openstef 3.2.28__tar.gz → 3.4.16__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {openstef-3.2.28 → openstef-3.4.16}/PKG-INFO +56 -22
- {openstef-3.2.28 → openstef-3.4.16}/README.md +36 -17
- {openstef-3.2.28 → openstef-3.4.16}/openstef/__init__.py +1 -1
- openstef-3.4.16/openstef/__main__.py +3 -0
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model.z +0 -0
- openstef-3.2.28/openstef/data/dazls_stored.sav.license → openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model.z.license +1 -1
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_features.z +0 -0
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_features.z.license +3 -0
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_scaler.z +0 -0
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_scaler.z.license +3 -0
- openstef-3.2.28/openstef/data/dazls_stored.sav → openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model.z +0 -0
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model.z.license +3 -0
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_features.z +2 -0
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_features.z.license +3 -0
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_scaler.z +0 -0
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_scaler.z.license +3 -0
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_model_card.md +14 -0
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_model_card.md.license +3 -0
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target.z +0 -0
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target.z.license +3 -0
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target_scaler.z +0 -0
- openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target_scaler.z.license +3 -0
- openstef-3.4.16/openstef/data/dutch_holidays_2020-2022.csv.license +3 -0
- openstef-3.4.16/openstef/data/pv_single_coefs.csv.license +3 -0
- {openstef-3.2.28/openstef/model → openstef-3.4.16/openstef/data_classes}/__init__.py +1 -1
- openstef-3.4.16/openstef/data_classes/data_prep.py +99 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef/data_classes/model_specifications.py +2 -2
- {openstef-3.2.28 → openstef-3.4.16}/openstef/data_classes/prediction_job.py +36 -25
- {openstef-3.2.28 → openstef-3.4.16}/openstef/data_classes/split_function.py +9 -9
- {openstef-3.2.28 → openstef-3.4.16}/openstef/enums.py +6 -6
- {openstef-3.2.28 → openstef-3.4.16}/openstef/exceptions.py +11 -1
- {openstef-3.2.28/openstef/data_classes → openstef-3.4.16/openstef/feature_engineering}/__init__.py +1 -1
- {openstef-3.2.28 → openstef-3.4.16}/openstef/feature_engineering/apply_features.py +3 -10
- openstef-3.4.16/openstef/feature_engineering/data_preparation.py +145 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef/feature_engineering/feature_adder.py +10 -13
- {openstef-3.2.28 → openstef-3.4.16}/openstef/feature_engineering/feature_applicator.py +6 -10
- {openstef-3.2.28 → openstef-3.4.16}/openstef/feature_engineering/general.py +3 -4
- {openstef-3.2.28 → openstef-3.4.16}/openstef/feature_engineering/holiday_features.py +19 -10
- {openstef-3.2.28 → openstef-3.4.16}/openstef/feature_engineering/lag_features.py +11 -13
- {openstef-3.2.28 → openstef-3.4.16}/openstef/feature_engineering/weather_features.py +6 -6
- {openstef-3.2.28/openstef/feature_engineering → openstef-3.4.16/openstef/metrics}/__init__.py +1 -1
- {openstef-3.2.28 → openstef-3.4.16}/openstef/metrics/figure.py +77 -16
- {openstef-3.2.28 → openstef-3.4.16}/openstef/metrics/metrics.py +11 -4
- {openstef-3.2.28 → openstef-3.4.16}/openstef/metrics/reporter.py +34 -4
- {openstef-3.2.28/openstef/metrics → openstef-3.4.16/openstef/model}/__init__.py +1 -1
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/basecase.py +1 -1
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/confidence_interval_applicator.py +17 -11
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/fallback.py +1 -1
- openstef-3.4.16/openstef/model/metamodels/__init__.py +3 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/metamodels/grouped_regressor.py +7 -7
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/metamodels/missing_values_handler.py +2 -1
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/model_creator.py +9 -28
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/objective.py +42 -52
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/objective_creator.py +4 -4
- openstef-3.4.16/openstef/model/regressors/__init__.py +3 -0
- openstef-3.4.16/openstef/model/regressors/arima.py +197 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/regressors/custom_regressor.py +7 -18
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/regressors/dazls.py +56 -22
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/regressors/lgbm.py +1 -1
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/regressors/linear.py +1 -1
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/regressors/regressor.py +3 -4
