openrouter-provider 0.0.5__tar.gz → 0.0.7__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of openrouter-provider might be problematic. Click here for more details.
- {openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/PKG-INFO +1 -1
- {openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/pyproject.toml +1 -1
- {openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/src/OpenRouterProvider/Chatbot_manager.py +82 -1
- openrouter_provider-0.0.7/src/OpenRouterProvider/OpenRouterProvider.py +202 -0
- {openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/src/openrouter_provider.egg-info/PKG-INFO +1 -1
- openrouter_provider-0.0.5/src/OpenRouterProvider/OpenRouterProvider.py +0 -112
- {openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/README.md +0 -0
- {openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/setup.cfg +0 -0
- {openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/src/OpenRouterProvider/Chat_message.py +0 -0
- {openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/src/OpenRouterProvider/LLMs.py +0 -0
- {openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/src/OpenRouterProvider/Tool.py +0 -0
- {openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/src/__init__.py +0 -0
- {openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/src/openrouter_provider.egg-info/SOURCES.txt +0 -0
- {openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/src/openrouter_provider.egg-info/dependency_links.txt +0 -0
- {openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/src/openrouter_provider.egg-info/requires.txt +0 -0
- {openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/src/openrouter_provider.egg-info/top_level.txt +0 -0
{openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/src/OpenRouterProvider/Chatbot_manager.py
RENAMED
|
@@ -5,6 +5,8 @@ from .LLMs import LLMModel
|
|
|
5
5
|
from dotenv import load_dotenv
|
|
6
6
|
import time
|
|
7
7
|
import json
|
|
8
|
+
from typing import Iterator, AsyncIterator
|
|
9
|
+
|
|
8
10
|
|
|
9
11
|
_base_system_prompt = """
|
|
10
12
|
It's [TIME] today.
|
|
@@ -120,4 +122,83 @@ class Chatbot_manager:
|
|
|
120
122
|
self._memory.append(reply)
|
|
121
123
|
|
|
122
124
|
return reply
|
|
123
|
-
|
|
125
|
+
|
|
126
|
+
def invoke_stream(self, model: LLMModel, query: Chat_message, tools: list[tool_model]=[], provider:ProviderConfig=None) -> Iterator[str]:
|
|
127
|
+
self._memory.append(query)
|
|
128
|
+
client = OpenRouterProvider()
|
|
129
|
+
generator = client.invoke_stream(
|
|
130
|
+
model=model,
|
|
131
|
+
system_prompt=self._system_prompt,
|
|
132
|
+
querys=self._memory,
|
|
133
|
+
tools=self.tools + tools,
|
|
134
|
+
provider=provider
|
|
135
|
+
)
|
|
136
|
+
|
|
137
|
+
text = ""
|
|
138
|
+
for token in generator:
|
|
139
|
+
text += token.choices[0].delta.content
|
|
140
|
+
yield token.choices[0].delta.content
|
|
141
|
+
|
|
142
|
+
self._memory.append(Chat_message(text=text, role=Role.ai, answerdBy=LLMModel))
|
|
143
|
+
|
|
144
|
+
async def async_invoke(self, model: LLMModel, query: Chat_message, tools: list[tool_model] = [], provider: ProviderConfig = None) -> Chat_message:
|
|
145
|
+
self._memory.append(query)
|
|
146
|
+
client = OpenRouterProvider()
|
|
147
|
+
reply = await client.async_invoke(
|
|
148
|
+
model=model,
|
|
149
|
+
system_prompt=self._system_prompt,
|
|
150
|
+
querys=self._memory,
|
|
151
|
+
tools=self.tools + tools,
|
|
152
|
+
provider=provider
|
|
153
|
