openstef 3.4.63__tar.gz → 3.4.65__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {openstef-3.4.63 → openstef-3.4.65}/PKG-INFO +35 -6
- {openstef-3.4.63 → openstef-3.4.65}/README.md +28 -4
- {openstef-3.4.63 → openstef-3.4.65}/openstef/data_classes/prediction_job.py +4 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/exceptions.py +2 -2
- {openstef-3.4.63 → openstef-3.4.65}/openstef/pipeline/create_basecase_forecast.py +3 -3
- {openstef-3.4.63 → openstef-3.4.65}/openstef/pipeline/create_forecast.py +3 -2
- {openstef-3.4.63 → openstef-3.4.65}/openstef/pipeline/optimize_hyperparameters.py +2 -1
- {openstef-3.4.63 → openstef-3.4.65}/openstef/pipeline/train_create_forecast_backtest.py +1 -1
- {openstef-3.4.63 → openstef-3.4.65}/openstef/pipeline/train_model.py +4 -3
- openstef-3.4.65/openstef/plotting/__init__.py +3 -0
- openstef-3.4.65/openstef/plotting/load_forecast_plotter.py +216 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/tasks/create_forecast.py +8 -8
- {openstef-3.4.63 → openstef-3.4.65}/openstef/tasks/train_model.py +6 -6
- {openstef-3.4.63 → openstef-3.4.65}/openstef/validation/validation.py +36 -13
- {openstef-3.4.63 → openstef-3.4.65}/openstef.egg-info/PKG-INFO +35 -6
- {openstef-3.4.63 → openstef-3.4.65}/openstef.egg-info/SOURCES.txt +2 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef.egg-info/requires.txt +8 -0
- {openstef-3.4.63 → openstef-3.4.65}/setup.py +11 -1
- {openstef-3.4.63 → openstef-3.4.65}/LICENSE +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/__init__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/__main__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/app_settings.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/data/NL_terrestrial_radiation.csv +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/data/NL_terrestrial_radiation.csv.license +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/data/dazls_model_3.4.24/dazls_stored_3.4.24_baseline_model.z +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/data/dazls_model_3.4.24/dazls_stored_3.4.24_baseline_model.z.license +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/data/dazls_model_3.4.24/dazls_stored_3.4.24_model_card.md +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/data/dazls_model_3.4.24/dazls_stored_3.4.24_model_card.md.license +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/data/dutch_holidays.csv +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/data/dutch_holidays.csv.license +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/data/pv_single_coefs.csv +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/data/pv_single_coefs.csv.license +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/data_classes/__init__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/data_classes/data_prep.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/data_classes/model_specifications.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/data_classes/split_function.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/enums.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/feature_engineering/__init__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/feature_engineering/apply_features.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/feature_engineering/bidding_zone_to_country_mapping.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/feature_engineering/cyclic_features.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/feature_engineering/data_preparation.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/feature_engineering/feature_adder.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/feature_engineering/feature_applicator.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/feature_engineering/general.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/feature_engineering/holiday_features.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/feature_engineering/lag_features.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/feature_engineering/missing_values_transformer.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/feature_engineering/rolling_features.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/feature_engineering/weather_features.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/metrics/__init__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/metrics/figure.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/metrics/metrics.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/metrics/reporter.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/__init__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/basecase.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/confidence_interval_applicator.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/fallback.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/metamodels/__init__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/metamodels/feature_clipper.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/metamodels/grouped_regressor.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/metamodels/missing_values_handler.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/model_creator.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/objective.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/objective_creator.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/regressors/__init__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/regressors/arima.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/regressors/custom_regressor.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/regressors/dazls.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/regressors/flatliner.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/regressors/gblinear_quantile.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/regressors/lgbm.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/regressors/linear.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/regressors/linear_quantile.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/regressors/regressor.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/regressors/xgb.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/regressors/xgb_multioutput_quantile.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/regressors/xgb_quantile.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/serializer.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model/standard_deviation_generator.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model_selection/__init__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/model_selection/model_selection.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/monitoring/__init__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/monitoring/performance_meter.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/monitoring/teams.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/pipeline/__init__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/pipeline/create_component_forecast.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/pipeline/utils.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/postprocessing/__init__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/postprocessing/postprocessing.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/preprocessing/__init__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/preprocessing/preprocessing.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/settings.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/tasks/__init__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/tasks/calculate_kpi.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/tasks/create_basecase_forecast.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/tasks/create_components_forecast.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/tasks/create_solar_forecast.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/tasks/create_wind_forecast.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/tasks/optimize_hyperparameters.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/tasks/split_forecast.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/tasks/utils/__init__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/tasks/utils/dependencies.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/tasks/utils/predictionjobloop.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/tasks/utils/taskcontext.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef/validation/__init__.py +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef.egg-info/dependency_links.txt +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/openstef.egg-info/top_level.txt +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/pyproject.toml +0 -0
- {openstef-3.4.63 → openstef-3.4.65}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: openstef
|
3
|
-
Version: 3.4.