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/regressors/xgb.py +1 -1
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/regressors/xgb_quantile.py +15 -7
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/serializer.py +54 -35
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model/standard_deviation_generator.py +4 -6
- openstef-3.4.16/openstef/model_selection/__init__.py +3 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef/model_selection/model_selection.py +22 -14
- openstef-3.4.16/openstef/monitoring/__init__.py +3 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef/monitoring/performance_meter.py +2 -3
- {openstef-3.2.28 → openstef-3.4.16}/openstef/monitoring/teams.py +1 -1
- openstef-3.4.16/openstef/pipeline/__init__.py +3 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef/pipeline/create_basecase_forecast.py +22 -13
- {openstef-3.2.28 → openstef-3.4.16}/openstef/pipeline/create_component_forecast.py +42 -11
- {openstef-3.2.28 → openstef-3.4.16}/openstef/pipeline/create_forecast.py +50 -18
- {openstef-3.2.28 → openstef-3.4.16}/openstef/pipeline/optimize_hyperparameters.py +68 -34
- {openstef-3.2.28 → openstef-3.4.16}/openstef/pipeline/train_create_forecast_backtest.py +25 -14
- {openstef-3.2.28 → openstef-3.4.16}/openstef/pipeline/train_model.py +140 -63
- {openstef-3.2.28 → openstef-3.4.16}/openstef/pipeline/utils.py +5 -3
- openstef-3.4.16/openstef/postprocessing/__init__.py +3 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef/postprocessing/postprocessing.py +10 -23
- openstef-3.4.16/openstef/preprocessing/__init__.py +3 -0
- openstef-3.4.16/openstef/preprocessing/preprocessing.py +42 -0
- openstef-3.4.16/openstef/tasks/__init__.py +3 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef/tasks/calculate_kpi.py +8 -17
- {openstef-3.2.28 → openstef-3.4.16}/openstef/tasks/create_basecase_forecast.py +22 -2
- {openstef-3.2.28 → openstef-3.4.16}/openstef/tasks/create_components_forecast.py +32 -10
- openstef-3.4.16/openstef/tasks/create_forecast.py +137 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef/tasks/create_solar_forecast.py +2 -2
- {openstef-3.2.28 → openstef-3.4.16}/openstef/tasks/create_wind_forecast.py +2 -2
- {openstef-3.2.28 → openstef-3.4.16}/openstef/tasks/optimize_hyperparameters.py +32 -8
- {openstef-3.2.28 → openstef-3.4.16}/openstef/tasks/split_forecast.py +12 -13
- openstef-3.4.16/openstef/tasks/train_model.py +193 -0
- openstef-3.4.16/openstef/tasks/utils/__init__.py +3 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef/tasks/utils/dependencies.py +5 -5
- {openstef-3.2.28 → openstef-3.4.16}/openstef/tasks/utils/predictionjobloop.py +4 -5
- {openstef-3.2.28 → openstef-3.4.16}/openstef/tasks/utils/taskcontext.py +4 -4
- openstef-3.4.16/openstef/validation/__init__.py +3 -0
- openstef-3.4.16/openstef/validation/validation.py +300 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef.egg-info/PKG-INFO +56 -22
- {openstef-3.2.28 → openstef-3.4.16}/openstef.egg-info/SOURCES.txt +21 -5
- openstef-3.4.16/openstef.egg-info/requires.txt +18 -0
- {openstef-3.2.28 → openstef-3.4.16}/pyproject.toml +3 -3
- {openstef-3.2.28 → openstef-3.4.16}/setup.py +4 -9
- openstef-3.2.28/openstef/__main__.py +0 -51
- openstef-3.2.28/openstef/data/dutch_holidays_2020-2022.csv.license +0 -3
- openstef-3.2.28/openstef/data/pv_single_coefs.csv.license +0 -3
- openstef-3.2.28/openstef/feature_engineering/historic_features.py +0 -40
- openstef-3.2.28/openstef/model/metamodels/__init__.py +0 -3
- openstef-3.2.28/openstef/model/regressors/__init__.py +0 -3
- openstef-3.2.28/openstef/model/regressors/proloaf.py +0 -281
- openstef-3.2.28/openstef/model_selection/__init__.py +0 -3
- openstef-3.2.28/openstef/monitoring/__init__.py +0 -3
- openstef-3.2.28/openstef/pipeline/__init__.py +0 -3
- openstef-3.2.28/openstef/postprocessing/__init__.py +0 -3
- openstef-3.2.28/openstef/preprocessing/__init__.py +0 -3
- openstef-3.2.28/openstef/preprocessing/preprocessing.py +0 -27
- openstef-3.2.28/openstef/tasks/__init__.py +0 -3
- openstef-3.2.28/openstef/tasks/create_forecast.py +0 -92
- openstef-3.2.28/openstef/tasks/run_tracy.py +0 -147
- openstef-3.2.28/openstef/tasks/train_model.py +0 -124
- openstef-3.2.28/openstef/tasks/utils/__init__.py +0 -3
- openstef-3.2.28/openstef/validation/__init__.py +0 -3
- openstef-3.2.28/openstef/validation/validation.py +0 -405
- openstef-3.2.28/openstef.egg-info/requires.txt +0 -23
- {openstef-3.2.28 → openstef-3.4.16}/LICENSE +0 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef/data/dutch_holidays_2020-2022.csv +0 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef/data/pv_single_coefs.csv +0 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef.egg-info/dependency_links.txt +0 -0
- {openstef-3.2.28 → openstef-3.4.16}/openstef.egg-info/top_level.txt +0 -0
- {openstef-3.2.28 → openstef-3.4.16}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: openstef
|
3
|
-
Version: 3.
