openstef 3.4.14__tar.gz → 3.4.15__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {openstef-3.4.14 → openstef-3.4.15}/PKG-INFO +1 -1
- {openstef-3.4.14 → openstef-3.4.15}/openstef/metrics/figure.py +3 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/metrics/metrics.py +7 -1
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/confidence_interval_applicator.py +3 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/regressors/xgb_quantile.py +3 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/serializer.py +3 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model_selection/model_selection.py +3 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/pipeline/create_basecase_forecast.py +3 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/pipeline/create_forecast.py +7 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/pipeline/optimize_hyperparameters.py +7 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/pipeline/train_create_forecast_backtest.py +8 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/pipeline/train_model.py +15 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/pipeline/utils.py +3 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/tasks/create_components_forecast.py +4 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/tasks/train_model.py +4 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/validation/validation.py +3 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef.egg-info/PKG-INFO +1 -1
- {openstef-3.4.14 → openstef-3.4.15}/setup.py +1 -1
- {openstef-3.4.14 → openstef-3.4.15}/LICENSE +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/README.md +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/__init__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/__main__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model.z +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model.z.license +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_features.z +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_features.z.license +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_scaler.z +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_scaler.z.license +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model.z +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model.z.license +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_features.z +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_features.z.license +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_scaler.z +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_scaler.z.license +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_model_card.md +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_model_card.md.license +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target.z +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target.z.license +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target_scaler.z +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target_scaler.z.license +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dutch_holidays_2020-2022.csv +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/dutch_holidays_2020-2022.csv.license +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/pv_single_coefs.csv +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data/pv_single_coefs.csv.license +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data_classes/__init__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data_classes/data_prep.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data_classes/model_specifications.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data_classes/prediction_job.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/data_classes/split_function.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/enums.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/exceptions.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/feature_engineering/__init__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/feature_engineering/apply_features.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/feature_engineering/data_preparation.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/feature_engineering/feature_adder.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/feature_engineering/feature_applicator.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/feature_engineering/general.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/feature_engineering/holiday_features.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/feature_engineering/lag_features.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/feature_engineering/weather_features.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/metrics/__init__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/metrics/reporter.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/__init__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/basecase.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/fallback.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/metamodels/__init__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/metamodels/grouped_regressor.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/metamodels/missing_values_handler.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/model_creator.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/objective.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/objective_creator.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/regressors/__init__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/regressors/arima.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/regressors/custom_regressor.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/regressors/dazls.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/regressors/lgbm.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/regressors/linear.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/regressors/regressor.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/regressors/xgb.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model/standard_deviation_generator.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/model_selection/__init__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/monitoring/__init__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/monitoring/performance_meter.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/monitoring/teams.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/pipeline/__init__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/pipeline/create_component_forecast.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/postprocessing/__init__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/postprocessing/postprocessing.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/preprocessing/__init__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/preprocessing/preprocessing.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/tasks/__init__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/tasks/calculate_kpi.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/tasks/create_basecase_forecast.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/tasks/create_forecast.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/tasks/create_solar_forecast.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/tasks/create_wind_forecast.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/tasks/optimize_hyperparameters.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/tasks/run_tracy.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/tasks/split_forecast.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/tasks/utils/__init__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/tasks/utils/dependencies.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/tasks/utils/predictionjobloop.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/tasks/utils/taskcontext.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef/validation/__init__.py +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef.egg-info/SOURCES.txt +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef.egg-info/dependency_links.txt +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef.egg-info/requires.txt +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/openstef.egg-info/top_level.txt +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/pyproject.toml +0 -0
- {openstef-3.4.14 → openstef-3.4.15}/setup.cfg +0 -0
@@ -25,6 +25,9 @@ def get_eval_metric_function(metric_name: str) -> Callable:
|
|
25
25
|
Returns:
|
26
26
|
Function to calculate the metric.