|
3
|
+
Version: 3.4.65
|
4
4
|
Summary: Open short term energy forecaster
|
5
5
|
Home-page: https://github.com/OpenSTEF/openstef
|
6
6
|
Author: Alliander N.V
|
@@ -33,7 +33,11 @@ Requires-Dist: scikit-learn<1.6,>=1.3
|
|
33
33
|
Requires-Dist: scipy~=1.10
|
34
34
|
Requires-Dist: statsmodels<1.0.0,>=0.13.5
|
35
35
|
Requires-Dist: structlog<25,>=23.1
|
36
|
-
Requires-Dist: xgboost~=2.0
|
36
|
+
Requires-Dist: xgboost~=2.0; extra == "gpu"
|
37
|
+
Provides-Extra: cpu
|
38
|
+
Requires-Dist: xgboost-cpu~=2.0; extra == "cpu"
|
39
|
+
Provides-Extra: gpu
|
40
|
+
Requires-Dist: xgboost; extra == "gpu"
|
37
41
|
Dynamic: author
|
38
42
|
Dynamic: author-email
|
39
43
|
Dynamic: classifier
|
@@ -42,6 +46,7 @@ Dynamic: description-content-type
|
|
42
46
|
Dynamic: home-page
|
43
47
|
Dynamic: keywords
|
44
48
|
Dynamic: license
|
49
|
+
Dynamic: provides-extra
|
45
50
|
Dynamic: requires-dist
|
46
51
|
Dynamic: requires-python
|
47
52
|
Dynamic: summary
|
@@ -53,11 +58,15 @@ SPDX-License-Identifier: MPL-2.0
|
|
53
58
|
-->
|
54
59
|
|
55
60
|
# OpenSTEF
|
61
|
+
|
56
62
|
<!-- Badges -->
|
63
|
+
|
57
64
|
[](https://pepy.tech/project/openstef)
|
58
65
|
[](https://pepy.tech/project/openstef)
|
59
66
|
[](https://bestpractices.coreinfrastructure.org/projects/5585)
|
67
|
+
|
60
68
|
<!-- SonarCloud badges -->
|
69
|
+
|
61
70
|
[](https://sonarcloud.io/dashboard?id=OpenSTEF_openstef)
|
62
71
|
[](https://sonarcloud.io/dashboard?id=OpenSTEF_openstef)
|
63
72
|
[](https://sonarcloud.io/dashboard?id=OpenSTEF_openstef)
|
@@ -71,19 +80,21 @@ SPDX-License-Identifier: MPL-2.0
|
|
71
80
|
OpenSTEF is a Python package designed for generating short-term forecasts in the energy sector. The repository includes all the essential components required for machine learning pipelines that facilitate the forecasting process. To utilize the package, users are required to furnish their own data storage and retrieval interface.
|
72
81
|
|
73
82
|
# Table of contents
|
83
|
+
|
74
84
|
- [OpenSTEF](#openstef)
|
75
85
|
- [Table of contents](#table-of-contents)
|
76
86
|
- [External information sources](#external-information-sources)
|
77
87
|
- [Installation](#installation)
|
78
88
|
- [Usage](#usage)
|
79
|
-
|
80
|
-
|
81
|
-
|
89
|
+
- [Example notebooks](#example-notebooks)
|
90
|
+
- [Reference Implementation](#reference-implementation)
|
91
|
+
- [Database connector for OpenSTEF](#database-connector-for-openstef)
|
82
92
|
- [License](license)
|
83
93
|
- [Contributing](#contributing)
|
84
94
|
- [Contact](#contact)
|
85
95
|
|
86
96
|
# External information sources
|
97
|
+
|
87
98
|
- [Documentation website](https://openstef.github.io/openstef/index.html);
|
88
99
|
- [Python package](https://pypi.org/project/openstef/);
|
89
100
|
- [Linux Foundation project page](https://www.lfenergy.org/projects/openstef/);
|
@@ -101,9 +112,11 @@ pip install openstef
|
|
101
112
|
### Remark regarding installation within a **conda environment on Windows**
|
102
113
|
|
103
114
|
A version of the pywin32 package will be installed as a secondary dependency along with the installation of the openstef package. Since conda relies on an old version of pywin32, the new installation can break conda's functionality. The following command can solve this issue:
|
115
|
+
|
104
116
|
```shell
|
105
117
|
pip install pywin32==300
|
106
118
|
```
|
119
|
+
|
107
120
|
For more information on this issue see the [readme of pywin32](https://github.com/mhammond/pywin32#installing-via-pip) or [this Github issue](https://github.com/mhammond/pywin32/issues/1865#issue-1212752696).