|
3
|
+
Version: 3.4.16
|
4
4
|
Summary: Open short term energy forecaster
|
5
5
|
Home-page: https://github.com/OpenSTEF/openstef
|
6
6
|
Author: Alliander N.V
|
@@ -10,17 +10,32 @@ Keywords: energy,forecasting,machinelearning
|
|
10
10
|
Classifier: Development Status :: 5 - Production/Stable
|
11
11
|
Classifier: Intended Audience :: Developers
|
12
12
|
Classifier: License :: OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)
|
13
|
-
Classifier: Programming Language :: Python :: 3.7
|
14
|
-
Classifier: Programming Language :: Python :: 3.8
|
15
13
|
Classifier: Programming Language :: Python :: 3.9
|
16
14
|
Classifier: Programming Language :: Python :: 3.10
|
17
|
-
Requires-Python: >=3.
|
15
|
+
Requires-Python: >=3.9.0
|
18
16
|
Description-Content-Type: text/markdown
|
19
|
-
Provides-Extra: proloaf
|
20
17
|
License-File: LICENSE
|
18
|
+
Requires-Dist: holidays==0.21
|
19
|
+
Requires-Dist: joblib==1.3.2
|
20
|
+
Requires-Dist: lightgbm~=3.3
|
21
|
+
Requires-Dist: matplotlib~=3.7
|
22
|
+
Requires-Dist: mlflow~=2.3
|
23
|
+
Requires-Dist: networkx~=3.1
|
24
|
+
Requires-Dist: optuna~=3.1
|
25
|
+
Requires-Dist: optuna-integration~=3.6
|
26
|
+
Requires-Dist: pandas~=2.2.0
|
27
|
+
Requires-Dist: plotly~=5.18
|
28
|
+
Requires-Dist: pvlib==0.9.4
|
29
|
+
Requires-Dist: pydantic~=2.4
|
30
|
+
Requires-Dist: pymsteams~=0.2.2
|
31
|
+
Requires-Dist: scikit-learn~=1.3
|
32
|
+
Requires-Dist: scipy~=1.10
|
33
|
+
Requires-Dist: statsmodels~=0.13.5
|
34
|
+
Requires-Dist: structlog<25,>=23.1
|
35
|
+
Requires-Dist: xgboost~=2.0
|
21
36
|
|
22
37
|
<!--
|
23
|
-
SPDX-FileCopyrightText: 2017-
|
38
|
+
SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
|
24
39
|
|
25
40
|
SPDX-License-Identifier: MPL-2.0
|
26
41
|
-->
|
@@ -39,20 +54,37 @@ SPDX-License-Identifier: MPL-2.0
|
|
39
54
|
[](https://sonarcloud.io/dashboard?id=OpenSTEF_openstef)
|
40
55
|
[](https://sonarcloud.io/dashboard?id=OpenSTEF_openstef)
|
41
56
|
[](https://bestpractices.coreinfrastructure.org/projects/5585)
|
57
|
+
[](https://pepy.tech/project/openstef)
|
58
|
+
[](https://pepy.tech/project/openstef)
|
42
59
|
|
43
60
|
# OpenSTEF
|
44
61
|
|
45
|
-
OpenSTEF is a Python package
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
62
|
+
OpenSTEF is a Python package designed for generating short-term forecasts in the energy sector. The repository includes all the essential components required for machine learning pipelines that facilitate the forecasting process. To utilize the package, users are required to furnish their own data storage and retrieval interface.
