -1
  11. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +6 -2
  12. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +15 -32
  13. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/t5/t5_architecture.py +29 -6
  14. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/tests/test_llm.py +12 -12
  15. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/tests/test_transformers.py +13 -0
  16. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/uv.lock +17 -49
  17. optimum_rbln-0.2.1a1/src/optimum/rbln/transformers/models/bert/__init__.py +0 -15
  18. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
  19. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/ISSUE_TEMPLATE/config.yml +0 -0
  20. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
  21. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/ISSUE_TEMPLATE/model_request.md +0 -0
  22. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/pull_request_template.md +0 -0
  23. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/scripts/auto_code_review.py +0 -0
  24. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/scripts/validate_pr_checklist.py +0 -0
  25. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/workflows/auto_code_review.yml +0 -0
  26. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/workflows/check_code_quality.yml +0 -0
  27. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/workflows/deploy-on-tag.yaml +0 -0
  28. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/workflows/deploy.yaml +0 -0
  29. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/workflows/pr-title-check.yaml +0 -0
  30. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/workflows/pr_checklist_validator.yml +0 -0
  31. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/workflows/rbln_dispatch_pytest.yaml +0 -0
  32. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/workflows/rbln_optimum_inference_test.yaml +0 -0
  33. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.github/workflows/rbln_optimum_pytest.yaml +0 -0
  34. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/.gitignore +0 -0
  35. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/CODE_OF_CONDUCT.md +0 -0
  36. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/CONTRIBUTING.md +0 -0
  37. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/LICENSE +0 -0
  38. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/README.md +0 -0
  39. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/assets/rbln_logo.png +0 -0
  40. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/audio-classification/run_ast_audio_classification.py +0 -0
  41. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/depth-estimation/run_dpt.py +0 -0
  42. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/image-classification/run_image_classification.py +0 -0
  43. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/image-classification/run_vit_image_classification.py +0 -0
  44. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/image-to-text/run_llava_next_image_to_text.py +0 -0
  45. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/question-answering/run_question_answering.py +0 -0
  46. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/speech-recognition/run_wav2vec2.py +0 -0
  47. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/speech-recognition/run_whisper.py +0 -0
  48. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/stable-diffusion/run_stable_diffusion.py +0 -0
  49. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/stable-diffusion/run_stable_diffusion_controlnet.py +0 -0
  50. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/stable-diffusion/run_stable_diffusion_img2img.py +0 -0
  51. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/stable-diffusion/run_stable_diffusion_img2img_controlnet.py +0 -0
  52. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/stable-diffusion/run_stable_diffusion_inpaint.py +0 -0
  53. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/stable-diffusion/run_stable_diffusion_lora.py +0 -0
  54. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/stable-diffusion/run_stable_diffusion_multicontrolnet.py +0 -0
  55. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/text-classification/run_bge_m3_text_classification.py +0 -0
  56. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/text-classification/run_bge_reranker_v2_m3_text_classification.py +0 -0
  57. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/text-classification/run_secureBERT.py +0 -0
  58. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/text-classification/run_t5_classification.py +0 -0
  59. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/text-classification/run_twitter_roberta_text_classification.py +0 -0
  60. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/text2text-generation/run_bart_text2text_generation.py +0 -0
  61. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/text2text-generation/run_llama_peft.py +0 -0
  62. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/examples/text2text-generation/run_llama_text2text_generation.py +0 -0
  63. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/scripts/uv-lock.sh +0 -0
  64. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/scripts/uv-sync.sh +0 -0
  65. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/__init__.py +0 -0
  66. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/modeling_diffusers.py +0 -0
  67. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/models/__init__.py +0 -0
  68. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/models/autoencoders/__init__.py +0 -0
  69. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +0 -0
  70. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/models/autoencoders/vae.py +0 -0
  71. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/models/controlnet.py +0 -0
  72. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/models/transformers/__init__.py +0 -0
  73. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/models/transformers/transformer_sd3.py +0 -0
  74. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/models/unets/__init__.py +0 -0
  75. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/models/unets/unet_2d_condition.py +0 -0
  76. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/__init__.py +0 -0
  77. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/controlnet/__init__.py +0 -0
  78. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +0 -0
  79. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +0 -0
  80. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +0 -0
  81. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +0 -0
  82. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +0 -0
  83. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +0 -0
  84. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +0 -0
  85. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +0 -0
  86. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +0 -0
  87. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +0 -0
  88. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +0 -0
  89. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +0 -0
  90. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +0 -0
  91. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +0 -0
  92. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -0
  93. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -0
  94. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -0
  95. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/modeling.py +0 -0
  96. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/modeling_base.py +0 -0
  97. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/modeling_config.py +0 -0
  98. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/ops/__init__.py +0 -0
  99. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/ops/flash_attn.py +0 -0
  100. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/ops/kv_cache_update.py +0 -0
  101. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/modeling_alias.py +0 -0
  102. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/modeling_generic.py +0 -0
  103. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/modeling_rope_utils.py +0 -0
  104. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/auto/__init__.py +0 -0
  105. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/auto/auto_factory.py +0 -0
  106. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/auto/modeling_auto.py +0 -0
  107. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/bart/__init__.py +0 -0
  108. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/bart/bart_architecture.py +0 -0
  109. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/bart/modeling_bart.py +0 -0
  110. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/clip/__init__.py +0 -0
  111. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/clip/modeling_clip.py +0 -0
  112. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/decoderonly/__init__.py +0 -0
  113. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +0 -0
  114. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/dpt/__init__.py +0 -0
  115. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/dpt/modeling_dpt.py +0 -0
  116. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/exaone/__init__.py +0 -0
  117. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/exaone/exaone_architecture.py +0 -0
  118. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/exaone/modeling_exaone.py +0 -0
  119. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/gemma/__init__.py +0 -0
  120. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/gemma/gemma_architecture.py +0 -0
  121. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/gemma/modeling_gemma.py +0 -0
  122. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/gpt2/__init__.py +0 -0
  123. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +0 -0
  124. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +0 -0
  125. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/llama/__init__.py +0 -0
  126. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/llama/llama_architecture.py +0 -0
  127. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/llama/modeling_llama.py +0 -0
  128. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/llava_next/__init__.py +0 -0
  129. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +0 -0
  130. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/midm/__init__.py +0 -0
  131. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/midm/midm_architecture.py +0 -0
  132. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/midm/modeling_midm.py +0 -0
  133. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/mistral/__init__.py +0 -0
  134. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/mistral/mistral_architecture.py +0 -0
  135. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/mistral/modeling_mistral.py +0 -0
  136. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/phi/__init__.py +0 -0
  137. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/phi/modeling_phi.py +0 -0
  138. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/phi/phi_architecture.py +0 -0
  139. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/qwen2/__init__.py +0 -0
  140. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +0 -0
  141. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +0 -0
  142. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/seq2seq/__init__.py +0 -0
  143. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +0 -0
  144. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/t5/__init__.py +0 -0
  145. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/t5/modeling_t5.py +0 -0
  146. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/wav2vec2/__init__.py +0 -0
  147. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +0 -0
  148. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/whisper/__init__.py +0 -0
  149. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/whisper/generation_whisper.py +0 -0
  150. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/whisper/modeling_whisper.py +0 -0
  151. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/whisper/whisper_architecture.py +0 -0
  152. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/xlm_roberta/__init__.py +0 -0
  153. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +0 -0
  154. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/utils/__init__.py +0 -0
  155. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/transformers/utils/rbln_quantization.py +0 -0
  156. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/utils/__init__.py +0 -0
  157. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/utils/decorator_utils.py +0 -0
  158. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/utils/hub.py +0 -0
  159. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/utils/import_utils.py +0 -0
  160. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/utils/logging.py +0 -0
  161. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/utils/model_utils.py +0 -0
  162. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/utils/runtime_utils.py +0 -0
  163. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/utils/save_utils.py +0 -0
  164. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/src/optimum/rbln/utils/submodule.py +0 -0
  165. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/tests/__init__.py +0 -0
  166. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/tests/psnr.py +0 -0
  167. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/tests/requirements_sdxl.txt +0 -0
  168. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/tests/run_stable_diffusion_xl_base.py +0 -0
  169. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/tests/test_base.py +0 -0
  170. {optimum_rbln-0.2.1a1 → optimum_rbln-0.2.1a2}/tests/test_diffusers.py +0 -0
@@ -9,7 +9,7 @@ env:
9
9
  REBEL_PYPI_ENDPOINT: ${{ vars.REBEL_PYPI_INTERNAL_ENDPOINT }}
10
10
  REBEL_PYPI_USERNAME: ${{ secrets.REBEL_PYPI_USERNAME }}
11
11
  REBEL_PYPI_PASSWORD: ${{ secrets.REBEL_PYPI_PASSWORD }}
12
- REBEL_COMPILER_VERSION: 0.7.1.dev63+ge6c4fb68
12
+ REBEL_COMPILER_VERSION: 0.7.2.dev151+g19f099fd
13
13
 
