openstef 3.2.60__tar.gz → 3.2.62__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (97) hide show
  1. {openstef-3.2.60 → openstef-3.2.62}/PKG-INFO +5 -5
  2. {openstef-3.2.60 → openstef-3.2.62}/README.md +4 -4
  3. {openstef-3.2.60 → openstef-3.2.62}/openstef/data/dutch_holidays_2020-2022.csv.license +1 -1
  4. {openstef-3.2.60 → openstef-3.2.62}/openstef/data/pv_single_coefs.csv.license +1 -1
  5. {openstef-3.2.60 → openstef-3.2.62}/openstef/data_classes/prediction_job.py +7 -7
  6. {openstef-3.2.60 → openstef-3.2.62}/openstef/pipeline/optimize_hyperparameters.py +6 -6
  7. {openstef-3.2.60 → openstef-3.2.62}/openstef/tasks/create_components_forecast.py +4 -5
  8. {openstef-3.2.60 → openstef-3.2.62}/openstef.egg-info/PKG-INFO +5 -5
  9. openstef-3.2.62/openstef.egg-info/requires.txt +21 -0
  10. {openstef-3.2.60 → openstef-3.2.62}/pyproject.toml +2 -2
  11. {openstef-3.2.60 → openstef-3.2.62}/setup.py +1 -1
  12. openstef-3.2.60/openstef.egg-info/requires.txt +0 -24
  13. {openstef-3.2.60 → openstef-3.2.62}/LICENSE +0 -0
  14. {openstef-3.2.60 → openstef-3.2.62}/openstef/__init__.py +0 -0
  15. {openstef-3.2.60 → openstef-3.2.62}/openstef/__main__.py +0 -0
  16. {openstef-3.2.60 → openstef-3.2.62}/openstef/data/dazls_stored.sav +0 -0
  17. {openstef-3.2.60 → openstef-3.2.62}/openstef/data/dazls_stored.sav.license +0 -0
  18. {openstef-3.2.60 → openstef-3.2.62}/openstef/data/dutch_holidays_2020-2022.csv +0 -0
  19. {openstef-3.2.60 → openstef-3.2.62}/openstef/data/pv_single_coefs.csv +0 -0
  20. {openstef-3.2.60 → openstef-3.2.62}/openstef/data_classes/__init__.py +0 -0
  21. {openstef-3.2.60 → openstef-3.2.62}/openstef/data_classes/data_prep.py +0 -0
  22. {openstef-3.2.60 → openstef-3.2.62}/openstef/data_classes/model_specifications.py +0 -0
  23. {openstef-3.2.60 → openstef-3.2.62}/openstef/data_classes/split_function.py +0 -0
  24. {openstef-3.2.60 → openstef-3.2.62}/openstef/enums.py +0 -0
  25. {openstef-3.2.60 → openstef-3.2.62}/openstef/exceptions.py +0 -0
  26. {openstef-3.2.60 → openstef-3.2.62}/openstef/feature_engineering/__init__.py +0 -0
  27. {openstef-3.2.60 → openstef-3.2.62}/openstef/feature_engineering/apply_features.py +0 -0
  28. {openstef-3.2.60 → openstef-3.2.62}/openstef/feature_engineering/data_preparation.py +0 -0
  29. {openstef-3.2.60 → openstef-3.2.62}/openstef/feature_engineering/feature_adder.py +0 -0
  30. {openstef-3.2.60 → openstef-3.2.62}/openstef/feature_engineering/feature_applicator.py +0 -0
  31. {openstef-3.2.60 → openstef-3.2.62}/openstef/feature_engineering/general.py +0 -0
  32. {openstef-3.2.60 → openstef-3.2.62}/openstef/feature_engineering/historic_features.py +0 -0
  33. {openstef-3.2.60 → openstef-3.2.62}/openstef/feature_engineering/holiday_features.py +0 -0
  34. {openstef-3.2.60 → openstef-3.2.62}/openstef/feature_engineering/lag_features.py +0 -0
  35. {openstef-3.2.60 → openstef-3.2.62}/openstef/feature_engineering/weather_features.py +0 -0
  36. {openstef-3.2.60 → openstef-3.2.62}/openstef/metrics/__init__.py +0 -0
  37. {openstef-3.2.60 → openstef-3.2.62}/openstef/metrics/figure.py +0 -0
  38. {openstef-3.2.60 → openstef-3.2.62}/openstef/metrics/metrics.py +0 -0
  39. {openstef-3.2.60 → openstef-3.2.62}/openstef/metrics/reporter.py +0 -0
  40. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/__init__.py +0 -0
  41. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/basecase.py +0 -0
  42. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/confidence_interval_applicator.py +0 -0
  43. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/fallback.py +0 -0
  44. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/metamodels/__init__.py +0 -0
  45. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/metamodels/grouped_regressor.py +0 -0
  46. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/metamodels/missing_values_handler.py +0 -0
  47. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/model_creator.py +0 -0
  48. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/objective.py +0 -0
  49. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/objective_creator.py +0 -0
  50. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/regressors/__init__.py +0 -0