|
27
27
|
|
28
|
+
Raises:
|
29
|
+
KeyError: If the metric is not available.
|
30
|
+
|
28
31
|
"""
|
29
32
|
evaluation_function = {
|
30
33
|
"rmse": rmse,
|
@@ -130,6 +133,9 @@ def r_mae_highest(
|
|
130
133
|
|
131
134
|
The range is based on the load range of the previous two weeks.
|
132
135
|
|
136
|
+
Raises:
|
137
|
+
ValueError: If the length of the realised and forecast arrays are not equal.
|
138
|
+
|
133
139
|
"""
|
134
140
|
# Check if length of both arrays is equal
|
135
141
|
if len(np.array(realised)) != len(np.array(forecast)):
|
@@ -395,7 +401,7 @@ def xgb_quantile_obj(
|
|
395
401
|
Args:
|
396
402
|
preds: numpy.ndarray
|
397
403
|
dmatrix: xgboost.DMatrix
|
398
|
-
quantile: float
|
404
|
+
quantile: float between 0 and 1
|
399
405
|
|
400
406
|
Returns:
|
401
407
|
Gradient and Hessian
|
@@ -74,6 +74,9 @@ class ConfidenceIntervalApplicator:
|
|
74
74
|
Forecast with added standard deviation. DataFrame with columns:
|
75
75
|
"forecast", "stdev"
|
76
76
|
|
77
|
+
Raises:
|
78
|
+
ModelWithoutStDev: If the model does not have a valid standard deviation.
|
79
|
+
|
77
80
|
"""
|
78
81
|
minimal_resolution: int = 15 # Minimal time resolution in minutes
|
79
82
|
standard_deviation = self.model.standard_deviation
|
@@ -52,6 +52,9 @@ class XGBQuantileOpenstfRegressor(OpenstfRegressor):
|
|
52
52
|
alpha: Alpha
|
53
53
|
max_delta_step: Maximum delta step
|
54
54
|
|
55
|
+
Raises:
|
56
|
+
ValueError in case quantile 0.5 is not in the requested quantiles
|
57
|
+
|
55
58
|
"""
|
56
59
|
super().__init__()
|
57
60
|
# Check if quantile 0.5 is pressent this is required
|
@@ -140,6 +140,9 @@ def split_data_train_validation_test(
|
|
140
140
|
- Validation data.
|
141
141
|
- Test data.
|
142
142
|
|
143
|
+
Raises:
|
144
|
+
ValueError: When the test and validation fractions are too high.
|
145
|
+
|
143
146
|
"""
|
144
147
|
test_fraction = test_fraction if back_test else 0
|
145
148
|
train_fraction = 1 - (test_fraction + validation_fraction)
|
@@ -40,6 +40,10 @@ def create_forecast_pipeline(
|
|
40
40
|
Returns:
|
41
41
|
DataFrame with the forecast
|
42
42
|
|
43
|
+
Raises:
|
44
|
+
InputDataOngoingZeroFlatlinerError: When all recent load measurements are zero.
|
45
|
+
LookupError: When no model is found for the given prediction job in MLflow.
|
46
|
+
|
43
47
|
"""
|
44
48
|
prediction_model_pid = pj["id"]
|
45
49
|
# Use the alternative forecast model if it's specify in the pj
|
@@ -76,6 +80,9 @@ def create_forecast_pipeline_core(
|
|
76
80
|
Returns:
|
77
81
|
Forecast
|
78
82
|
|
83
|
+
Raises:
|
84
|
+
InputDataOngoingZeroFlatlinerError: When all recent load measurements are zero.
|
85
|
+
|
79
86
|
"""
|
80
87
|
logger = structlog.get_logger(__name__)
|
81
88
|
|
@@ -59,6 +59,9 @@ def optimize_hyperparameters_pipeline(
|
|
59
59
|
|
60
60
|
Raises:
|
61
61
|
ValueError: If the input_date is insufficient.