14
14
  jobs:
15
15
  check-rebel-compiler-version:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.2.1a1
3
+ Version: 0.2.1a2
4
4
  Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
@@ -28,7 +28,7 @@ Requires-Dist: packaging>=24.1
28
28
  Requires-Dist: torch<=2.5.1
29
29
  Requires-Dist: torchaudio<=2.5.1
30
30
  Requires-Dist: torchvision<=0.20.1
31
- Requires-Dist: transformers==4.45.2
31
+ Requires-Dist: transformers==4.48.3
32
32
  Description-Content-Type: text/markdown
33
33
 
34
34
 
@@ -32,7 +32,7 @@ dependencies = [
32
32
  "torchaudio<=2.5.1",
33
33
  "torchvision<=0.20.1",
34
34
  "accelerate>=1.0.1",
35
- "transformers==4.45.2",
35
+ "transformers==4.48.3",
36
36
  "diffusers<=0.31.0",
37
37
  "packaging>=24.1",
38
38
  ]
@@ -71,6 +71,7 @@ _import_structure = {
71
71
  "RBLNRobertaForSequenceClassification",
72
72
  "RBLNRobertaForMaskedLM",
73
73
  "RBLNViTForImageClassification",
74
+ "RBLNBertForMaskedLM",
74
75
  ],
75
76
  "diffusers": [
76
77
  "RBLNStableDiffusionPipeline",
@@ -141,6 +142,7 @@ if TYPE_CHECKING:
141
142
  RBLNAutoModelForVision2Seq,
142
143
  RBLNBartForConditionalGeneration,
143
144
  RBLNBartModel,
145
+ RBLNBertForMaskedLM,
144
146
  RBLNBertForQuestionAnswering,
145
147
  RBLNBertModel,
146
148
  RBLNCLIPTextModel,
@@ -12,5 +12,5 @@ __version__: str
12
12
  __version_tuple__: VERSION_TUPLE
13
13
  version_tuple: VERSION_TUPLE
14
14
 
15
- __version__ = version = '0.2.1a1'
15
+ __version__ = version = '0.2.1a2'
16
16
  __version_tuple__ = version_tuple = (0, 2, 1)
@@ -152,16 +152,16 @@ def register_rbln_custom_attention_add_softmax():
152
152
  """
153
153
  return (
154
154
  q,
155
- torch.empty(1, *kcache.shape[1:], device=kcache.device),
156
- torch.empty(1, *vcache.shape[1:], device=vcache.device),
155
+ torch.empty(*kcache.shape, device=kcache.device),
156
+ torch.empty(*vcache.shape, device=vcache.device),
157
157
  )
158
158
 
159
159
  @register_fake("rbln_custom_ops::attn_decode_add_softmax")
160
160
  def attn_decode_add_softmax_abstract(q, k, v, m, kcache, vcache, seq, partition):
161
161
  return (
162
162
  q,
163
- torch.empty(1, *kcache.shape[1:], device=kcache.device),
164
- torch.empty(1, *vcache.shape[1:], device=vcache.device),
163
+ torch.empty(*kcache.shape, device=kcache.device),
164
+ torch.empty(*vcache.shape, device=vcache.device),
165
165
  )
166
166
 