  51. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/regressors/arima.py +0 -0
  52. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/regressors/custom_regressor.py +0 -0
  53. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/regressors/dazls.py +0 -0
  54. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/regressors/lgbm.py +0 -0
  55. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/regressors/linear.py +0 -0
  56. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/regressors/proloaf.py +0 -0
  57. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/regressors/regressor.py +0 -0
  58. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/regressors/xgb.py +0 -0
  59. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/regressors/xgb_quantile.py +0 -0
  60. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/serializer.py +0 -0
  61. {openstef-3.2.60 → openstef-3.2.62}/openstef/model/standard_deviation_generator.py +0 -0
  62. {openstef-3.2.60 → openstef-3.2.62}/openstef/model_selection/__init__.py +0 -0
  63. {openstef-3.2.60 → openstef-3.2.62}/openstef/model_selection/model_selection.py +0 -0
  64. {openstef-3.2.60 → openstef-3.2.62}/openstef/monitoring/__init__.py +0 -0
  65. {openstef-3.2.60 → openstef-3.2.62}/openstef/monitoring/performance_meter.py +0 -0
  66. {openstef-3.2.60 → openstef-3.2.62}/openstef/monitoring/teams.py +0 -0
  67. {openstef-3.2.60 → openstef-3.2.62}/openstef/pipeline/__init__.py +0 -0
  68. {openstef-3.2.60 → openstef-3.2.62}/openstef/pipeline/create_basecase_forecast.py +0 -0
  69. {openstef-3.2.60 → openstef-3.2.62}/openstef/pipeline/create_component_forecast.py +0 -0
  70. {openstef-3.2.60 → openstef-3.2.62}/openstef/pipeline/create_forecast.py +0 -0
  71. {openstef-3.2.60 → openstef-3.2.62}/openstef/pipeline/train_create_forecast_backtest.py +0 -0
  72. {openstef-3.2.60 → openstef-3.2.62}/openstef/pipeline/train_model.py +0 -0
  73. {openstef-3.2.60 → openstef-3.2.62}/openstef/pipeline/utils.py +0 -0
  74. {openstef-3.2.60 → openstef-3.2.62}/openstef/postprocessing/__init__.py +0 -0
  75. {openstef-3.2.60 → openstef-3.2.62}/openstef/postprocessing/postprocessing.py +0 -0
  76. {openstef-3.2.60 → openstef-3.2.62}/openstef/preprocessing/__init__.py +0 -0
  77. {openstef-3.2.60 → openstef-3.2.62}/openstef/preprocessing/preprocessing.py +0 -0
  78. {openstef-3.2.60 → openstef-3.2.62}/openstef/tasks/__init__.py +0 -0
  79. {openstef-3.2.60 → openstef-3.2.62}/openstef/tasks/calculate_kpi.py +0 -0
  80. {openstef-3.2.60 → openstef-3.2.62}/openstef/tasks/create_basecase_forecast.py +0 -0
  81. {openstef-3.2.60 → openstef-3.2.62}/openstef/tasks/create_forecast.py +0 -0
  82. {openstef-3.2.60 → openstef-3.2.62}/openstef/tasks/create_solar_forecast.py +0 -0
  83. {openstef-3.2.60 → openstef-3.2.62}/openstef/tasks/create_wind_forecast.py +0 -0
  84. {openstef-3.2.60 → openstef-3.2.62}/openstef/tasks/optimize_hyperparameters.py +0 -0
  85. {openstef-3.2.60 → openstef-3.2.62}/openstef/tasks/run_tracy.py +0 -0
  86. {openstef-3.2.60 → openstef-3.2.62}/openstef/tasks/split_forecast.py +0 -0
  87. {openstef-3.2.60 → openstef-3.2.62}/openstef/tasks/train_model.py +0 -0
  88. {openstef-3.2.60 → openstef-3.2.62}/openstef/tasks/utils/__init__.py +0 -0
  89. {openstef-3.2.60 → openstef-3.2.62}/openstef/tasks/utils/dependencies.py +0 -0
  90. {openstef-3.2.60 → openstef-3.2.62}/openstef/tasks/utils/predictionjobloop.py +0 -0
  91. {openstef-3.2.60 → openstef-3.2.62}/openstef/tasks/utils/taskcontext.py +0 -0
  92. {openstef-3.2.60 → openstef-3.2.62}/openstef/validation/__init__.py +0 -0
  93. {openstef-3.2.60 → openstef-3.2.62}/openstef/validation/validation.py +0 -0
  94. {openstef-3.2.60 → openstef-3.2.62}/openstef.egg-info/SOURCES.txt +0 -0
  95. {openstef-3.2.60 → openstef-3.2.62}/openstef.egg-info/dependency_links.txt +0 -0
  96. {openstef-3.2.60 → openstef-3.2.62}/openstef.egg-info/top_level.txt +0 -0
  97. {openstef-3.2.60 → openstef-3.2.62}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: openstef
3
- Version: 3.2.60
3
+ Version: 3.2.62
4
4
  Summary: Open short term energy forecaster
5
5
  Home-page: https://github.com/OpenSTEF/openstef
6
6
  Author: Alliander N.V
@@ -40,13 +40,13 @@ SPDX-License-Identifier: MPL-2.0
40
40
 