|
108
121
|
|
109
122
|
## Remark regarding installation on Apple Silicon
|
@@ -112,19 +125,31 @@ If you want to install the `openstef` package on Apple Silicon (Mac with M1-chip
|
|
112
125
|
|
113
126
|
1. Run `brew install libomp` (if you haven’t installed Homebrew: [follow instructions here](https://brew.sh/))
|
114
127
|
2. If your interpreter can not find the `libomp` installation in `/usr/local/bin`, it is probably in `/opt/brew/Cellar`. Run:
|
128
|
+
|
115
129
|
```sh
|
116
130
|
mkdir -p /usr/local/opt/libomp/
|
117
131
|
ln -s /opt/brew/Cellar/libomp/{your_version}/lib /usr/local/opt/libomp/lib
|
118
132
|
```
|
133
|
+
|
119
134
|
3. Uninstall `xgboost` with `pip` (`pip uninstall xgboost`) and install with `conda-forge` (`conda install -c conda-forge xgboost`)
|
120
135
|
4. If you encounter similar issues with `lightgbm`: uninstall `lightgbm` with `pip` (`pip uninstall lightgbm`) and install later version with `conda-forge` (`conda install -c conda-forge 'lightgbm>=4.2.0'`)
|
121
136
|
|
137
|
+
### Remark regarding installation with minimal XGBoost dependency
|
138
|
+
|
139
|
+
It is possible to install openSTEF with a minimal XGBoost (CPU-only) package. This only works on x86_64 (amd64) Linux and Windows platforms. Advantage is that significantly smaller dependencies are installed. In that case run:
|
140
|
+
|
141
|
+
```shell
|
142
|
+
pip install openstef[cpu]
|
143
|
+
```
|
144
|
+
|
122
145
|
# Usage
|
123
146
|
|
124
147
|
## Example notebooks
|
148
|
+
|
125
149
|
To help you get started, a set of fundamental example notebooks has been created. You can access these offline examples [here](https://github.com/OpenSTEF/openstef-offline-example).
|
126
150
|
|
127
151
|
## Reference Implementation
|
152
|
+
|
128
153
|
A complete implementation including databases, user interface, example data, etc. is available at: https://github.com/OpenSTEF/openstef-reference
|
129
154
|
|
130
155
|

|
@@ -138,17 +163,21 @@ python -m openstef task <task_name>
|
|
138
163
|
```
|
139
164
|
|
140
165
|
## Database connector for openstef
|
166
|
+
|
141
167
|
This repository provides an interface to OpenSTEF (reference) databases. The repository can be found [here](https://github.com/OpenSTEF/openstef-dbc).
|
142
168
|
|
143
169
|
# License
|
170
|
+
|
144
171
|
This project is licensed under the Mozilla Public License, version 2.0 - see LICENSE for details.
|
145
172
|
|
146
173
|
## Licenses third-party libraries
|
174
|
+
|
147
175
|
This project includes third-party libraries, which are licensed under their own respective Open-Source licenses. SPDX-License-Identifier headers are used to show which license is applicable. The concerning license files can be found in the LICENSES directory.
|
148
176
|
|
149
177
|
# Contributing
|
178
|
+
|
150
179
|
Please read [CODE_OF_CONDUCT.md](https://github.com/OpenSTEF/.github/blob/main/CODE_OF_CONDUCT.md), [CONTRIBUTING.md](https://github.com/OpenSTEF/.github/blob/main/CONTRIBUTING.md) and [PROJECT_GOVERNANCE.md](https://github.com/OpenSTEF/.github/blob/main/PROJECT_GOVERNANCE.md) for details on the process for submitting pull requests to us.
|
151
180
|
|
152
181
|
# Contact
|
182
|
+
|
153
183
|
Please read [SUPPORT.md](https://github.com/OpenSTEF/.github/blob/main/SUPPORT.md) for how to connect and get into contact with the OpenSTEF project
|
154
|
-
|
@@ -5,11 +5,15 @@ SPDX-License-Identifier: MPL-2.0
|
|
5
5
|
-->
|
6
6
|
|
7
7
|
# OpenSTEF
|
8
|
+
|
8
9
|
<!-- Badges -->
|
10
|
+
|
9
11
|
[](https://pepy.tech/project/openstef)
|
10
12
|
[](https://pepy.tech/project/openstef)
|
11
13
|
[](https://bestpractices.coreinfrastructure.org/projects/5585)
|
14
|
+
|
12
15
|
<!-- SonarCloud badges -->
|
16
|
+
|
13
17
|
[](https://sonarcloud.io/dashboard?id=OpenSTEF_openstef)
|
14
18
|
[](https://sonarcloud.io/dashboard?id=OpenSTEF_openstef)
|
15
19
|
[](https://sonarcloud.io/dashboard?id=OpenSTEF_openstef)
|
@@ -23,19 +27,21 @@ SPDX-License-Identifier: MPL-2.0
|
|
23
27
|
OpenSTEF is a Python package designed for generating short-term forecasts in the energy sector. The repository includes all the essential components required for machine learning pipelines that facilitate the forecasting process. To utilize the package, users are required to furnish their own data storage and retrieval interface.
|
24
28
|
|
25
29
|
# Table of contents
|
30
|
+
|
26
31
|
- [OpenSTEF](#openstef)
|
27
32
|
- [Table of contents](#table-of-contents)
|
28
33
|
- [External information sources](#external-information-sources)
|
29
34
|
- [Installation](#installation)
|
30
35
|
- [Usage](#usage)
|
31
|
-
|
32
|
-
|
33
|
-
|
36
|
+
- [Example notebooks](#example-notebooks)
|
37
|
+
- [Reference Implementation](#reference-implementation)
|
38
|
+
- [Database connector for OpenSTEF](#database-connector-for-openstef)
|
34
39
|
- [License](license)
|
35
40
|
- [Contributing](#contributing)
|
36
41
|
- [Contact](#contact)
|
37
42
|
|
38
43
|
# External information sources
|
44
|
+
|
39
45
|
- [Documentation website](https://openstef.github.io/openstef/index.html);
|
40
46
|
- [Python package](https://pypi.org/project/openstef/);
|
41
47
|
- [Linux Foundation project page](https://www.lfenergy.org/projects/openstef/);
|
@@ -53,9 +59,11 @@ pip install openstef
|
|
53
59
|
### Remark regarding installation within a **conda environment on Windows**
|
54
60
|
|
55
61
|
A version of the pywin32 package will be installed as a secondary dependency along with the installation of the openstef package. Since conda relies on an old version of pywin32, the new installation can break conda's functionality. The following command can solve this issue:
|
62
|
+
|
56
63
|
```shell
|
57
64
|
pip install pywin32==300
|
58
65
|
```
|
66
|
+
|
59
67
|
For more information on this issue see the [readme of pywin32](https://github.com/mhammond/pywin32#installing-via-pip) or [this Github issue](https://github.com/mhammond/pywin32/issues/1865#issue-1212752696).