167
167
  torch.library.define(
@@ -35,6 +35,7 @@ _import_structure = {
35
35
  "RBLNBartForConditionalGeneration",
36
36
  "RBLNBartModel",
37
37
  "RBLNBertModel",
38
+ "RBLNBertForMaskedLM",
38
39
  "RBLNBertForQuestionAnswering",
39
40
  "RBLNCLIPTextModel",
40
41
  "RBLNCLIPTextModelWithProjection",
@@ -92,6 +93,7 @@ if TYPE_CHECKING:
92
93
  RBLNAutoModelForVision2Seq,
93
94
  RBLNBartForConditionalGeneration,
94
95
  RBLNBartModel,
96
+ RBLNBertForMaskedLM,
95
97
  RBLNBertForQuestionAnswering,
96
98
  RBLNBertModel,
97
99
  RBLNCLIPTextModel,
@@ -33,7 +33,7 @@ _import_structure = {
33
33
  "RBLNAutoModelForVision2Seq",
34
34
  ],
35
35
  "bart": ["RBLNBartForConditionalGeneration", "RBLNBartModel"],
36
- "bert": ["RBLNBertModel", "RBLNBertForQuestionAnswering"],
36
+ "bert": ["RBLNBertModel", "RBLNBertForQuestionAnswering", "RBLNBertForMaskedLM"],
37
37
  "clip": ["RBLNCLIPTextModel", "RBLNCLIPTextModelWithProjection", "RBLNCLIPVisionModel"],
38
38
  "dpt": ["RBLNDPTForDepthEstimation"],
39
39
  "exaone": ["RBLNExaoneForCausalLM"],
@@ -67,7 +67,7 @@ if TYPE_CHECKING:
67
67
  RBLNAutoModelForVision2Seq,
68
68
  )
69
69
  from .bart import RBLNBartForConditionalGeneration, RBLNBartModel
70
- from .bert import RBLNBertForQuestionAnswering, RBLNBertModel
70
+ from .bert import RBLNBertForMaskedLM, RBLNBertForQuestionAnswering, RBLNBertModel
71
71
  from .clip import RBLNCLIPTextModel, RBLNCLIPTextModelWithProjection, RBLNCLIPVisionModel
72
72
  from .dpt import RBLNDPTForDepthEstimation
73
73
  from .exaone import RBLNExaoneForCausalLM
@@ -0,0 +1,15 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .modeling_bert import RBLNBertForMaskedLM, RBLNBertForQuestionAnswering, RBLNBertModel
@@ -20,7 +20,7 @@ from transformers import PretrainedConfig
20
20
 
21
21
  from ....modeling import RBLNModel
22
22
  from ....modeling_config import RBLNCompileConfig, RBLNConfig
23
- from ...modeling_generic import RBLNModelForQuestionAnswering
23
+ from ...modeling_generic import RBLNModelForMaskedLM, RBLNModelForQuestionAnswering
24
24
 
25
25
 
26
26
  logger = logging.getLogger(__name__)
@@ -100,5 +100,9 @@ class RBLNBertModel(RBLNModel):
100
100
  return rbln_config
101
101
 
102
102
 
103
+ class RBLNBertForMaskedLM(RBLNModelForMaskedLM):
104
+ rbln_model_input_names = ["input_ids", "attention_mask", "token_type_ids"]
105
+
106
+
103
107
  class RBLNBertForQuestionAnswering(RBLNModelForQuestionAnswering):
104
108
  rbln_model_input_names = ["input_ids", "attention_mask", "token_type_ids"]
@@ -544,15 +544,19 @@ class DecoderOnlyAttention(nn.Module):
544
544
  super().__init__()
545
545
  self._original_mod = self_attn
546
546
  self.layer_idx = self_attn.layer_idx
547
- self.num_heads = self._original_mod.num_heads
547
+ self.num_heads = getattr(self._original_mod, "num_heads", None) or getattr(
548
+ self._original_mod.config, "num_attention_heads"
549
+ )
548
550
  self.head_dim = self._original_mod.head_dim
549
551
  self._phase = "prefill"
550
552
  self.scale = torch.tensor(self.get_attn_scale())
551
553
 
552
554
  if hasattr(self._original_mod, "num_key_value_heads"):
553
555
  self.num_key_value_heads = self._original_mod.num_key_value_heads
556
+ elif hasattr(self._original_mod, "config") and hasattr(self._original_mod.config, "num_key_value_heads"):
557
+ self.num_key_value_heads = self._original_mod.config.num_key_value_heads
554
558
  else:
555
- self.num_key_value_heads = self._original_mod.num_heads
559
+ self.num_key_value_heads = self.num_heads
556
560
 
557
561
  self.attention = self.get_attention()
558
562
  self.__post_init__()
@@ -420,7 +420,7 @@ class Seq2SeqSelfAttention(nn.Module):
420
420
  pass
421
421
 
422
422
  def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int) -> torch.Tensor:
423
- return tensor.view(bsz, 1, seq_len, 1, self.num_heads, self.head_dim).transpose(2, 4)
423
+ return tensor.view(bsz, seq_len, 1, self.num_heads, self.head_dim).transpose(1, 3)
424
424
 
425
425
  def projection(self, hidden_states) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
426
426
  """Projects input hidden states into query, key, and value representations.
@@ -450,38 +450,21 @@ class Seq2SeqSelfAttention(nn.Module):
450
450
  key_states = self._shape(key_states, -1, bsz)
451
451
  value_states = self._shape(value_states, -1, bsz)
452
452
 
453
- all_key_states = []
454
- all_value_states = []
455
- all_attn_output = []
456
- for b_idx in range(bsz):
457
- query_state = query_states[b_idx]
458
- key_state = key_states[b_idx]
459
- value_state = value_states[b_idx]
460
- attn_mask = attention_mask[b_idx].unsqueeze(0).unsqueeze(2)
461
- past_key_state = past_key_value[0].view(bsz, self.num_heads, 1, -1, self.head_dim)
462
- past_value_state = past_key_value[1].view(bsz, self.num_heads, 1, -1, self.head_dim)
463
-
464
- attn_output, key_state, value_state = self.attn_decode(
465
- query_state,
466
- key_state,
467
- value_state,
468
- attn_mask,
469
- past_key_state,
470
- past_value_state,
471
- cache_position[b_idx][0],
472
- torch.tensor(1.0, dtype=torch.float32), # scale
473
- )
474
-
475
- attn_output = attn_output.view(1, self.num_heads, -1, self.head_dim).transpose(1, 2)
476
- attn_output = attn_output.reshape(1, -1, self.num_heads * self.head_dim)
477
-
478
- all_key_states.append(key_state.squeeze(2))
479
- all_value_states.append(value_state.squeeze(2))
480
- all_attn_output.append(attn_output)
453
+ attn_output, key_states, value_states = self.attn_decode(
454
+ query_states,
455
+ key_states,
456
+ value_states,
457
+ attention_mask.unsqueeze(
458
+ 2
459
+ ), # Unsqueeze group axis since CustomKernel expects it for group query attention
460
+ past_key_value[0].view(bsz, self.num_heads, 1, -1, self.head_dim),
461
+ past_key_value[1].view(bsz, self.num_heads, 1, -1, self.head_dim),
462
+ cache_position.squeeze(1),
463
+ torch.tensor(1.0, dtype=torch.float32), # scale
464
+ )
481
465
 