|
63
|
+
|
64
|
+
# Table of contents
|
65
|
+
- [OpenSTEF](#openstef)
|
66
|
+
- [Table of contents](#table-of-contents)
|
67
|
+
- [External information sources](#external-information-sources)
|
68
|
+
- [Installation](#installation)
|
69
|
+
- [Install the openstef package](#install-the-openstef-package)
|
70
|
+
- [Remark regarding installation within a **conda environment on Windows**:](#remark-regarding-installation-within-a-conda-environment-on-windows)
|
71
|
+
- [Usage](#usage)
|
72
|
+
- [Reference Implementation](#reference-implementation)
|
73
|
+
- [Openstef-dbc - Database connector for openstef](#openstef-dbc---database-connector-for-openstef)
|
74
|
+
- [Example notebooks](#example-notebooks)
|
75
|
+
- [License](#license)
|
76
|
+
- [Licenses third-party libraries](#licenses-third-party-libraries)
|
77
|
+
- [Contributing](#contributing)
|
78
|
+
- [Contact](#contact)
|
79
|
+
|
80
|
+
# External information sources
|
81
|
+
- [Documentation website](https://openstef.github.io/openstef/index.html);
|
82
|
+
- [Python package](https://pypi.org/project/openstef/);
|
83
|
+
- [Project website](https://www.lfenergy.org/projects/openstef/);
|
84
|
+
- [Documentation on dashboard](https://raw.githack.com/OpenSTEF/.github/main/profile/html/openstef_dashboard_doc.html);
|
85
|
+
- [Linux Foundation project page](https://openstef.github.io/openstef/index.html)
|
86
|
+
- [Video about OpenSTEF](https://www.lfenergy.org/forecasting-to-create-a-more-resilient-optimized-grid/);
|
87
|
+
- [Teams channel](https://teams.microsoft.com/l/team/19%3ac08a513650524fc988afb296cd0358cc%40thread.tacv2/conversations?groupId=bfcb763a-3a97-4938-81d7-b14512aa537d&tenantId=697f104b-d7cb-48c8-ac9f-bd87105bafdc)
|
56
88
|
|
57
89
|
# Installation
|
58
90
|
|
@@ -62,10 +94,6 @@ Want to join the discussion? Join our [Teams channel](https://teams.microsoft.co
|
|
62
94
|
pip install openstef
|
63
95
|
```
|
64
96
|
|
65
|
-
_**Optional**_: if you would like to use the proloaf model with OpenSTEF install the proloaf dependencies by running:
|
66
|
-
```shell
|
67
|
-
pip install openstef[proloaf]
|
68
|
-
```
|
69
97
|
### Remark regarding installation within a **conda environment on Windows**:
|
70
98
|
|
71
99
|
A version of the pywin32 package will be installed as a secondary dependency along with the installation of the openstef package. Since conda relies on an old version of pywin32, the new installation can break conda's functionality. The following command can solve this issue:
|
@@ -86,9 +114,15 @@ python -m openstef task <task_name>
|
|
86
114
|
A complete implementation including databases, user interface, example data, etc. is available at: https://github.com/OpenSTEF/openstef-reference
|
87
115
|
|
88
116
|

|
89
|
-
Screenshot of the operational dashboard showing the key functionality of OpenSTEF.
|
117
|
+
Screenshot of the operational dashboard showing the key functionality of OpenSTEF.
|
90
118
|
Dashboard documentation can be found [here](https://github.com/OpenSTEF/.github/blob/main/profile/README.md).
|
91
119
|
|
120
|
+
## Openstef-dbc - Database connector for openstef
|
121
|
+
This repository provides an interface to OpenSTEF (reference) databases. The repository can be found [here](https://github.com/OpenSTEF/openstef-dbc).
|
122
|
+
|
123
|
+
## Example notebooks
|
124
|
+
To help you get started, a set of fundamental example notebooks has been created. You can access these offline examples [here](https://github.com/OpenSTEF/openstef-offline-example).
|
125
|
+
|
92
126
|
## License
|
93
127
|
This project is licensed under the Mozilla Public License, version 2.0 - see LICENSE for details.
|
94
128
|
|
@@ -1,5 +1,5 @@
|
|
1
1
|
<!--
|
2
|
-
SPDX-FileCopyrightText: 2017-
|
2
|
+
SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
|
3
3
|
|
4
4
|
SPDX-License-Identifier: MPL-2.0
|
5
5
|
-->
|
@@ -18,20 +18,37 @@ SPDX-License-Identifier: MPL-2.0
|
|
18
18
|
[](https://sonarcloud.io/dashboard?id=OpenSTEF_openstef)
|
19
19
|
[](https://sonarcloud.io/dashboard?id=OpenSTEF_openstef)
|
20
20
|
[](https://bestpractices.coreinfrastructure.org/projects/5585)
|
21
|
+
[](https://pepy.tech/project/openstef)
|
22
|
+
[](https://pepy.tech/project/openstef)
|
21
23
|
|
22
24
|
# OpenSTEF
|
23
25
|
|
24
|
-
OpenSTEF is a Python package
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
26
|
+
OpenSTEF is a Python package designed for generating short-term forecasts in the energy sector. The repository includes all the essential components required for machine learning pipelines that facilitate the forecasting process. To utilize the package, users are required to furnish their own data storage and retrieval interface.