|
60
68
|
|
61
69
|
## Remark regarding installation on Apple Silicon
|
@@ -64,19 +72,31 @@ If you want to install the `openstef` package on Apple Silicon (Mac with M1-chip
|
|
64
72
|
|
65
73
|
1. Run `brew install libomp` (if you haven’t installed Homebrew: [follow instructions here](https://brew.sh/))
|
66
74
|
2. If your interpreter can not find the `libomp` installation in `/usr/local/bin`, it is probably in `/opt/brew/Cellar`. Run:
|
75
|
+
|
67
76
|
```sh
|
68
77
|
mkdir -p /usr/local/opt/libomp/
|
69
78
|
ln -s /opt/brew/Cellar/libomp/{your_version}/lib /usr/local/opt/libomp/lib
|
70
79
|
```
|
80
|
+
|
71
81
|
3. Uninstall `xgboost` with `pip` (`pip uninstall xgboost`) and install with `conda-forge` (`conda install -c conda-forge xgboost`)
|
72
82
|
4. If you encounter similar issues with `lightgbm`: uninstall `lightgbm` with `pip` (`pip uninstall lightgbm`) and install later version with `conda-forge` (`conda install -c conda-forge 'lightgbm>=4.2.0'`)
|
73
83
|
|
84
|
+
### Remark regarding installation with minimal XGBoost dependency
|
85
|
+
|
86
|
+
It is possible to install openSTEF with a minimal XGBoost (CPU-only) package. This only works on x86_64 (amd64) Linux and Windows platforms. Advantage is that significantly smaller dependencies are installed. In that case run:
|
87
|
+
|
88
|
+
```shell
|
89
|
+
pip install openstef[cpu]
|
90
|
+
```
|
91
|
+
|
74
92
|
# Usage
|
75
93
|
|
76
94
|
## Example notebooks
|
95
|
+
|
77
96
|
To help you get started, a set of fundamental example notebooks has been created. You can access these offline examples [here](https://github.com/OpenSTEF/openstef-offline-example).
|
78
97
|
|
79
98
|
## Reference Implementation
|
99
|
+
|
80
100
|
A complete implementation including databases, user interface, example data, etc. is available at: https://github.com/OpenSTEF/openstef-reference
|
81
101
|
|
82
102
|

|
@@ -90,17 +110,21 @@ python -m openstef task <task_name>
|
|
90
110
|
```
|
91
111
|
|
92
112
|
## Database connector for openstef
|
113
|
+
|
93
114
|
This repository provides an interface to OpenSTEF (reference) databases. The repository can be found [here](https://github.com/OpenSTEF/openstef-dbc).
|
94
115
|
|
95
116
|
# License
|
117
|
+
|
96
118
|
This project is licensed under the Mozilla Public License, version 2.0 - see LICENSE for details.
|
97
119
|
|
98
120
|
## Licenses third-party libraries
|
121
|
+
|
99
122
|
This project includes third-party libraries, which are licensed under their own respective Open-Source licenses. SPDX-License-Identifier headers are used to show which license is applicable. The concerning license files can be found in the LICENSES directory.
|
100
123
|
|
101
124
|
# Contributing
|
125
|
+
|
102
126
|
Please read [CODE_OF_CONDUCT.md](https://github.com/OpenSTEF/.github/blob/main/CODE_OF_CONDUCT.md), [CONTRIBUTING.md](https://github.com/OpenSTEF/.github/blob/main/CONTRIBUTING.md) and [PROJECT_GOVERNANCE.md](https://github.com/OpenSTEF/.github/blob/main/PROJECT_GOVERNANCE.md) for details on the process for submitting pull requests to us.
|
103
127
|
|
104
128
|
# Contact
|
129
|
+
|
105
130
|
Please read [SUPPORT.md](https://github.com/OpenSTEF/.github/blob/main/SUPPORT.md) for how to connect and get into contact with the OpenSTEF project
|
106
|
-
|
@@ -96,6 +96,10 @@ class PredictionJobDataClass(BaseModel):
|
|
96
96
|
1440,
|
97
97
|
description="Number of minutes that the load has to be constant to detect a flatliner.",
|
98
98
|
)
|
99
|
+
detect_non_zero_flatliner: bool = Field(
|
100
|
+
False,
|
101
|
+
description="If True, flatliners are also detected on non-zero values (median of the load).",
|
102
|
+
)
|
99
103
|
data_balancing_ratio: Optional[float] = Field(
|
100
104
|
None,
|
101
105
|
description="If data balancing is enabled, the data will be balanced with data from 1 year ago in the future.",
|
@@ -44,8 +44,8 @@ class InputDataWrongColumnOrderError(InputDataInvalidError):
|
|
44
44
|
"""Wrong column order input data."""