41
41
  # OpenSTEF
42
42
 
43
- OpenSTEF is a Python package which is used to make short term forecasts for the energy sector. This repository contains all components for the machine learning pipeline required to make a forecast. In order to use the package you need to provide your own data storage and retrieval interface.
43
+ OpenSTEF is a Python package which is used to make short term forecasts for the energy sector. This repository contains all components for the machine learning pipeline required to make a forecast. In order to use the package you need to provide your own data storage and retrieval interface.
44
44
 
45
45
  Find the latest information on the project on [the project's website](https://www.lfenergy.org/projects/openstef/).
46
46
 
47
- The `openstef` Python package is available at: https://pypi.org/project/openstef/.
47
+ The `openstef` Python package is available at: https://pypi.org/project/openstef/.
48
48
 
49
- Documentation is available at: https://openstef.github.io/openstef/index.html.
49
+ Documentation is available at: https://openstef.github.io/openstef/index.html.
50
50
 
51
51
  You can also watch a [video about OpenSTEF](https://www.lfenergy.org/forecasting-to-create-a-more-resilient-optimized-grid/) instead of reading about the project.
52
52
 
@@ -84,7 +84,7 @@ python -m openstef task <task_name>
84
84
  A complete implementation including databases, user interface, example data, etc. is available at: https://github.com/OpenSTEF/openstef-reference
85
85
 
86
86
  ![screenshot](https://user-images.githubusercontent.com/60883372/146760483-29af3ac7-62af-4f13-98c7-982a79c517d1.jpg)
87
- Screenshot of the operational dashboard showing the key functionality of OpenSTEF.
87
+ Screenshot of the operational dashboard showing the key functionality of OpenSTEF.
88
88
  Dashboard documentation can be found [here](https://github.com/OpenSTEF/.github/blob/main/profile/README.md).
89
89
 
90
90
  ## License
@@ -21,13 +21,13 @@ SPDX-License-Identifier: MPL-2.0
21
21
 
22
22
  # OpenSTEF
23
23
 
24
- OpenSTEF is a Python package which is used to make short term forecasts for the energy sector. This repository contains all components for the machine learning pipeline required to make a forecast. In order to use the package you need to provide your own data storage and retrieval interface.
24
+ OpenSTEF is a Python package which is used to make short term forecasts for the energy sector. This repository contains all components for the machine learning pipeline required to make a forecast. In order to use the package you need to provide your own data storage and retrieval interface.
25
25
 
26
26
  Find the latest information on the project on [the project's website](https://www.lfenergy.org/projects/openstef/).
27
27
 
28
- The `openstef` Python package is available at: https://pypi.org/project/openstef/.
28
+ The `openstef` Python package is available at: https://pypi.org/project/openstef/.
29
29
 
30
- Documentation is available at: https://openstef.github.io/openstef/index.html.
30
+ Documentation is available at: https://openstef.github.io/openstef/index.html.
31
31
 
32
32
  You can also watch a [video about OpenSTEF](https://www.lfenergy.org/forecasting-to-create-a-more-resilient-optimized-grid/) instead of reading about the project.
33
33
 
@@ -65,7 +65,7 @@ python -m openstef task <task_name>
65
65
  A complete implementation including databases, user interface, example data, etc. is available at: https://github.com/OpenSTEF/openstef-reference
66
66
 