|
62
|
+
InputDataInsufficientError: If the input dataframe is empty.
|
63
|
+
InputDataWrongColumnOrderError: If the load column is missing in the input dataframe.
|
64
|
+
OldModelHigherScoreError: When old model is better than new model.
|
62
65
|
|
63
66
|
Returns:
|
64
67
|
Optimized hyperparameters.
|
@@ -119,6 +122,10 @@ def optimize_hyperparameters_pipeline_core(
|
|
119
122
|
|
120
123
|
Raises:
|
121
124
|
ValueError: If the input_date is insufficient.
|
125
|
+
InputDataInsufficientError: If the input dataframe is empty.
|
126
|
+
InputDataWrongColumnOrderError: If the load column is missing in the input dataframe.
|
127
|
+
OldModelHigherScoreError: When old model is better than new model.
|
128
|
+
InputDataOngoingZeroFlatlinerError: When all recent load measurements are zero.
|
122
129
|
|
123
130
|
Returns:
|
124
131
|
- Best model,
|
@@ -56,6 +56,11 @@ def train_model_and_forecast_back_test(
|
|
56
56
|
- Validation data sets (list[pd.DataFrame])
|
57
57
|
- Test data sets (list[pd.DataFrame])
|
58
58
|
|
59
|
+
Raises:
|
60
|
+
InputDataInsufficientError: when input data is insufficient.
|
61
|
+
InputDataWrongColumnOrderError: when input data has a invalid column order.
|
62
|
+
ValueError: when the horizon is a string and the corresponding column in not in the input data
|
63
|
+
InputDataOngoingZeroFlatlinerError: when all recent load measurements are zero.
|
59
64
|
"""
|
60
65
|
if pj.backtest_split_func is None:
|
61
66
|
backtest_split_func = backtest_split_default
|
@@ -124,6 +129,9 @@ def train_model_and_forecast_test_core(
|
|
124
129
|
- The trained model
|
125
130
|
- The forecast on the test set.
|
126
131
|
|
132
|
+
Raises:
|
133
|
+
NotImplementedError: When using invalid model type in the prediction job.
|
134
|
+
InputDataWrongColumnOrderError: When 'load' column is not first and 'horizon' column is not last.
|
127
135
|
"""
|
128
136
|
model = train_model.train_pipeline_step_train_model(
|
129
137
|
pj, modelspecs, train_data, validation_data
|
@@ -60,6 +60,13 @@ def train_model_pipeline(
|
|
60
60
|
- The validation dataset with forecasts
|
61
61
|
- The test dataset with forecasts
|
62
62
|
|
63
|
+
Raises:
|
64
|
+
InputDataInsufficientError: when input data is insufficient.
|
65
|
+
InputDataWrongColumnOrderError: when input data has a invalid column order.
|
66
|
+
'load' column should be first and 'horizon' column last.
|
67
|
+
OldModelHigherScoreError: When old model is better than new model.
|
68
|
+
SkipSaveTrainingForecasts: If old model is better or younger than `MAXIMUM_MODEL_AGE`, the model is not saved.
|
69
|
+
|
63
70
|
"""
|
64
71
|
# Initialize serializer
|
65
72
|
serializer = MLflowSerializer(mlflow_tracking_uri=mlflow_tracking_uri)
|
@@ -164,6 +171,7 @@ def train_model_pipeline_core(
|
|
164
171
|
InputDataInsufficientError: when input data is insufficient.
|
165
172
|
InputDataWrongColumnOrderError: when input data has a invalid column order.
|
166
173
|
OldModelHigherScoreError: When old model is better than new model.
|
174
|
+
InputDataOngoingZeroFlatlinerError: when all recent load measurements are zero.
|
167
175
|
|
168
176
|
Returns:
|
169
177
|
- Fitted_model (OpenstfRegressor)
|
@@ -257,6 +265,8 @@ def train_pipeline_common(
|
|
257
265
|
Raises:
|
258
266
|
InputDataInsufficientError: when input data is insufficient.