|
27
|
+
|
28
|
+
# Table of contents
|
29
|
+
- [OpenSTEF](#openstef)
|
30
|
+
- [Table of contents](#table-of-contents)
|
31
|
+
- [External information sources](#external-information-sources)
|
32
|
+
- [Installation](#installation)
|
33
|
+
- [Install the openstef package](#install-the-openstef-package)
|
34
|
+
- [Remark regarding installation within a **conda environment on Windows**:](#remark-regarding-installation-within-a-conda-environment-on-windows)
|
35
|
+
- [Usage](#usage)
|
36
|
+
- [Reference Implementation](#reference-implementation)
|
37
|
+
- [Openstef-dbc - Database connector for openstef](#openstef-dbc---database-connector-for-openstef)
|
38
|
+
- [Example notebooks](#example-notebooks)
|
39
|
+
- [License](#license)
|
40
|
+
- [Licenses third-party libraries](#licenses-third-party-libraries)
|
41
|
+
- [Contributing](#contributing)
|
42
|
+
- [Contact](#contact)
|
43
|
+
|
44
|
+
# External information sources
|
45
|
+
- [Documentation website](https://openstef.github.io/openstef/index.html);
|
46
|
+
- [Python package](https://pypi.org/project/openstef/);
|
47
|
+
- [Project website](https://www.lfenergy.org/projects/openstef/);
|
48
|
+
- [Documentation on dashboard](https://raw.githack.com/OpenSTEF/.github/main/profile/html/openstef_dashboard_doc.html);
|
49
|
+
- [Linux Foundation project page](https://openstef.github.io/openstef/index.html)
|
50
|
+
- [Video about OpenSTEF](https://www.lfenergy.org/forecasting-to-create-a-more-resilient-optimized-grid/);
|
51
|
+
- [Teams channel](https://teams.microsoft.com/l/team/19%3ac08a513650524fc988afb296cd0358cc%40thread.tacv2/conversations?groupId=bfcb763a-3a97-4938-81d7-b14512aa537d&tenantId=697f104b-d7cb-48c8-ac9f-bd87105bafdc)
|
35
52
|
|
36
53
|
# Installation
|
37
54
|
|
@@ -41,10 +58,6 @@ Want to join the discussion? Join our [Teams channel](https://teams.microsoft.co
|
|
41
58
|
pip install openstef
|
42
59
|
```
|
43
60
|
|
44
|
-
_**Optional**_: if you would like to use the proloaf model with OpenSTEF install the proloaf dependencies by running:
|
45
|
-
```shell
|
46
|
-
pip install openstef[proloaf]
|
47
|
-
```
|
48
61
|
### Remark regarding installation within a **conda environment on Windows**:
|
49
62
|
|
50
63
|
A version of the pywin32 package will be installed as a secondary dependency along with the installation of the openstef package. Since conda relies on an old version of pywin32, the new installation can break conda's functionality. The following command can solve this issue:
|
@@ -65,9 +78,15 @@ python -m openstef task <task_name>
|
|
65
78
|
A complete implementation including databases, user interface, example data, etc. is available at: https://github.com/OpenSTEF/openstef-reference
|
66
79
|
|
67
80
|

|
68
|
-
Screenshot of the operational dashboard showing the key functionality of OpenSTEF.
|
81
|
+
Screenshot of the operational dashboard showing the key functionality of OpenSTEF.
|
69
82
|
Dashboard documentation can be found [here](https://github.com/OpenSTEF/.github/blob/main/profile/README.md).
|
70
83
|
|
84
|
+
## Openstef-dbc - Database connector for openstef
|
85
|
+
This repository provides an interface to OpenSTEF (reference) databases. The repository can be found [here](https://github.com/OpenSTEF/openstef-dbc).
|
86
|
+
|
87
|
+
## Example notebooks
|
88
|
+
To help you get started, a set of fundamental example notebooks has been created. You can access these offline examples [here](https://github.com/OpenSTEF/openstef-offline-example).
|
89
|
+
|
71
90
|
## License
|
72
91
|
This project is licensed under the Mozilla Public License, version 2.0 - see LICENSE for details.
|
73
92
|
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# SPDX-FileCopyrightText: 2017-
|
1
|
+
# SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com> # noqa E501>
|
2
2
|
#
|
3
3
|
# SPDX-License-Identifier: MPL-2.0
|
4
4
|
|
Binary file
|
openstef-3.4.16/openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_features.z
ADDED
Binary file
|
Binary file
|
Binary file
|
Binary file
|
@@ -0,0 +1,14 @@
|
|
1
|
+
"
|
2
|
+
# Model details : dazls_model_test_eval
|
3
|
+
|
4
|
+
## Description
|
5
|
+
**Model Name**: dazls_model_test_eval
|
6
|
+
**Author**: KTP, Alliander
|
7
|
+
**Model type**: Energy splitting model
|
8
|
+
**Model Architecture**: KNeighestNeighbours
|
9
|
+
**Date**: 2024-01-31
|
10
|
+
|
11
|
+
## Intended use
|
12
|
+
This is a DAZLs model aimed at determining the energy splits for substations.
|
13
|
+
Each of these splits are determined based on a set of features that are available in production,
|
14
|
+
and in this case have their origin in the Dutch energy grid.
|
Binary file
|
@@ -1,3 +1,3 @@
|
|
1
|
-
# SPDX-FileCopyrightText: 2017-
|
1
|
+
# SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com> # noqa E501>
|
2
2
|
#
|
3
3
|
# SPDX-License-Identifier: MPL-2.0
|
@@ -0,0 +1,99 @@
|
|
1
|
+
# SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com> # noqa E501>
|
2
|
+
#
|
3
|
+
# SPDX-License-Identifier: MPL-2.0
|
4
|
+
"""Specifies the split function dataclass."""