67
67
  ![screenshot](https://user-images.githubusercontent.com/60883372/146760483-29af3ac7-62af-4f13-98c7-982a79c517d1.jpg)
68
- Screenshot of the operational dashboard showing the key functionality of OpenSTEF.
68
+ Screenshot of the operational dashboard showing the key functionality of OpenSTEF.
69
69
  Dashboard documentation can be found [here](https://github.com/OpenSTEF/.github/blob/main/profile/README.md).
70
70
 
71
71
  ## License
@@ -1,3 +1,3 @@
1
1
  SPDX-FileCopyrightText: 2017-2022 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
2
2
 
3
- SPDX-License-Identifier: MPL-2.0
3
+ SPDX-License-Identifier: MPL-2.0
@@ -1,3 +1,3 @@
1
1
  SPDX-FileCopyrightText: 2017-2022 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
2
2
 
3
- SPDX-License-Identifier: MPL-2.0
3
+ SPDX-License-Identifier: MPL-2.0
@@ -19,27 +19,27 @@ class PredictionJobDataClass(BaseModel):
19
19
  """The predictions job id (often abreviated as pid)."""
20
20
  model: str
21
21
  """The model type that should be used.
22
-
22
+
23
23
  Options are:
24
24
  - ``"xgb"``
25
25
  - ``"xgb_quantile"``
26
26
  - ``"lgb"``
27
27
  - ``"linear"``
28
28
  - ``"proloaf"`` (extra dependencies requiered, see README)
29
-
29
+
30
30
  If unsure what to pick, choose ``"xgb"``.
31
-
31
+
32
32
  """
33
33
  forecast_type: str
34
34
  """The type of forecasts that should be made.
35
-
35
+
36
36
  Options are:
37
37
  - ``"demand"``
38
38
  - ``"wind"``
39
- - ``"basecase"``
40
-
39
+ - ``"basecase"``
40
+
41
41
  If unsure what to pick, choose ``"demand"``.
42
-
42
+
43
43
  """
44
44
  horizon_minutes: int
45
45
  """The horizon of the desired forecast in minutes."""
@@ -206,12 +206,12 @@ def optimize_hyperparameters_pipeline_core(
206
206
  hyper_params=best_hyperparams,
207
207
  )
208
208
 
209
- # If the model type is quantile, train a model with the best parameters for all quantiles
210
- # (optimization is only done for quantile 0.5)
211
- if objective.model.can_predict_quantiles:
212
- best_model, report, modelspecs, _ = train_model_pipeline_core(
213
- pj=pj, input_data=input_data, model_specs=model_specs
214
- )
209
+ # Train a model using the regular train pipeline.
210
+ # The train/validation/test split used in hyperparam optimisation
211
+ # is less suitable for an operational model.
212
+ best_model, report, modelspecs, _ = train_model_pipeline_core(
213
+ pj=pj, input_data=input_data, model_specs=model_specs
214
+ )
215
215
 
216
216
  # Save model and report. Report is always saved to MLFlow and optionally to disk
217
217
  report = objective.create_report(model=best_model)
@@ -21,10 +21,9 @@ Example:
21
21
  $ python create_components_forecast.py
22
22
 
23
23
  """
24
- from datetime import datetime, timedelta
24
+ from datetime import datetime, timedelta, timezone
25
25
  from pathlib import Path
26
26
 
27
- import pytz
28
27
  import structlog
29
28
  import pandas as pd
30
29
 
@@ -105,9 +104,9 @@ def create_components_forecast_task(
105
104
  logger.debug("Written forecast to database")
106
105
 
107
106
  # Check if forecast was complete enough, otherwise raise exception
108
- if forecasts.index.max() < datetime.utcnow().replace(tzinfo=pytz.utc) + timedelta(
109
- hours=30
110
- ):
107
+ if forecasts.index.max() < datetime.utcnow().replace(
108
+ tzinfo=timezone.utc
109
+ ) + timedelta(hours=30):
111
110
 
112
111
  # Check which input data is missing the most.
113
112
  # Do this by counting the NANs for (load)forecast, radiation and windspeed
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: openstef
3
- Version: 3.2.60
3
+ Version: 3.2.62
4
4
  Summary: Open short term energy forecaster
5
5
  Home-page: https://github.com/OpenSTEF/openstef
6
6
  Author: Alliander N.V
@@ -40,13 +40,13 @@ SPDX-License-Identifier: MPL-2.0
40
40
 