482
- key_states = torch.cat(all_key_states, dim=0)
483
- value_states = torch.cat(all_value_states, dim=0)
484
- attn_output = torch.cat(all_attn_output, dim=0)
466
+ attn_output = attn_output.view(bsz, self.num_heads, -1, self.head_dim).transpose(1, 2)
467
+ attn_output = attn_output.reshape(bsz, -1, self.num_heads * self.head_dim)
485
468
 
486
469
  attn_output = self.out_proj(attn_output)
487
470
  present_key_value = (key_states, value_states)
@@ -147,6 +147,11 @@ class T5CrossAttention(nn.Module):
147
147
  def __init__(self, attn):
148
148
  super().__init__()
149
149
  self.attn = attn
150
+ self.q = attn.q
151
+ self.o = attn.o
152
+ self.n_heads = attn.n_heads
153
+ self.key_value_proj_dim = attn.key_value_proj_dim
154
+ self.inner_dim = attn.inner_dim
150
155
 
151
156
  def forward(
152
157
  self,
@@ -155,9 +160,27 @@ class T5CrossAttention(nn.Module):
155
160
  attention_mask: torch.Tensor = None,
156
161
  key_value_states: torch.Tensor = None,
157
162
  ):
158
- return self.attn(
159
- hidden_states=hidden_states,
160
- past_key_value=past_key_value,
161
- position_bias=attention_mask,
162
- key_value_states=key_value_states,
163
- )
163
+ batch_size = hidden_states.shape[0]
164
+
165
+ query_states = self.q(hidden_states)
166
+ query_states = query_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
167
+
168
+ # reuse k,v, cross_attentions
169
+ key_states = past_key_value[0]
170
+ value_states = past_key_value[1]
171
+
172
+ # compute scores, equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
173
+ scores = torch.matmul(query_states, key_states.transpose(3, 2))
174
+ scores += attention_mask
175
+
176
+ # (batch_size, n_heads, seq_length, key_length)
177
+ attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
178
+ attn_output = torch.matmul(attn_weights, value_states)
179
+
180
+ attn_output = attn_output.transpose(1, 2).contiguous()
181
+ attn_output = attn_output.view(batch_size, -1, self.inner_dim)
182
+ attn_output = self.o(attn_output)
183
+
184
+ outputs = (attn_output, past_key_value)
185
+
186
+ return outputs
@@ -47,7 +47,7 @@ class LLMTest:
47
47
 
48
48
  def get_inputs(self):
49
49
  inputs = self.tokenizer(self.PROMPT, return_tensors="pt")
50
- inputs["max_new_tokens"] = 16
50
+ inputs["max_new_tokens"] = 20
51
51
  inputs["do_sample"] = False
52
52
  return inputs
53
53
 
@@ -62,7 +62,7 @@ class LLMTest:
62
62
  class TestQwen2Model(LLMTest.TestLLM):
63
63
  RBLN_CLASS = RBLNQwen2ForCausalLM
64
64
  HF_MODEL_ID = "Qwen/Qwen2-0.5B-Instruct"
65
- EXPECTED_OUTPUT = " I am a 30-year-old woman who has been living with lupus"
65
+ EXPECTED_OUTPUT = " I am a 30-year-old woman who has been living with lupus for over 1"
66
66
  HF_CONFIG_KWARGS = {"max_position_embeddings": 1024}
67
67
 
68
68
 
@@ -70,7 +70,7 @@ class TestLlamaForCausalLM(LLMTest.TestLLM):
70
70
  RBLN_CLASS = RBLNLlamaForCausalLM
71
71
  HF_MODEL_ID = "afmck/testing-llama-tiny"
72
72
  TEST_LEVEL = TestLevel.ESSENTIAL
73
- EXPECTED_OUTPUT = "reress makefable R���� noethetssh"
73
+ EXPECTED_OUTPUT = "reress makefable R���� noethetsshss rechoolso�"
74
74
  HF_CONFIG_KWARGS = {"num_hidden_layers": 1, "max_position_embeddings": 1024}
75
75
 
76
76
  def get_inputs(self):
@@ -83,7 +83,7 @@ class TestLlamaForCausalLM_Flash(LLMTest.TestLLM):
83
83
  RBLN_CLASS = RBLNLlamaForCausalLM
84
84
  HF_MODEL_ID = "afmck/testing-llama-tiny"
85
85
  TEST_LEVEL = TestLevel.ESSENTIAL
86
- EXPECTED_OUTPUT = "reress makefable R���� noethetssh"
86
+ EXPECTED_OUTPUT = "reress makefable R���� noethetsshss rechoolso�"
87
87
  HF_CONFIG_KWARGS = {"num_hidden_layers": 1, "max_position_embeddings": 8192}
88
88
  RBLN_CLASS_KWARGS = {"rbln_config": {"attn_impl": "flash_attn", "kvcache_partition_len": 4096}}
89
89
 
@@ -96,7 +96,9 @@ class TestLlamaForCausalLM_Flash(LLMTest.TestLLM):
96
96
  class TestGPT2LMHeadModel(LLMTest.TestLLM):
97
97
  RBLN_CLASS = RBLNGPT2LMHeadModel
98
98
  # TEST_LEVEL = TestLevel.FULL
99
- EXPECTED_OUTPUT = " What kind kind kind kind kind kind kind kind kind kind kind kind kind kind kind"
99
+ EXPECTED_OUTPUT = (
100
+ " What kind kind kind kind kind kind kind kind kind kind kind kind kind kind kind kind kind kind kind"
101
+ )
100
102
  HF_MODEL_ID = "openai-community/gpt2"
101
103
  HF_CONFIG_KWARGS = {"n_layer": 1, "max_position_embeddings": 1024}
102
104
 
@@ -106,7 +108,7 @@ class TestPhiForCausalLM(LLMTest.TestLLM):
106
108
 
107
109
  # HF_MODEL_ID = "hf-internal-testing/tiny-random-PhiForCausalLM"
108
110
  HF_MODEL_ID = "microsoft/phi-2"
109
- EXPECTED_OUTPUT = "\nAnswer: Theorettebrates']['<<<urlskolegate"
111
+ EXPECTED_OUTPUT = "\nAnswer: Theorettebrates']['<<<urlskolegateezzingrill"
110
112
  HF_CONFIG_KWARGS = {"num_hidden_layers": 1, "max_position_embeddings": 1024, "trust_remote_code": True}
111
113
 