|
45
45
|
|
46
46
|
|
47
|
-
class
|
48
|
-
"""All recent load measurements are
|
47
|
+
class InputDataOngoingFlatlinerError(InputDataInvalidError):
|
48
|
+
"""All recent load measurements are constant."""
|
49
49
|
|
50
50
|
|
51
51
|
class OldModelHigherScoreError(Exception):
|
@@ -8,7 +8,7 @@ import pandas as pd
|
|
8
8
|
import structlog
|
9
9
|
|
10
10
|
from openstef.data_classes.prediction_job import PredictionJobDataClass
|
11
|
-
from openstef.exceptions import
|
11
|
+
from openstef.exceptions import NoRealisedLoadError
|
12
12
|
from openstef.feature_engineering.feature_applicator import (
|
13
13
|
OperationalPredictFeatureApplicator,
|
14
14
|
)
|
@@ -58,12 +58,12 @@ def create_basecase_forecast_pipeline(
|
|
58
58
|
if not isinstance(input_data.index, pd.DatetimeIndex):
|
59
59
|
raise ValueError("Input dataframe does not have a datetime index.")
|
60
60
|
|
61
|
-
|
61
|
+
flatliner_ongoing = validation.detect_ongoing_flatliner(
|
62
62
|
load=input_data.iloc[:, 0],
|
63
63
|
duration_threshold_minutes=pj.flatliner_threshold_minutes,
|
64
64
|
)
|
65
65
|
|
66
|
-
if
|
66
|
+
if flatliner_ongoing:
|
67
67
|
# Set historic load to zero to force the basecase forecasts to be zero.
|
68
68
|
input_data.loc[input_data.index < forecast_start, "load"] = 0
|
69
69
|
|
@@ -45,7 +45,7 @@ def create_forecast_pipeline(
|
|
45
45
|
DataFrame with the forecast
|
46
46
|
|
47
47
|
Raises:
|
48
|
-
|
48
|
+
InputDataOngoingFlatlinerError: When all recent load measurements are constant.
|
49
49
|
LookupError: When no model is found for the given prediction job in MLflow.
|
50
50
|
|
51
51
|
"""
|
@@ -85,7 +85,7 @@ def create_forecast_pipeline_core(
|
|
85
85
|
Forecast
|
86
86
|
|
87
87
|
Raises:
|
88
|
-
|
88
|
+
InputDataOngoingFlatlinerError: When all recent load measurements are constant.
|
89
89
|
|
90
90
|
"""
|
91
91
|
structlog.configure(
|
@@ -103,6 +103,7 @@ def create_forecast_pipeline_core(
|
|
103
103
|
input_data,
|
104
104
|
pj["flatliner_threshold_minutes"],
|
105
105
|
pj["resolution_minutes"],
|
106
|
+
detect_non_zero_flatliner=pj["detect_non_zero_flatliner"],
|
106
107
|
)
|
107
108
|
|
108
109
|
# Custom data prep or legacy behavior
|
@@ -132,7 +132,7 @@ def optimize_hyperparameters_pipeline_core(
|
|
132
132
|
InputDataInsufficientError: If the input dataframe is empty.
|
133
133
|
InputDataWrongColumnOrderError: If the load column is missing in the input dataframe.
|
134
134
|
OldModelHigherScoreError: When old model is better than new model.
|
135
|
-
|
135
|
+
InputDataOngoingFlatlinerError: If all recent load measurements are constant.
|
136
136
|
|
137
137
|
Returns:
|
138
138
|
- Best model,
|
@@ -157,6 +157,7 @@ def optimize_hyperparameters_pipeline_core(
|
|
157
157
|
input_data,
|
158
158
|
pj["flatliner_threshold_minutes"],
|
159
159
|
pj["resolution_minutes"],
|
160
|
+
detect_non_zero_flatliner=pj["detect_non_zero_flatliner"],
|
160
161
|
)
|
161
162
|
)
|
162
163
|
|
@@ -60,7 +60,7 @@ def train_model_and_forecast_back_test(
|
|
60
60
|
InputDataInsufficientError: when input data is insufficient.
|
61
61
|
InputDataWrongColumnOrderError: when input data has a invalid column order.
|
62
62
|
ValueError: when the horizon is a string and the corresponding column in not in the input data
|
63
|
-
|
63
|
+
InputDataOngoingFlatlinerError: If all recent load measurements are constant.
|
64
64
|
|
65
65
|
"""
|
66
66
|
if pj.backtest_split_func is None:
|
@@ -177,7 +177,7 @@ def train_model_pipeline_core(
|
|
177
177
|
InputDataInsufficientError: when input data is insufficient.
|
178
178
|
InputDataWrongColumnOrderError: when input data has a invalid column order.
|
179
179
|
OldModelHigherScoreError: When old model is better than new model.