+
)
|
|
154
|
+
reply.answeredBy = model
|
|
155
|
+
self._memory.append(reply)
|
|
156
|
+
|
|
157
|
+
if reply.tool_calls:
|
|
158
|
+
for requested_tool in reply.tool_calls:
|
|
159
|
+
args = requested_tool.arguments
|
|
160
|
+
if isinstance(args, str):
|
|
161
|
+
args = json.loads(args)
|
|
162
|
+
|
|
163
|
+
for tool in (self.tools + tools):
|
|
164
|
+
if tool.name == requested_tool.name:
|
|
165
|
+
result = tool(**args)
|
|
166
|
+
requested_tool.result = result
|
|
167
|
+
break
|
|
168
|
+
else:
|
|
169
|
+
print("Tool Not found", requested_tool.name)
|
|
170
|
+
return reply
|
|
171
|
+
|
|
172
|
+
reply = await client.async_invoke(
|
|
173
|
+
model=model,
|
|
174
|
+
system_prompt=self._system_prompt,
|
|
175
|
+
querys=self._memory,
|
|
176
|
+
tools=self.tools + tools,
|
|
177
|
+
provider=provider
|
|
178
|
+
)
|
|
179
|
+
reply.answeredBy = model
|
|
180
|
+
self._memory.append(reply)
|
|
181
|
+
|
|
182
|
+
return reply
|
|
183
|
+
|
|
184
|
+
async def async_invoke_stream(self, model: LLMModel, query: Chat_message, tools: list[tool_model] = [], provider: ProviderConfig = None) -> AsyncIterator[str]:
|
|
185
|
+
self._memory.append(query)
|
|
186
|
+
client = OpenRouterProvider()
|
|
187
|
+
|
|
188
|
+
stream = client.async_invoke_stream(
|
|
189
|
+
model=model,
|
|
190
|
+
system_prompt=self._system_prompt,
|
|
191
|
+
querys=self._memory,
|
|
192
|
+
tools=self.tools + tools,
|
|
193
|
+
provider=provider
|
|
194
|
+
)
|
|
195
|
+
|
|
196
|
+
text = ""
|
|
197
|
+
async for chunk in stream:
|
|
198
|
+
delta = chunk.choices[0].delta.content or ""
|
|
199
|
+
text += delta
|
|
200
|
+
yield delta
|
|
201
|
+
|
|
202
|
+
self._memory.append(Chat_message(text=text, role=Role.ai, answerdBy=model))
|
|
203
|
+
|
|
204
|
+
|
|
@@ -0,0 +1,202 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
from .Chat_message import *
|
|
3
|
+
from .Tool import tool_model
|
|
4
|
+
from .LLMs import *
|
|
5
|
+
|
|
6
|
+
from openai import OpenAI, AsyncOpenAI
|
|
7
|
+
from openai.types.chat import ChatCompletionChunk
|
|
8
|
+
from dotenv import load_dotenv
|
|
9
|
+
import os, time
|
|
10
|
+
from dataclasses import dataclass, field, asdict
|
|
11
|
+
from typing import List, Optional, Literal, Iterator, AsyncIterator
|
|
12
|
+
from pprint import pprint
|
|
13
|
+
|
|
14
|
+
# エラーのみ表示、詳細なトレースバック付き
|
|
15
|
+
logging.basicConfig(level=logging.ERROR, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
16
|
+
logger = logging.getLogger(__name__)
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
@dataclass
|
|
20
|
+
class ProviderConfig:
|
|
21
|
+
order: Optional[List[str]] = None
|
|
22
|
+
allow_fallbacks: bool = None
|
|
23
|
+
require_parameters: bool = None
|
|
24
|
+
data_collection: Literal["allow", "deny"] = None
|
|
25
|
+
only: Optional[List[str]] = None
|
|
26
|
+
ignore: Optional[List[str]] = None
|
|
27
|
+
quantizations: Optional[List[str]] = None
|
|
28
|
+
sort: Optional[Literal["price", "throughput"]] = None
|
|
29
|
+
max_price: Optional[dict] = None
|
|
30
|
+
|
|
31
|
+
def to_dict(self) -> dict:
|
|
32
|
+
return {k: v for k, v in asdict(self).items() if v is not None}
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class OpenRouterProvider:
|
|
36
|
+
def __init__(self) -> None:
|
|
37
|
+
load_dotenv()
|
|
38
|
+
api_key = os.getenv("OPENROUTER_API_KEY")
|
|
39
|
+
if not api_key:
|
|
40
|
+
logger.error("OPENROUTER_API_KEY is not set in environment variables.")