112
114
 
@@ -114,7 +116,7 @@ class TestExaoneForCausalLM(LLMTest.TestLLM):
114
116
  RBLN_CLASS = RBLNExaoneForCausalLM
115
117
  # HF_MODEL_ID = "katuni4ka/tiny-random-exaone"
116
118
  HF_MODEL_ID = "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct"
117
- EXPECTED_OUTPUT = "????????????????"
119
+ EXPECTED_OUTPUT = "????????????????????"
118
120
  HF_CONFIG_KWARGS = {"num_hidden_layers": 1, "max_position_embeddings": 1024, "trust_remote_code": True}
119
121
 
120
122
 
@@ -134,7 +136,7 @@ class TestT5Model(LLMTest.TestLLM):
134
136
  inputs = self.tokenizer(
135
137
  self.PROMPT, padding="max_length", max_length=512, truncation=True, return_tensors="pt"
136
138
  )
137
- inputs["max_new_tokens"] = 16
139
+ inputs["max_new_tokens"] = 20
138
140
  inputs["do_sample"] = False
139
141
  inputs["num_beams"] = 1
140
142
  return inputs
@@ -158,16 +160,14 @@ class TestBartModel(LLMTest.TestLLM):
158
160
  }
159
161
  RBLN_CLASS_KWARGS = {"rbln_config": {"enc_max_seq_len": 512, "dec_max_seq_len": 512}}
160
162
  PROMPT = "summarize: studies have shown that owning a dog is good for you"
161
- EXPECTED_OUTPUT = (
162
- "InsteadInsteadInsteadHoweverHoweverHoweverAlthoughAlthoughAlthoughWhileWhileWhileAlthoughAlthough"
163
- )
163
+ EXPECTED_OUTPUT = "InsteadInsteadInsteadHoweverHoweverHoweverAlthoughAlthoughAlthoughWhileWhileWhileAlthoughAlthoughHoweverHoweverManyMany"
164
164
  TEST_LEVEL = TestLevel.ESSENTIAL
165
165
 
166
166
  def get_inputs(self):
167
167
  inputs = self.tokenizer(
168
168
  self.PROMPT, padding="max_length", max_length=512, truncation=True, return_tensors="pt"
169
169
  )
170
- inputs["max_new_tokens"] = 16
170
+ inputs["max_new_tokens"] = 20
171
171
  inputs["do_sample"] = False
172
172
  inputs["num_beams"] = 1
173
173
  return inputs
@@ -7,6 +7,7 @@ from transformers import T5EncoderModel
7
7
 
8
8
  from optimum.rbln import (
9
9
  RBLNASTForAudioClassification,
10
+ RBLNBertForMaskedLM,
10
11
  RBLNBertForQuestionAnswering,
11
12
  RBLNCLIPTextModel,
12
13
  RBLNDPTForDepthEstimation,
@@ -23,6 +24,7 @@ from optimum.rbln.transformers.models.auto.modeling_auto import (
23
24
  RBLNAutoModelForCTC,
24
25
  RBLNAutoModelForDepthEstimation,
25
26
  RBLNAutoModelForImageClassification,
27
+ RBLNAutoModelForMaskedLM,
26
28
  RBLNAutoModelForQuestionAnswering,
27
29
  RBLNAutoModelForSequenceClassification,
28
30
  RBLNAutoModelForSpeechSeq2Seq,
@@ -98,6 +100,17 @@ class TestBertModel(BaseTest.TestModel):
98
100
  }
99
101
 
100
102
 
103
+ class TestBertForMaskedLM(BaseTest.TestModel):
104
+ RBLN_AUTO_CLASS = RBLNAutoModelForMaskedLM
105
+ RBLN_CLASS = RBLNBertForMaskedLM
106
+ HF_MODEL_ID = "hf-internal-testing/tiny-random-BertForMaskedLM"
107
+ GENERATION_KWARGS = {
108
+ "input_ids": RANDOM_INPUT_IDS,
109
+ "attention_mask": RANDOM_ATTN_MASK,
110
+ "token_type_ids": RANDOM_TOKEN_TYPE_IDS,
111
+ }
112
+
113
+
101
114
  class TestDPTModel(BaseTest.TestModel):
102
115
  RBLN_AUTO_CLASS = RBLNAutoModelForDepthEstimation
103
116
  RBLN_CLASS = RBLNDPTForDepthEstimation
@@ -996,7 +996,7 @@ requires-dist = [
996
996
  { name = "torchaudio", marker = "sys_platform == 'darwin'", specifier = "<=2.5.1" },
997
997
  { name = "torchvision", marker = "sys_platform != 'darwin'", specifier = "<=0.20.1", index = "https://download.pytorch.org/whl/cpu" },
998
998
  { name = "torchvision", marker = "sys_platform == 'darwin'", specifier = "<=0.20.1" },
999
- { name = "transformers", specifier = "==4.45.2" },
999
+ { name = "transformers", specifier = "==4.48.3" },
1000
1000
  ]
1001
1001
 
1002
1002
  [package.metadata.requires-dev]
@@ -1637,55 +1637,23 @@ wheels = [
1637
1637
 