|
259
267
|
InputDataWrongColumnOrderError: when input data has a invalid column order.
|
268
|
+
'load' column should be first and 'horizon' column last.
|
269
|
+
InputDataOngoingZeroFlatlinerError: when all recent load measurements are zero.
|
260
270
|
|
261
271
|
"""
|
262
272
|
data_with_features = train_pipeline_step_compute_features(
|
@@ -346,6 +356,7 @@ def train_pipeline_step_compute_features(
|
|
346
356
|
InputDataInsufficientError: when input data is insufficient.
|
347
357
|
InputDataWrongColumnOrderError: when input data has a invalid column order.
|
348
358
|
ValueError: when the horizon is a string and the corresponding column in not in the input data
|
359
|
+
InputDataOngoingZeroFlatlinerError: when all recent load measurements are zero.
|
349
360
|
|
350
361
|
"""
|
351
362
|
if input_data.empty:
|
@@ -419,6 +430,10 @@ def train_pipeline_step_train_model(
|
|
419
430
|
Returns:
|
420
431
|
The trained model
|
421
432
|
|
433
|
+
Raises:
|
434
|
+
NotImplementedError: When using invalid model type in the prediction job.
|
435
|
+
InputDataWrongColumnOrderError: When 'load' column is not first and 'horizon' column is not last.
|
436
|
+
|
422
437
|
"""
|
423
438
|
# Test if first column is "load" and last column is "horizon"
|
424
439
|
if train_data.columns[0] != "load" or train_data.columns[-1] != "horizon":
|
@@ -27,6 +27,9 @@ def generate_forecast_datetime_range(
|
|
27
27
|
Returns:
|
28
28
|
Start and end datetimes of the forecast range.
|
29
29
|
|
30
|
+
Raises:
|
31
|
+
ValueError: If the target column does not have null values.
|
32
|
+
|
30
33
|
"""
|
31
34
|
# By labeling the True/False values (based on the isnull() statement) as clusters,
|
32
35
|
# we find what True value belongs to what cluster and the amount of True clusters.
|
@@ -51,6 +51,10 @@ def create_components_forecast_task(
|
|
51
51
|
pj: Prediction job
|
52
52
|
context: Contect object that holds a config manager and a database connection
|
53
53
|
|
54
|
+
Raises:
|
55
|
+
ComponentForecastTooShortHorizonError: If the forecast horizon is too short
|
56
|
+
(less than 30 minutes in advance)
|
57
|
+
|
54
58
|
"""
|
55
59
|
logger = structlog.get_logger(__name__)
|
56
60
|
if pj["train_components"] == 0:
|
@@ -65,6 +65,10 @@ def train_model_task(
|
|
65
65
|
datetime_start: Start
|
66
66
|
datetime_end: End
|
67
67
|
|
68
|
+
Raises:
|
69
|
+
SkipSaveTrainingForecasts: If old model is better or too young, you don't need to save the traing forcast.
|
70
|
+
InputDataOngoingZeroFlatlinerError: If all recent load measurements are zero.
|
71
|
+
|
68
72
|
"""
|
69
73
|
# Check pipeline types
|
70
74
|
if PipelineType.TRAIN not in pj.pipelines_to_run:
|
@@ -29,7 +29,7 @@ def read_long_description_from_readme():
|
|
29
29
|
|
30
30
|
setup(
|
31
31
|
name="openstef",
|
32
|
-
version="3.4.
|
32
|
+
version="3.4.15",
|
33
33
|
packages=find_packages(include=["openstef", "openstef.*"]),
|
34
34
|
description="Open short term energy forecaster",
|
35
35
|
long_description=read_long_description_from_readme(),
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_model_card.md
RENAMED
File without changes
|
File without changes
|
{openstef-3.4.14 → openstef-3.4.15}/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target.z
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|