41
41
  # OpenSTEF
42
42
 
43
- OpenSTEF is a Python package which is used to make short term forecasts for the energy sector. This repository contains all components for the machine learning pipeline required to make a forecast. In order to use the package you need to provide your own data storage and retrieval interface.
43
+ OpenSTEF is a Python package which is used to make short term forecasts for the energy sector. This repository contains all components for the machine learning pipeline required to make a forecast. In order to use the package you need to provide your own data storage and retrieval interface.
44
44
 
45
45
  Find the latest information on the project on [the project's website](https://www.lfenergy.org/projects/openstef/).
46
46
 
47
- The `openstef` Python package is available at: https://pypi.org/project/openstef/.
47
+ The `openstef` Python package is available at: https://pypi.org/project/openstef/.
48
48
 
49
- Documentation is available at: https://openstef.github.io/openstef/index.html.
49
+ Documentation is available at: https://openstef.github.io/openstef/index.html.
50
50
 
51
51
  You can also watch a [video about OpenSTEF](https://www.lfenergy.org/forecasting-to-create-a-more-resilient-optimized-grid/) instead of reading about the project.
52
52
 
@@ -84,7 +84,7 @@ python -m openstef task <task_name>
84
84
  A complete implementation including databases, user interface, example data, etc. is available at: https://github.com/OpenSTEF/openstef-reference
85
85
 
86
86
  ![screenshot](https://user-images.githubusercontent.com/60883372/146760483-29af3ac7-62af-4f13-98c7-982a79c517d1.jpg)
87
- Screenshot of the operational dashboard showing the key functionality of OpenSTEF.
87
+ Screenshot of the operational dashboard showing the key functionality of OpenSTEF.
88
88
  Dashboard documentation can be found [here](https://github.com/OpenSTEF/.github/blob/main/profile/README.md).
89
89
 
90
90
  ## License
@@ -0,0 +1,21 @@
1
+ holidays==0.21
2
+ lightgbm~=3.3
3
+ matplotlib~=3.7
4
+ mlflow~=2.3
5
+ networkx~=3.1
6
+ optuna~=3.1
7
+ pandas~=2.0
8
+ plotly~=5.14
9
+ pvlib==0.9.4
10
+ pydantic~=1.10
11
+ pymsteams~=0.2.2
12
+ scikit-learn~=1.2
13
+ scipy~=1.10
14
+ statsmodels~=0.13
15
+ structlog~=23.1
16
+ xgboost~=1.7
17
+
18
+ [proloaf]
19
+ proloaf==0.2.0
20
+ torch==1.10.0
21
+ pytorch-lightning==1.5.1
@@ -12,10 +12,10 @@ profile = "black"
12
12
 
13
13
  [tool.pydocstyle]
14
14
  convention = "google"
15
- add-ignore = ["D100","D101","D102","D103", "D104", "D105", "D106", "D107"] # For now ignore any missing docstrings.
15
+ add-ignore = ["D100","D101","D102","D103", "D104", "D105", "D106", "D107"] # For now ignore any missing docstrings.
16
16
 
17
17
  [tool.docformatter]
18
18
  recursive = true
19
19
  wrap-descriptions = 120
20
20
  wrap-summaries = 120
21
- blank = true
21
+ blank = true
@@ -29,7 +29,7 @@ def read_long_description_from_readme():
29
29
 
30
30
  setup(
31
31
  name="openstef",
32
- version="3.2.60",
32
+ version="3.2.62",
33
33
  packages=find_packages(include=["openstef", "openstef.*"]),
34
34
  description="Open short term energy forecaster",
35
35
  long_description=read_long_description_from_readme(),
@@ -1,24 +0,0 @@
1
- cufflinks~=0.17.3
2
- holidays==0.21
3
- lightgbm~=3.3.3
4
- matplotlib~=3.6.2
5
- mlflow~=2.1.1
6
- networkx~=2.8.8
7
- numpy<2
8
- optuna~=3.0.5
9
- pandas~=1.5.2
10
- plotly~=5.11.0
11
- pvlib==0.9.4
12
- pydantic~=1.10.4
13
- pymsteams~=0.2.2
14
- pytz~=2022.7
15
- scikit-learn~=1.2.0
16
- scipy~=1.8.1
17
- statsmodels~=0.13.1
18
- structlog~=23.1.0
19
- xgboost~=1.7.3
20
-
21
- [proloaf]
22
- proloaf==0.2.0
23
- torch==1.10.0
24
- pytorch-lightning==1.5.1
File without changes
File without changes
File without changes