|
180
|
-
|
180
|
+
InputDataOngoingFlatlinerError: If all recent load measurements are constant.
|
181
181
|
|
182
182
|
Returns:
|
183
183
|
- Fitted_model (OpenstfRegressor)
|
@@ -272,7 +272,7 @@ def train_pipeline_common(
|
|
272
272
|
InputDataInsufficientError: when input data is insufficient.
|
273
273
|
InputDataWrongColumnOrderError: when input data has a invalid column order.
|
274
274
|
'load' column should be first and 'horizon' column last.
|
275
|
-
|
275
|
+
InputDataOngoingFlatlinerError: If all recent load measurements are constant.
|
276
276
|
|
277
277
|
"""
|
278
278
|
data_with_features = train_pipeline_step_compute_features(
|
@@ -363,7 +363,7 @@ def train_pipeline_step_compute_features(
|
|
363
363
|
InputDataInsufficientError: when input data is insufficient.
|
364
364
|
InputDataWrongColumnOrderError: when input data has a invalid column order.
|
365
365
|
ValueError: when the horizon is a string and the corresponding column in not in the input data
|
366
|
-
|
366
|
+
InputDataOngoingFlatlinerError: If all recent load measurements are constant.
|
367
367
|
|
368
368
|
"""
|
369
369
|
if input_data.empty:
|
@@ -389,6 +389,7 @@ def train_pipeline_step_compute_features(
|
|
389
389
|
input_data,
|
390
390
|
pj["flatliner_threshold_minutes"],
|
391
391
|
pj["resolution_minutes"],
|
392
|
+
detect_non_zero_flatliner=pj["detect_non_zero_flatliner"],
|
392
393
|
)
|
393
394
|
)
|
394
395
|
# Check if sufficient data is left after cleaning
|
@@ -0,0 +1,216 @@
|
|
1
|
+
# SPDX-FileCopyrightText: 2017-2025 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com> # noqa E501>
|
2
|
+
#
|
3
|
+
# SPDX-License-Identifier: MPL-2.0
|
4
|
+
|
5
|
+
from typing import Tuple, Optional
|
6
|
+
|
7
|
+
import numpy as np
|
8
|
+
from pydantic import BaseModel
|
9
|
+
import pandas as pd
|
10
|
+
import plotly.graph_objects as go
|
11
|
+
import plotly.express as px
|
12
|
+
|
13
|
+
|
14
|
+
class LoadForecastPlotter(BaseModel):
|
15
|
+
colormap: str = "Blues"
|
16
|
+
colormap_range: Tuple[float, float] = (0.2, 0.8)
|
17
|
+
|
18
|
+
fill_opacity: float = 0.5
|
19
|
+
stroke_opacity: float = 0.8
|
20
|
+
stroke_width: float = 1.5
|
21
|
+
|
22
|
+
def _get_color_by_value(self, value: float) -> str:
|
23
|
+
"""Maps a normalized value to a color using the specified colormap.
|
24
|
+
|
25
|
+
Args:
|
26
|
+
value (float): A value between 0 and 1 to be mapped to a color.
|
27
|
+
|
28
|
+
Returns:
|
29
|
+
str: A color in the rgba format.
|
30
|
+
"""
|
31
|
+
rescaled = self.colormap_range[0] + value * (
|
32
|
+
self.colormap_range[1] - self.colormap_range[0]
|
33
|
+
)
|
34
|
+
rescaled = min(1.0, max(0.0, rescaled))
|
35
|
+
|
36
|
+
return px.colors.sample_colorscale(
|
37
|
+
colorscale=self.colormap, samplepoints=[rescaled]
|
38
|
+
)[0]
|
39
|
+
|
40
|
+
def _get_quantile_colors(self, quantile: float) -> Tuple[str, str]:
|
41
|
+
"""Generate fill and stroke colors for a given quantile using a colorscale.
|
42
|
+
|
43
|
+
Colors are determined based on the distance from the median (50th percentile).
|
44
|
+
|
45
|
+
Args:
|
46
|
+
quantile (float): The quantile value (0-100) to generate colors for.
|
47
|
+
|
48
|
+
Returns:
|
49
|
+
Tuple[str, str]: A tuple containing (fill_color, stroke_color).
|
50
|
+
"""
|
51
|
+
fill_value = 1 - abs(quantile - 50.0) / 50.0
|
52
|
+
stroke_value = 1 - abs(quantile + 5.0 - 50.0) / 50.0
|
53
|
+
return (
|
54
|
+
self._get_color_by_value(fill_value),
|
55
|
+
self._get_color_by_value(stroke_value),
|
56
|
+
)
|
57
|
+
|
58
|
+
def _add_quantile_band(
|
59
|
+
self,
|
60
|
+
figure: go.Figure,
|
61
|
+
lower_quantile_data: pd.Series,
|
62
|
+
lower_quantile: float,
|
63
|
+
upper_quantile_data: pd.Series,
|
64
|
+
upper_quantile: float,
|
65
|
+
):
|
66
|
+
"""Add a quantile band to the plotly figure.
|
67
|
+
|
68
|
+
Creates a filled polygon representing the area between lower and upper quantiles,
|
69
|
+
and adds it to the provided figure along with hover information.