|
|
41
|
+
self.client = OpenAI(
|
|
42
|
+
base_url="https://openrouter.ai/api/v1",
|
|
43
|
+
api_key=api_key,
|
|
44
|
+
)
|
|
45
|
+
self.async_client = AsyncOpenAI(
|
|
46
|
+
base_url="https://openrouter.ai/api/v1",
|
|
47
|
+
api_key=api_key,
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
def make_prompt(self, system_prompt: Chat_message,
|
|
51
|
+
querys: list[Chat_message]) -> list[dict]:
|
|
52
|
+
messages = [{"role": "system", "content": system_prompt.text}]
|
|
53
|
+
|
|
54
|
+
for query in querys:
|
|
55
|
+
if query.role == Role.user:
|
|
56
|
+
if query.images is None:
|
|
57
|
+
messages.append({"role": "user", "content": query.text})
|
|
58
|
+
else:
|
|
59
|
+
content = [{"type": "text", "text": query.text}]
|
|
60
|
+
for img in query.images[:50]:
|
|
61
|
+
content.append(
|
|
62
|
+
{"type": "image_url",
|
|
63
|
+
"image_url": {"url": f"data:image/jpeg;base64,{img}"}})
|
|
64
|
+
messages.append({"role": "user", "content": content})
|
|
65
|
+
|
|
66
|
+
elif query.role == Role.ai or query.role == Role.tool:
|
|
67
|
+
assistant_msg = {"role": "assistant"}
|
|
68
|
+
assistant_msg["content"] = query.text or None
|
|
69
|
+
|
|
70
|
+
if query.tool_calls:
|
|
71
|
+
assistant_msg["tool_calls"] = [
|
|
72
|
+
{
|
|
73
|
+
"id": str(t.id),
|
|
74
|
+
"type": "function",
|
|
75
|
+
"function": {
|
|
76
|
+
"name": t.name,
|
|
77
|
+
"arguments": t.arguments
|
|
78
|
+
}
|
|
79
|
+
}
|
|
80
|
+
for t in query.tool_calls
|
|
81
|
+
]
|
|
82
|
+
messages.append(assistant_msg)
|
|
83
|
+
|
|
84
|
+
for t in query.tool_calls:
|
|
85
|
+
messages.append({
|
|
86
|
+
"role": "tool",
|
|
87
|
+
"tool_call_id": str(t.id),
|
|
88
|
+
"content": str(t.result)
|
|
89
|
+
})
|
|
90
|
+
|
|
91
|
+
return messages
|
|
92
|
+
|
|
93
|
+
def invoke(self, model: LLMModel, system_prompt: Chat_message, querys: list[Chat_message], tools: list[tool_model] = [], provider: ProviderConfig = None) -> Chat_message:
|
|
94
|
+
try:
|
|
95
|
+
messages = self.make_prompt(system_prompt, querys)
|
|
96
|
+
|
|
97
|
+
tool_defs = [tool.tool_definition for tool in tools] if tools else None
|
|
98
|
+
provider_dict = provider.to_dict() if provider else None
|
|
99
|
+
|
|
100
|
+
response = self.client.chat.completions.create(
|
|
101
|
+
model=model.name,
|
|
102
|
+
messages=messages,
|
|
103
|
+
tools=tool_defs,
|
|
104
|
+
extra_body={"provider": provider_dict}
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
reply = Chat_message(text=response.choices[0].message.content, role=Role.ai, raw_response=response)
|
|
108
|
+
|
|
109
|
+
if response.choices[0].message.tool_calls:
|
|
110
|
+
reply.role = Role.tool
|
|
111
|
+
for tool in response.choices[0].message.tool_calls:
|
|
112
|
+
reply.tool_calls.append(ToolCall(id=tool.id, name=tool.function.name, arguments=tool.function.arguments))
|
|
113
|
+
return reply
|
|
114
|
+
|
|
115
|
+
except Exception as e:
|
|
116
|
+
logger.exception(f"An error occurred while invoking the model: {e.__class__.__name__}: {str(e)}")
|
|
117
|
+
return Chat_message(text="Fail to get response. Please see the error message.", role=Role.ai, raw_response=None)
|
|
118
|
+
|
|
119
|
+
def invoke_stream(self, model: LLMModel, system_prompt: Chat_message, querys: list[Chat_message], tools: list[tool_model] = [], provider: ProviderConfig = None) -> Iterator[ChatCompletionChunk]:
|
|
120
|
+
# chunk example
|
|
121
|
+