|
5
|
+
import inspect
|
6
|
+
import json
|
7
|
+
from importlib import import_module
|
8
|
+
from typing import Any, Sequence, TypeVar, Union
|
9
|
+
|
10
|
+
from pydantic.v1 import BaseModel
|
11
|
+
|
12
|
+
DataPrepClass = TypeVar("DataPrepClass")
|
13
|
+
|
14
|
+
|
15
|
+
class DataPrepDataClass(BaseModel):
|
16
|
+
"""Class that allows to specify a custom class to prepare the data (feature engineering , etc ...)."""
|
17
|
+
|
18
|
+
klass: Union[str, type[DataPrepClass]]
|
19
|
+
arguments: Union[
|
20
|
+
str, dict[str, Any]
|
21
|
+
] # JSON string holding the function parameters or dict
|
22
|
+
|
23
|
+
def __getitem__(self, key: str):
|
24
|
+
"""Allows us to use subscription to get the items from the object."""
|
25
|
+
return getattr(self, key)
|
26
|
+
|
27
|
+
def __setitem__(self, key: str, value: any):
|
28
|
+
"""Allows us to use subscription to set the items in the object."""
|
29
|
+
if hasattr(self, key):
|
30
|
+
self.__dict__[key] = value
|
31
|
+
else:
|
32
|
+
raise AttributeError(f"{key} not an attribute of prediction job.")
|
33
|
+
|
34
|
+
def _load_klass(
|
35
|
+
self, required_arguments: Sequence[str] = None
|
36
|
+
) -> type[DataPrepClass]:
|
37
|
+
"""Load data prep class from path.
|
38
|
+
|
39
|
+
Args:
|
40
|
+
klass_path (str): The path to the data prep class
|
41
|
+
|
42
|
+
Returns:
|
43
|
+
klass (type[AbstractDataPreparation]): The loaded data prep class
|
44
|
+
|
45
|
+
"""
|
46
|
+
if isinstance(self.klass, str):
|
47
|
+
path_elements = self.klass.split(".")
|
48
|
+
module_path = ".".join(path_elements[:-1])
|
49
|
+
module = import_module(module_path)
|
50
|
+
klass_name = path_elements[-1]
|
51
|
+
klass = getattr(module, klass_name)
|
52
|
+
else:
|
53
|
+
klass = self.klass
|
54
|
+
|
55
|
+
# Check that the klass accepts mandatory arguments
|
56
|
+
if not inspect.isclass(klass):
|
57
|
+
raise ValueError("The loaded object is not a class: {klass!r}")
|
58
|
+
|
59
|
+
if required_arguments is not None:
|
60
|
+
klass_params = set(inspect.signature(klass).parameters)
|
61
|
+
|
62
|
+
if len(set(required_arguments) - klass_params) > 0:
|
63
|
+
raise ValueError(
|
64
|
+
"The loaded data prep class does not have the required arguments"
|
65
|
+
)
|
66
|
+
|
67
|
+
return klass
|
68
|
+
|
69
|
+
def _load_arguments(self) -> dict[str, Any]:
|
70
|
+
"""Load the arguments.
|
71
|
+
|
72
|
+
Convert the arguments from JSON if they are given as strings or simply return them otherwise.
|
73
|
+
|
74
|
+
Returns:
|
75
|
+
arguments (dict[str, Any]): The additional arguments to be passed to the class
|
76
|
+
|
77
|
+
"""
|
78
|
+
if isinstance(self.arguments, str):
|
79
|
+
return json.loads(self.arguments)
|
80
|
+
else:
|
81
|
+
return self.arguments
|
82
|
+
|
83
|
+
def load(
|
84
|
+
self, required_arguments: Sequence[str] = None
|
85
|
+
) -> tuple[type[DataPrepClass], dict[str, Any]]:
|
86
|
+
"""Load the function and its arguments.
|
87
|
+
|
88
|
+
If the function and the arguments are given as strings in the instane attributes, load them as Python objects
|
89
|
+
otherwise just return them from the instance attributes.
|
90
|
+
|
91
|
+
Args:
|
92
|
+
required_arguments (list[str]): list of arguments the loaded class must have
|
93
|
+
|
94
|
+
Returns:
|
95
|
+
- class (type[AbstractDataPreparation])
|
96
|
+
- arguments (dict[str, Any])
|
97
|
+
|
98
|
+
"""
|
99
|
+
return self._load_klass(required_arguments), self._load_arguments()
|
@@ -1,10 +1,10 @@
|
|
1
|
-
# SPDX-FileCopyrightText: 2017-
|
1
|
+
# SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
|
2
2
|
#
|
3
3
|
# SPDX-License-Identifier: MPL-2.0
|
4
4
|
"""Specifies the dataclass for model specifications."""