1638
1638
  [[package]]
1639
1639
  name = "tokenizers"
1640
- version = "0.20.3"
1640
+ version = "0.21.0"
1641
1641
  source = { registry = "https://pypi.org/simple" }
1642
1642
  dependencies = [
1643
1643
  { name = "huggingface-hub", marker = "sys_platform == 'linux'" },
1644
1644
  ]
1645
- sdist = { url = "https://files.pythonhosted.org/packages/da/25/b1681c1c30ea3ea6e584ae3fffd552430b12faa599b558c4c4783f56d7ff/tokenizers-0.20.3.tar.gz", hash = "sha256:2278b34c5d0dd78e087e1ca7f9b1dcbf129d80211afa645f214bd6e051037539", size = 340513 }
1646
- wheels = [
1647
- { url = "https://files.pythonhosted.org/packages/e3/e8/0e9f81a09ab79f409eabfd99391ca519e315496694671bebca24c3e90448/tokenizers-0.20.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f128d5da1202b78fa0a10d8d938610472487da01b57098d48f7e944384362514", size = 2892896 },
1648
- { url = "https://files.pythonhosted.org/packages/b0/72/15fdbc149e05005e99431ecd471807db2241983deafe1e704020f608f40e/tokenizers-0.20.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:79c4121a2e9433ad7ef0769b9ca1f7dd7fa4c0cd501763d0a030afcbc6384481", size = 2802785 },
1649
- { url = "https://files.pythonhosted.org/packages/26/44/1f8aea48f9bb117d966b7272484671b33a509f6217a8e8544d79442c90db/tokenizers-0.20.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7850fde24197fe5cd6556e2fdba53a6d3bae67c531ea33a3d7c420b90904141", size = 3086060 },
1650
- { url = "https://files.pythonhosted.org/packages/2e/83/82ba40da99870b3a0b801cffaf4f099f088a84c7e07d32cc6ca751ce08e6/tokenizers-0.20.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b357970c095dc134978a68c67d845a1e3803ab7c4fbb39195bde914e7e13cf8b", size = 3096760 },
1651
- { url = "https://files.pythonhosted.org/packages/f3/46/7a025404201d937f86548928616c0a164308aa3998e546efdf798bf5ee9c/tokenizers-0.20.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a333d878c4970b72d6c07848b90c05f6b045cf9273fc2bc04a27211721ad6118", size = 3380165 },
1652
- { url = "https://files.pythonhosted.org/packages/aa/49/15fae66ac62e49255eeedbb7f4127564b2c3f3aef2009913f525732d1a08/tokenizers-0.20.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1fd9fee817f655a8f50049f685e224828abfadd436b8ff67979fc1d054b435f1", size = 2994038 },
1653
- { url = "https://files.pythonhosted.org/packages/f4/64/693afc9ba2393c2eed85c02bacb44762f06a29f0d1a5591fa5b40b39c0a2/tokenizers-0.20.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9e7816808b402129393a435ea2a509679b41246175d6e5e9f25b8692bfaa272b", size = 8977285 },
1654
- { url = "https://files.pythonhosted.org/packages/be/7e/6126c18694310fe07970717929e889898767c41fbdd95b9078e8aec0f9ef/tokenizers-0.20.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ba96367db9d8a730d3a1d5996b4b7babb846c3994b8ef14008cd8660f55db59d", size = 9294890 },
1655
- { url = "https://files.pythonhosted.org/packages/46/54/033b5b2ba0c3ae01e026c6f7ced147d41a2fa1c573d00a66cb97f6d7f9b3/tokenizers-0.20.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef820880d5e4e8484e2fa54ff8d297bb32519eaa7815694dc835ace9130a3eea", size = 2892476 },
1656
- { url = "https://files.pythonhosted.org/packages/e6/b0/cc369fb3297d61f3311cab523d16d48c869dc2f0ba32985dbf03ff811041/tokenizers-0.20.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:67ef4dcb8841a4988cd00dd288fb95dfc8e22ed021f01f37348fd51c2b055ba9", size = 2802775 },
1657
- { url = "https://files.pythonhosted.org/packages/1a/74/62ad983e8ea6a63e04ed9c5be0b605056bf8aac2f0125f9b5e0b3e2b89fa/tokenizers-0.20.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ff1ef8bd47a02b0dc191688ccb4da53600df5d4c9a05a4b68e1e3de4823e78eb", size = 3086138 },
1658
- { url = "https://files.pythonhosted.org/packages/6b/ac/4637ba619db25094998523f9e6f5b456e1db1f8faa770a3d925d436db0c3/tokenizers-0.20.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:444d188186eab3148baf0615b522461b41b1f0cd58cd57b862ec94b6ac9780f1", size = 3098076 },
1659
- { url = "https://files.pythonhosted.org/packages/58/ce/9793f2dc2ce529369807c9c74e42722b05034af411d60f5730b720388c7d/tokenizers-0.20.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:37c04c032c1442740b2c2d925f1857885c07619224a533123ac7ea71ca5713da", size = 3379650 },
1660
- { url = "https://files.pythonhosted.org/packages/50/f6/2841de926bc4118af996eaf0bdf0ea5b012245044766ffc0347e6c968e63/tokenizers-0.20.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:453c7769d22231960ee0e883d1005c93c68015025a5e4ae56275406d94a3c907", size = 2994005 },
1661
- { url = "https://files.pythonhosted.org/packages/a3/b2/00915c4fed08e9505d37cf6eaab45b12b4bff8f6719d459abcb9ead86a4b/tokenizers-0.20.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4bb31f7b2847e439766aaa9cc7bccf7ac7088052deccdb2275c952d96f691c6a", size = 8977488 },
1662
- { url = "https://files.pythonhosted.org/packages/e9/ac/1c069e7808181ff57bcf2d39e9b6fbee9133a55410e6ebdaa89f67c32e83/tokenizers-0.20.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:843729bf0f991b29655a069a2ff58a4c24375a553c70955e15e37a90dd4e045c", size = 9294935 },
1663
- { url = "https://files.pythonhosted.org/packages/27/37/d108df55daf4f0fcf1f58554692ff71687c273d870a34693066f0847be96/tokenizers-0.20.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:abe4e08c7d0cd6154c795deb5bf81d2122f36daf075e0c12a8b050d824ef0a64", size = 2898389 },
1664
- { url = "https://files.pythonhosted.org/packages/b2/27/32f29da16d28f59472fa7fb38e7782069748c7e9ab9854522db20341624c/tokenizers-0.20.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ca94fc1b73b3883c98f0c88c77700b13d55b49f1071dfd57df2b06f3ff7afd64", size = 2795866 },
1665
- { url = "https://files.pythonhosted.org/packages/29/4e/8a9a3c89e128c4a40f247b501c10279d2d7ade685953407c4d94c8c0f7a7/tokenizers-0.20.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef279c7e239f95c8bdd6ff319d9870f30f0d24915b04895f55b1adcf96d6c60d", size = 3085446 },
1666
- { url = "https://files.pythonhosted.org/packages/b4/3b/a2a7962c496ebcd95860ca99e423254f760f382cd4bd376f8895783afaf5/tokenizers-0.20.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16384073973f6ccbde9852157a4fdfe632bb65208139c9d0c0bd0176a71fd67f", size = 3094378 },
1667
- { url = "https://files.pythonhosted.org/packages/1f/f4/a8a33f0192a1629a3bd0afcad17d4d221bbf9276da4b95d226364208d5eb/tokenizers-0.20.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:312d522caeb8a1a42ebdec87118d99b22667782b67898a76c963c058a7e41d4f", size = 3385755 },
1668
- { url = "https://files.pythonhosted.org/packages/9e/65/c83cb3545a65a9eaa2e13b22c93d5e00bd7624b354a44adbdc93d5d9bd91/tokenizers-0.20.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2b7cb962564785a83dafbba0144ecb7f579f1d57d8c406cdaa7f32fe32f18ad", size = 2997679 },
1669
- { url = "https://files.pythonhosted.org/packages/55/e9/a80d4e592307688a67c7c59ab77e03687b6a8bd92eb5db763a2c80f93f57/tokenizers-0.20.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:124c5882ebb88dadae1fc788a582299fcd3a8bd84fc3e260b9918cf28b8751f5", size = 8989296 },
1670
- { url = "https://files.pythonhosted.org/packages/90/af/60c957af8d2244321124e893828f1a4817cde1a2d08d09d423b73f19bd2f/tokenizers-0.20.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2b6e54e71f84c4202111a489879005cb14b92616a87417f6c102c833af961ea2", size = 9303621 },
1671
- { url = "https://files.pythonhosted.org/packages/b0/39/073836c1d73e63268b1c67a682a8ba23e2688a43e737166be45ab8243701/tokenizers-0.20.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7eb2fb1c432f5746b22f8a7f09fc18c4156cb0031c77f53cb19379d82d43297a", size = 2893676 },
1672
- { url = "https://files.pythonhosted.org/packages/c1/d9/b9ff819c3df4bc73ad93629804f7b85321a78bc2da4f54fb774a90e995c6/tokenizers-0.20.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bfa8d029bb156181b006643309d6b673615a24e4ed24cf03aa191d599b996f51", size = 2804173 },