|
70
|
+
|
71
|
+
Args:
|
72
|
+
figure (go.Figure): The plotly figure to add the quantile band to.
|
73
|
+
lower_quantile_data (pd.Series): Series with data for the lower quantile.
|
74
|
+
lower_quantile (float): The percentile value of the lower quantile.
|
75
|
+
upper_quantile_data (pd.Series): Series with data for the upper quantile.
|
76
|
+
upper_quantile (float): The percentile value of the upper quantile.
|
77
|
+
|
78
|
+
Returns:
|
79
|
+
None: The figure is modified in place.
|
80
|
+
"""
|
81
|
+
# Create polygon shape for the quantile band in counterclockwise order
|
82
|
+
x = list(lower_quantile_data.index) + list(upper_quantile_data.index[::-1])
|
83
|
+
y = list(lower_quantile_data) + list(upper_quantile_data[::-1])
|
84
|
+
|
85
|
+
# Get colors for the band
|
86
|
+
fill_color, stroke_color = self._get_quantile_colors(lower_quantile)
|
87
|
+
|
88
|
+
# Group traces by quantile range
|
89
|
+
legendgroup = f"quantile_{lower_quantile}_{upper_quantile}"
|
90
|
+
|
91
|
+
# Add a single trace that forms a filled polygon
|
92
|
+
figure.add_trace(
|
93
|
+
go.Scatter(
|
94
|
+
x=x,
|
95
|
+
y=y,
|
96
|
+
fill="toself",
|
97
|
+
fillcolor=f"rgba{fill_color[3:-1]}, {self.fill_opacity})",
|
98
|
+
line=dict(
|
99
|
+
color=f"rgba{stroke_color[3:-1]}, {self.stroke_opacity})",
|
100
|
+
width=self.stroke_width,
|
101
|
+
),
|
102
|
+
name=f"{lower_quantile}%-{upper_quantile}%",
|
103
|
+
showlegend=True,
|
104
|
+
hoverinfo="skip",
|
105
|
+
legendgroup=legendgroup,
|
106
|
+
)
|
107
|
+
)
|
108
|
+
|
109
|
+
# Add an (invisible) line around the filled area to make quantile
|
110
|
+
# values selectable/hover-able.
|
111
|
+
# Hovering on filled area values is not supported by plotly.
|
112
|
+
figure.add_trace(
|
113
|
+
go.Scatter(
|
114
|
+
x=lower_quantile_data.index,
|
115
|
+
y=lower_quantile_data.values,
|
116
|
+
mode="lines",
|
117
|
+
line=dict(
|
118
|
+
width=self.stroke_width,
|
119
|
+
color=f"rgba{stroke_color[3:-1]}, {self.stroke_opacity})",
|
120
|
+
),
|
121
|
+
customdata=np.column_stack(
|
122
|
+
(lower_quantile_data.values, upper_quantile_data.values)
|
123
|
+
),
|
124
|
+
hovertemplate=(
|
125
|
+
f"{lower_quantile}%: %{{customdata[0]:,.4s}}<br>"
|
126
|
+
f"{upper_quantile}%: %{{customdata[1]:,.4s}}"
|
127
|
+
"<extra></extra>"
|
128
|
+
),
|
129
|
+
name=f"{lower_quantile}%-{upper_quantile}% Hover Info",
|
130
|
+
showlegend=False,
|
131
|
+
legendgroup=legendgroup,
|
132
|
+
)
|
133
|
+
)
|
134
|
+
|
135
|
+
def plot(
|
136
|
+
self,
|
137
|
+
realized: Optional[pd.Series] = None,
|
138
|
+
forecast: Optional[pd.Series] = None,
|
139
|
+
quantiles: Optional[pd.DataFrame] = None,
|
140
|
+
):
|
141
|
+
"""Create a plot showing forecast quantiles and realized values.
|
142
|
+
|
143
|
+
Generates an interactive plotly figure displaying the forecast distribution
|
144
|
+
through quantile bands, the median forecast, and the actual realized values.
|
145
|
+
|
146
|
+
Args:
|
147
|
+
realized (pd.Series): Time series of realized (actual) values.
|
148
|
+
forecast (pd.Series): Time series of forecast values (typically the median).
|
149
|
+
quantiles (pd.DataFrame): DataFrame containing quantile predictions.
|
150
|
+
Column names should follow the format 'quantile_P{percentile:02d}',
|
151
|
+
e.g., 'quantile_P10', 'quantile_P90'.
|
152
|
+
|
153
|
+
Returns:
|
154
|
+
go.Figure: A plotly figure object with the configured visualization.