|
5
5
|
from typing import Optional, Union
|
6
6
|
|
7
|
-
from pydantic import BaseModel
|
7
|
+
from pydantic.v1 import BaseModel
|
8
8
|
|
9
9
|
|
10
10
|
class ModelSpecificationDataClass(BaseModel):
|
@@ -1,13 +1,15 @@
|
|
1
|
-
# SPDX-FileCopyrightText: 2017-
|
1
|
+
# SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com> # noqa E501>
|
2
2
|
#
|
3
3
|
# SPDX-License-Identifier: MPL-2.0
|
4
4
|
"""Specifies the prediction job dataclass."""
|
5
|
-
from typing import
|
5
|
+
from typing import Optional, Union
|
6
6
|
|
7
|
-
from pydantic import BaseModel
|
7
|
+
from pydantic.v1 import BaseModel
|
8
8
|
|
9
|
-
from .
|
10
|
-
from .
|
9
|
+
from openstef.data_classes.data_prep import DataPrepDataClass
|
10
|
+
from openstef.data_classes.model_specifications import ModelSpecificationDataClass
|
11
|
+
from openstef.data_classes.split_function import SplitFuncDataClass
|
12
|
+
from openstef.enums import PipelineType
|
11
13
|
|
12
14
|
|
13
15
|
class PredictionJobDataClass(BaseModel):
|
@@ -17,61 +19,60 @@ class PredictionJobDataClass(BaseModel):
|
|
17
19
|
"""The predictions job id (often abreviated as pid)."""
|
18
20
|
model: str
|
19
21
|
"""The model type that should be used.
|
20
|
-
|
22
|
+
|
21
23
|
Options are:
|
22
24
|
- ``"xgb"``
|
23
25
|
- ``"xgb_quantile"``
|
24
26
|
- ``"lgb"``
|
25
27
|
- ``"linear"``
|
26
|
-
|
27
|
-
|
28
|
+
|
28
29
|
If unsure what to pick, choose ``"xgb"``.
|
29
|
-
|
30
|
+
|
30
31
|
"""
|
31
32
|
forecast_type: str
|
32
33
|
"""The type of forecasts that should be made.
|
33
|
-
|
34
|
+
|
34
35
|
Options are:
|
35
36
|
- ``"demand"``
|
36
37
|
- ``"wind"``
|
37
|
-
- ``"basecase"``
|
38
|
-
|
38
|
+
- ``"basecase"``
|
39
|
+
|
39
40
|
If unsure what to pick, choose ``"demand"``.
|
40
|
-
|
41
|
+
|
41
42
|
"""
|
42
|
-
horizon_minutes: int
|
43
|
-
"""The horizon of the desired forecast in minutes."""
|
43
|
+
horizon_minutes: Optional[int] = 2880
|
44
|
+
"""The horizon of the desired forecast in minutes used in tasks. Defaults to 2880 minutes (i.e. 2 days)."""
|
44
45
|
resolution_minutes: int
|
45
46
|
"""The resolution of the desired forecast in minutes."""
|
46
|
-
lat: float
|
47
|
-
"""Latitude of the forecasted location in degrees."""
|
48
|
-
lon: float
|
49
|
-
"""Longitude of the forecasted location in degrees."""
|
47
|
+
lat: Optional[float] = 52.132633
|
48
|
+
"""Latitude of the forecasted location in degrees. Used for fetching weather data in tasks, calculating derrived features and component splitting."""
|
49
|
+
lon: Optional[float] = 5.291266
|
50
|
+
"""Longitude of the forecasted location in degrees. Used for fetching weather data in tasks, calculating derrived features and component splitting."""
|
50
51
|
name: str
|
51
52
|
"""Name of the forecast, e.g. the location name."""
|
52
53
|
train_components: Optional[bool]
|
53
54
|
"""Whether splitting the forecasts in wind, solar, rest is desired."""
|
54
55
|
description: Optional[str]
|
55
56
|
"""Optional description of the prediction job for human reference."""
|
56
|
-
quantiles: Optional[
|
57
|
+
quantiles: Optional[list[float]]
|
57
58
|
"""Quantiles that have to be forecasted."""
|
58
59
|
train_split_func: Optional[SplitFuncDataClass]
|
59
60
|
"""Optional custom splitting function for operational procces."""
|
60
61
|
backtest_split_func: Optional[SplitFuncDataClass]
|
61
62
|
"""Optional custom splitting function for backtesting."""
|
62
|
-
train_horizons_minutes: Optional[
|
63
|
+
train_horizons_minutes: Optional[list[int]]
|
63
64
|
"""List of horizons that should be taken into account during training."""
|
64
65
|
default_modelspecs: Optional[ModelSpecificationDataClass]
|
65
66
|
"""Default model specifications"""
|
66
67
|
save_train_forecasts: bool = False
|
67
68
|
"""Indicate wether the forecasts produced during the training process should be saved."""