1673
- { url = "https://files.pythonhosted.org/packages/3e/d5/6b2b519ba2d9a6d3435f22918f0ad5850c40cf5357f6d989e6d68ef40fb9/tokenizers-0.20.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f90549622de3bf476ad9f1dd6f3f952ec3ed6ab8615ae88ef060d0c5bfad55d", size = 3086866 },
1674
- { url = "https://files.pythonhosted.org/packages/01/e1/d96e90ef872dd9b3a4b7a78874411f1c48476019f95a87a2cfd54c470a57/tokenizers-0.20.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a1d469c74eebf5c43fd61cd9b030e271d17198edd7bd45392e03a3c091d7d6d4", size = 3099004 },
1675
- { url = "https://files.pythonhosted.org/packages/0c/6a/a94248dc5915907e18d55c9739cd018f5aeb4146f198622f45f9748dcb9f/tokenizers-0.20.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bee8f53b2594749f4460d53253bae55d718f04e9b633efa0f5df8938bd98e4f0", size = 3381574 },
1676
- { url = "https://files.pythonhosted.org/packages/29/9e/c95f8821d6bc93eba7c5db95e6299c009db523d1c646da8563b42ad892c4/tokenizers-0.20.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:938441babf3e5720e4459e306ef2809fb267680df9d1ff2873458b22aef60248", size = 2994953 },
1677
- { url = "https://files.pythonhosted.org/packages/95/ff/01fdcf9a77776730baf63a9f66adf75c3aa4bdb1bdc77c7d1a3e03b2a25e/tokenizers-0.20.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7310ab23d7b0caebecc0e8be11a1146f320f5f07284000f6ea54793e83de1b75", size = 8977698 },
1678
- { url = "https://files.pythonhosted.org/packages/ef/2d/8b823741c64e9726b82076fa09f6d66285b61bd2c77e109871415b1ed9e2/tokenizers-0.20.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:16121eb030a2b13094cfec936b0c12e8b4063c5f839591ea7d0212336d8f9921", size = 9295649 },
1679
- { url = "https://files.pythonhosted.org/packages/8e/c1/6af62ef61316f33ecf785bbb2bee4292f34ea62b491d4480ad9b09acf6b6/tokenizers-0.20.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39270a7050deaf50f7caff4c532c01b3c48f6608d42b3eacdebdc6795478c8df", size = 2897936 },
1680
- { url = "https://files.pythonhosted.org/packages/9a/0b/c076b2ff3ee6dc70c805181fbe325668b89cfee856f8dfa24cc9aa293c84/tokenizers-0.20.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e005466632b1c5d2d2120f6de8aa768cc9d36cd1ab7d51d0c27a114c91a1e6ee", size = 3082688 },
1681
- { url = "https://files.pythonhosted.org/packages/0a/60/56510124933136c2e90879e1c81603cfa753ae5a87830e3ef95056b20d8f/tokenizers-0.20.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a07962340b36189b6c8feda552ea1bfeee6cf067ff922a1d7760662c2ee229e5", size = 2998924 },
1682
- { url = "https://files.pythonhosted.org/packages/68/60/4107b618b7b9155cb34ad2e0fc90946b7e71f041b642122fb6314f660688/tokenizers-0.20.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:55046ad3dd5f2b3c67501fcc8c9cbe3e901d8355f08a3b745e9b57894855f85b", size = 8989514 },
1683
- { url = "https://files.pythonhosted.org/packages/e8/bd/48475818e614b73316baf37ac1e4e51b578bbdf58651812d7e55f43b88d8/tokenizers-0.20.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:efcf0eb939988b627558aaf2b9dc3e56d759cad2e0cfa04fcab378e4b48fc4fd", size = 9303476 },
1684
- { url = "https://files.pythonhosted.org/packages/ce/32/37ff2ced2c169c2e7586fcd51314f59d02c60fd2eeafea527c2f9d1bb512/tokenizers-0.20.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a292392f24ab9abac5cfa8197e5a6208f2e43723420217e1ceba0b4ec77816ac", size = 2897613 },
1685
- { url = "https://files.pythonhosted.org/packages/79/e4/fdd7ad2aedaa4a3f148aa28670bf0b0856211a3fec3e6554ed6ceec9a928/tokenizers-0.20.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8dcd91f4e60f62b20d83a87a84fe062035a1e3ff49a8c2bbdeb2d441c8e311f4", size = 3085434 },
1686
- { url = "https://files.pythonhosted.org/packages/e0/b8/479ab7349faf1da001b861ea521055ad18a34a9b1053079e0c9b5c476f50/tokenizers-0.20.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:900991a2b8ee35961b1095db7e265342e0e42a84c1a594823d5ee9f8fb791958", size = 2998651 },
1687
- { url = "https://files.pythonhosted.org/packages/6b/7f/3a1d5ded5f841764d67aa4c6e2e4b40d9dac5fbd2df135bccc58284a6917/tokenizers-0.20.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:5a8d8261ca2133d4f98aa9627c748189502b3787537ba3d7e2beb4f7cfc5d627", size = 8989010 },
1688
- { url = "https://files.pythonhosted.org/packages/2b/a7/e0b5d5fea8cb69afdbab3c0e0cc3a02b5dd888ce0f933312f7c0ca6b017e/tokenizers-0.20.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:c4fd4d71e6deb6ddf99d8d0eab87d1d16f635898906e631914a9bae8ae9f2cfb", size = 9303287 },
1645
+ sdist = { url = "https://files.pythonhosted.org/packages/20/41/c2be10975ca37f6ec40d7abd7e98a5213bb04f284b869c1a24e6504fd94d/tokenizers-0.21.0.tar.gz", hash = "sha256:ee0894bf311b75b0c03079f33859ae4b2334d675d4e93f5a4132e1eae2834fe4", size = 343021 }
1646
+ wheels = [
1647
+ { url = "https://files.pythonhosted.org/packages/f7/14/83429177c19364df27d22bc096d4c2e431e0ba43e56c525434f1f9b0fd00/tokenizers-0.21.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b177fb54c4702ef611de0c069d9169f0004233890e0c4c5bd5508ae05abf193", size = 2903304 },
1648
+ { url = "https://files.pythonhosted.org/packages/7e/db/3433eab42347e0dc5452d8fcc8da03f638c9accffefe5a7c78146666964a/tokenizers-0.21.0-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6b43779a269f4629bebb114e19c3fca0223296ae9fea8bb9a7a6c6fb0657ff8e", size = 2804378 },
1649
+ { url = "https://files.pythonhosted.org/packages/57/8b/7da5e6f89736c2ade02816b4733983fca1c226b0c42980b1ae9dc8fcf5cc/tokenizers-0.21.0-cp39-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9aeb255802be90acfd363626753fda0064a8df06031012fe7d52fd9a905eb00e", size = 3095488 },
1650
+ { url = "https://files.pythonhosted.org/packages/4d/f6/5ed6711093dc2c04a4e03f6461798b12669bc5a17c8be7cce1240e0b5ce8/tokenizers-0.21.0-cp39-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d8b09dbeb7a8d73ee204a70f94fc06ea0f17dcf0844f16102b9f414f0b7463ba", size = 3121410 },
1651
+ { url = "https://files.pythonhosted.org/packages/81/42/07600892d48950c5e80505b81411044a2d969368cdc0d929b1c847bf6697/tokenizers-0.21.0-cp39-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:400832c0904f77ce87c40f1a8a27493071282f785724ae62144324f171377273", size = 3388821 },
1652
+ { url = "https://files.pythonhosted.org/packages/22/06/69d7ce374747edaf1695a4f61b83570d91cc8bbfc51ccfecf76f56ab4aac/tokenizers-0.21.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e84ca973b3a96894d1707e189c14a774b701596d579ffc7e69debfc036a61a04", size = 3008868 },
1653
+ { url = "https://files.pythonhosted.org/packages/c8/69/54a0aee4d576045b49a0eb8bffdc495634309c823bf886042e6f46b80058/tokenizers-0.21.0-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:eb7202d231b273c34ec67767378cd04c767e967fda12d4a9e36208a34e2f137e", size = 8975831 },
1654
+ { url = "https://files.pythonhosted.org/packages/f7/f3/b776061e4f3ebf2905ba1a25d90380aafd10c02d406437a8ba22d1724d76/tokenizers-0.21.0-cp39-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:089d56db6782a73a27fd8abf3ba21779f5b85d4a9f35e3b493c7bbcbbf0d539b", size = 8920746 },
1655
+ { url = "https://files.pythonhosted.org/packages/d8/ee/ce83d5ec8b6844ad4c3ecfe3333d58ecc1adc61f0878b323a15355bcab24/tokenizers-0.21.0-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:c87ca3dc48b9b1222d984b6b7490355a6fdb411a2d810f6f05977258400ddb74", size = 9161814 },
1656
+ { url = "https://files.pythonhosted.org/packages/18/07/3e88e65c0ed28fa93aa0c4d264988428eef3df2764c3126dc83e243cb36f/tokenizers-0.21.0-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:4145505a973116f91bc3ac45988a92e618a6f83eb458f49ea0790df94ee243ff", size = 9357138 },
1689
1657
  ]
1690
1658
 