|
155
|
+
"""
|
156
|
+
figure = go.Figure()
|
157
|
+
|
158
|
+
if quantiles is not None:
|
159
|
+
# Extract and sort quantile percentages
|
160
|
+
quantile_cols = [
|
161
|
+
col for col in quantiles.columns if col.startswith("quantile_P")
|
162
|
+
]
|
163
|
+
percentiles = sorted([int(col.split("P")[1]) for col in quantile_cols])
|
164
|
+
|
165
|
+
# Add quantile bands from widest to narrowest
|
166
|
+
for i in range(len(percentiles) // 2):
|
167
|
+
lower_quantile, upper_quantile = percentiles[i], percentiles[-(i + 1)]
|
168
|
+
if float(lower_quantile) == 50.0:
|
169
|
+
continue
|
170
|
+
|
171
|
+
self._add_quantile_band(
|
172
|
+
figure=figure,
|
173
|
+
lower_quantile_data=quantiles[f"quantile_P{lower_quantile:02d}"],
|
174
|
+
lower_quantile=lower_quantile,
|
175
|
+
upper_quantile_data=quantiles[f"quantile_P{upper_quantile:02d}"],
|
176
|
+
upper_quantile=upper_quantile,
|
177
|
+
)
|
178
|
+
|
179
|
+
if forecast is not None:
|
180
|
+
# Add forecast line (50th percentile)
|
181
|
+
figure.add_trace(
|
182
|
+
go.Scatter(
|
183
|
+
x=forecast.index,
|
184
|
+
y=forecast,
|
185
|
+
mode="lines",
|
186
|
+
line=dict(color="blue", width=self.stroke_width),
|
187
|
+
name="Forecast (50th)",
|
188
|
+
customdata=forecast.values,
|
189
|
+
hovertemplate="Forecast (50th): %{customdata:,.4s}<extra></extra>",
|
190
|
+
)
|
191
|
+
)
|
192
|
+
|
193
|
+
if realized is not None:
|
194
|
+
# Add realized values on top
|
195
|
+
figure.add_trace(
|
196
|
+
go.Scatter(
|
197
|
+
x=realized.index,
|
198
|
+
y=realized,
|
199
|
+
mode="lines",
|
200
|
+
line=dict(color="red", width=self.stroke_width),
|
201
|
+
customdata=realized.values,
|
202
|
+
hovertemplate="Realized: %{customdata:,.4s}<extra></extra>",
|
203
|
+
name="Realized",
|
204
|
+
)
|
205
|
+
)
|
206
|
+
|
207
|
+
# Styling configuration
|
208
|
+
figure.update_layout(
|
209
|
+
title=f"Load Forecast vs Actual",
|
210
|
+
xaxis_title="Datetime [UTC]",
|
211
|
+
yaxis_title="Load [W]",
|
212
|
+
template="plotly_white",
|
213
|
+
hovermode="x unified",
|
214
|
+
)
|
215
|
+
|
216
|
+
return figure
|
@@ -25,11 +25,11 @@ from pathlib import Path
|
|
25
25
|
|
26
26
|
from openstef.data_classes.prediction_job import PredictionJobDataClass
|
27
27
|
from openstef.enums import BiddingZone, ModelType, PipelineType
|
28
|
-
from openstef.exceptions import
|
28
|
+
from openstef.exceptions import InputDataOngoingFlatlinerError
|
29
29
|
from openstef.pipeline.create_forecast import create_forecast_pipeline
|
30
30
|
from openstef.tasks.utils.predictionjobloop import PredictionJobLoop
|
31
31
|
from openstef.tasks.utils.taskcontext import TaskContext
|
32
|
-
from openstef.validation.validation import
|
32
|
+
from openstef.validation.validation import detect_ongoing_flatliner
|
33
33
|
|
34
34
|
T_BEHIND_DAYS: int = 14
|
35
35
|
|
@@ -94,7 +94,7 @@ def create_forecast_task(
|
|
94
94
|
forecast = create_forecast_pipeline(
|
95
95
|
pj, input_data, mlflow_tracking_uri=mlflow_tracking_uri
|
96
96
|
)
|
97
|
-
except (
|
97
|
+
except (InputDataOngoingFlatlinerError, LookupError) as e:
|
98
98
|
if (
|
99
99
|
context.config.known_zero_flatliners
|
100
100
|
and pj.id in context.config.known_zero_flatliners
|
@@ -103,18 +103,18 @@ def create_forecast_task(
|
|
103
103
|
"No forecasts were made for this known zero flatliner prediction job. No forecasts need to be made either, since the fallback forecasts are sufficient."
|
104
104
|
)
|
105
105
|
return
|
106
|
-
elif isinstance(e,
|
107
|
-
raise
|
108
|
-
'All recent load measurements are
|
106
|
+
elif isinstance(e, InputDataOngoingFlatlinerError):
|
107
|
+
raise InputDataOngoingFlatlinerError(
|
108
|
+
'All recent load measurements are constant. Check the load profile of this pid as well as related/neighbouring prediction jobs. Afterwards, consider adding this pid to the "known_zero_flatliners" app_setting and possibly removing other pids from the same app_setting.'
|
109
109
|
) from e
|
110
110
|
elif isinstance(e, LookupError):
|
111
|
-
zero_flatliner_ongoing =
|
111
|
+
zero_flatliner_ongoing = detect_ongoing_flatliner(
|
112
112
|
load=input_data.iloc[:, 0],
|
113
113
|
duration_threshold_minutes=pj.flatliner_threshold_minutes,
|
114
114
|
)
|
115
115
|
if zero_flatliner_ongoing:
|
116
116
|
raise LookupError(
|
117
|
-
'Model not found. Consider checking for a
|
117
|
+
'Model not found. Consider checking for a flatliner and adding this pid to the "known_zero_flatliners" app_setting. For flatliners, no model can be trained.'
|
118
118
|
) from e
|
119
119
|
else:
|
120
120
|
raise e
|