|
68
|
-
|
69
|
+
completeness_threshold: float = 0.5
|
69
70
|
"""Minimum fraction of data that should be available for making a regular forecast."""
|
70
71
|
minimal_table_length: int = 100
|
71
72
|
"""Minimum length (in rows) of the forecast input for making a regular forecast."""
|
72
|
-
|
73
|
-
"""Number of
|
74
|
-
depends_on: Optional[
|
73
|
+
flatliner_threshold_minutes: int = 1440
|
74
|
+
"""Number of minutes that the load has to be constant to detect a flatliner. """
|
75
|
+
depends_on: Optional[list[Union[int, str]]]
|
75
76
|
"""Link to another prediction job on which this prediction job might depend."""
|
76
77
|
sid: Optional[str]
|
77
78
|
"""Only required for create_solar_forecast task"""
|
@@ -81,6 +82,16 @@ class PredictionJobDataClass(BaseModel):
|
|
81
82
|
"""Only required for create_wind_forecast task"""
|
82
83
|
hub_height: Optional[float]
|
83
84
|
"""Only required for create_wind_forecast task"""
|
85
|
+
pipelines_to_run: list[PipelineType] = [
|
86
|
+
PipelineType.TRAIN,
|
87
|
+
PipelineType.HYPER_PARMATERS,
|
88
|
+
PipelineType.FORECAST,
|
89
|
+
]
|
90
|
+
"""The pipelines to run for this pj"""
|
91
|
+
alternative_forecast_model_pid: Optional[Union[int, str]]
|
92
|
+
"""The pid that references another prediction job from which the model should be used for making forecasts."""
|
93
|
+
data_prep_class: Optional[DataPrepDataClass]
|
94
|
+
"""The import string for the custom data prep class"""
|
84
95
|
|
85
96
|
class Config:
|
86
97
|
"""Pydantic model configuration.
|
@@ -1,13 +1,13 @@
|
|
1
|
-
# SPDX-FileCopyrightText: 2017-
|
1
|
+
# SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com> # noqa E501>
|
2
2
|
#
|
3
3
|
# SPDX-License-Identifier: MPL-2.0
|
4
4
|
"""Specifies the split function dataclass."""
|
5
5
|
import inspect
|
6
6
|
import json
|
7
7
|
from importlib import import_module
|
8
|
-
from typing import Any, Callable,
|
8
|
+
from typing import Any, Callable, Sequence, Union
|
9
9
|
|
10
|
-
from pydantic import BaseModel
|
10
|
+
from pydantic.v1 import BaseModel
|
11
11
|
|
12
12
|
|
13
13
|
class SplitFuncDataClass(BaseModel):
|
@@ -15,7 +15,7 @@ class SplitFuncDataClass(BaseModel):
|
|
15
15
|
|
16
16
|
function: Union[str, Callable]
|
17
17
|
arguments: Union[
|
18
|
-
str,
|
18
|
+
str, dict[str, Any]
|
19
19
|
] # JSON string holding the function parameters or dict
|
20
20
|
|
21
21
|
def __getitem__(self, key: str):
|
@@ -64,13 +64,13 @@ class SplitFuncDataClass(BaseModel):
|
|
64
64
|
|
65
65
|
return split_func
|
66
66
|
|
67
|
-
def _load_arguments(self) ->
|
67
|
+
def _load_arguments(self) -> dict[str, Any]:
|
68
68
|
"""Load the arguments.
|
69
69
|
|
70
70
|
Convert the arguments from JSON if they are given as strings or simply return them otherwise.
|
71
71
|
|
72
72
|
Returns:
|
73
|
-
arguments (
|
73
|
+
arguments (dict[str, Any]): The additional arguments to be passed to he function
|
74
74
|
|
75
75
|
"""
|
76
76
|
if isinstance(self.arguments, str):
|
@@ -80,18 +80,18 @@ class SplitFuncDataClass(BaseModel):
|
|
80
80
|
|
81
81
|
def load(
|
82
82
|
self, required_arguments: Sequence[str] = None
|
83
|
-
) ->
|
83
|
+
) -> tuple[Callable, dict[str, Any]]:
|
84
84
|
"""Load the function and its arguments.
|
85
85
|
|
86
86
|
If the function and the arguments are given as strings in the instane attributes, load them as Python objects
|
87
87
|
otherwise just return them from the instance attributes.
|
88
88
|
|
89
89
|
Args:
|
90
|
-
required_arguments (
|
90
|
+
required_arguments (list[str]): list of arguments the loaded function must have
|
91
91
|
|
92
92
|
Returns:
|
93
93
|
- function (Callable)
|
94
|
-
- arguments (
|
94
|
+
- arguments (dict[str, Any])
|
95
95
|
|
96
96
|
"""
|
97
97
|
return self._load_split_function(required_arguments), self._load_arguments()
|