1691
1659
  [[package]]
@@ -1869,7 +1837,7 @@ wheels = [
1869
1837
 
1870
1838
  [[package]]
1871
1839
  name = "transformers"
1872
- version = "4.45.2"
1840
+ version = "4.48.3"
1873
1841
  source = { registry = "https://pypi.org/simple" }
1874
1842
  dependencies = [
1875
1843
  { name = "filelock", marker = "sys_platform == 'linux'" },
@@ -1884,9 +1852,9 @@ dependencies = [
1884
1852
  { name = "tokenizers", marker = "sys_platform == 'linux'" },
1885
1853
  { name = "tqdm", marker = "sys_platform == 'linux'" },
1886
1854
  ]
1887
- sdist = { url = "https://files.pythonhosted.org/packages/4b/4c/3862b2dd6cdf83b187897bd351da0f7fb74d0df642b03c6f5d06353a3ca0/transformers-4.45.2.tar.gz", hash = "sha256:72bc390f6b203892561f05f86bbfaa0e234aab8e927a83e62b9d92ea7e3ae101", size = 8478357 }
1855
+ sdist = { url = "https://files.pythonhosted.org/packages/e3/82/cebeb7af5e64440f1638f18c4ed0f89156d0eeaa6290d98da8ca93ac3872/transformers-4.48.3.tar.gz", hash = "sha256:a5e8f1e9a6430aa78215836be70cecd3f872d99eeda300f41ad6cc841724afdb", size = 8373458 }
1888
1856
  wheels = [
1889
- { url = "https://files.pythonhosted.org/packages/f9/9d/030cc1b3e88172967e22ee1d012e0d5e0384eb70d2a098d1669d549aea29/transformers-4.45.2-py3-none-any.whl", hash = "sha256:c551b33660cfc815bae1f9f097ecfd1e65be623f13c6ee0dda372bd881460210", size = 9881312 },
1857
+ { url = "https://files.pythonhosted.org/packages/b6/1a/efeecb8d83705f2f4beac98d46f2148c95ecd7babfb31b5c0f1e7017e83d/transformers-4.48.3-py3-none-any.whl", hash = "sha256:78697f990f5ef350c23b46bf86d5081ce96b49479ab180b2de7687267de8fd36", size = 9669412 },
1890
1858
  ]
1891
1859
 
1892
1860
  [[package]]
@@ -1,15 +0,0 @@
1
- # Copyright 2025 Rebellions Inc. All rights reserved.
2
-
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at:
6
-
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
-
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from .modeling_bert import RBLNBertForQuestionAnswering, RBLNBertModel
File without changes
File without changes