# ChatCompletionChunk(id='gen-1746748260-mdKZLTs9QY7MmUxWKb8V', choices=[Choice(delta=ChoiceDelta(content='!', function_call=None, refusal=None, role='assistant', tool_calls=None), finish_reason=None, index=0, logprobs=None, native_finish_reason=None)], created=1746748260, model='openai/gpt-4o-mini', object='chat.completion.chunk', service_tier=None, system_fingerprint='fp_e2f22fdd96', usage=None, provider='OpenAI')
|
|
122
|
+
|
|
123
|
+
# ChatCompletionChunk(id='gen-1746748260-mdKZLTs9QY7MmUxWKb8V', choices=[Choice(delta=ChoiceDelta(content='', function_call=None, refusal=None, role='assistant', tool_calls=None), finish_reason='stop', index=0, logprobs=None, native_finish_reason='stop')], created=1746748260, model='openai/gpt-4o-mini', object='chat.completion.chunk', service_tier=None, system_fingerprint='fp_e2f22fdd96', usage=None, provider='OpenAI')
|
|
124
|
+
|
|
125
|
+
# ChatCompletionChunk(id='gen-1746748260-mdKZLTs9QY7MmUxWKb8V', choices=[Choice(delta=ChoiceDelta(content='', function_call=None, refusal=None, role='assistant', tool_calls=None), finish_reason=None, index=0, logprobs=None, native_finish_reason=None)], created=1746748260, model='openai/gpt-4o-mini', object='chat.completion.chunk', service_tier=None, system_fingerprint=None, usage=CompletionUsage(completion_tokens=54, prompt_tokens=61, total_tokens=115, completion_tokens_details=CompletionTokensDetails(reasoning_tokens=0), prompt_tokens_details={'cached_tokens': 0}), provider='OpenAI')
|
|
126
|
+
|
|
127
|
+
try:
|
|
128
|
+
messages = self.make_prompt(system_prompt, querys)
|
|
129
|
+
|
|
130
|
+
tool_defs = [tool.tool_definition for tool in tools] if tools else None
|
|
131
|
+
provider_dict = provider.to_dict() if provider else None
|
|
132
|
+
|
|
133
|
+
response = self.client.chat.completions.create(
|
|
134
|
+
model=model.name,
|
|
135
|
+
messages=messages,
|
|
136
|
+
tools=tool_defs,
|
|
137
|
+
extra_body={"provider": provider_dict},
|
|
138
|
+
stream=True
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
return response
|
|
142
|
+
|
|
143
|
+
except Exception as e:
|
|
144
|
+
logger.exception(f"An error occurred while invoking the model: {e.__class__.__name__}: {str(e)}")
|
|
145
|
+
return Chat_message(text="Fail to get response. Please see the error message.", role=Role.ai, raw_response=None)
|
|
146
|
+
|
|
147
|
+
async def async_invoke(self, model: LLMModel, system_prompt: Chat_message, querys: list[Chat_message], tools: list[tool_model] = [], provider: ProviderConfig = None) -> Chat_message:
|
|
148
|
+
try:
|
|
149
|
+
messages = self.make_prompt(system_prompt, querys)
|
|
150
|
+
|
|
151
|
+
tool_defs = [tool.tool_definition for tool in tools] if tools else None
|
|
152
|
+
provider_dict = provider.to_dict() if provider else None
|
|
153
|
+
|
|
154
|
+
response = await self.async_client.chat.completions.create(
|
|
155
|
+
model=model.name,
|
|
156
|
+
messages=messages,
|
|
157
|
+
tools=tool_defs,
|
|
158
|
+
extra_body={"provider": provider_dict}
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
reply = Chat_message(text=response.choices[0].message.content, role=Role.ai, raw_response=response)
|
|
162
|
+
|
|
163
|
+
if response.choices[0].message.tool_calls:
|
|
164
|
+
reply.role = Role.tool
|
|
165
|
+
for tool in response.choices[0].message.tool_calls:
|
|
166
|
+
reply.tool_calls.append(ToolCall(id=tool.id, name=tool.function.name, arguments=tool.function.arguments))
|
|
167
|
+
return reply
|
|
168
|
+
|
|
169
|
+
except Exception as e:
|
|
170
|
+
logger.exception(f"An error occurred while asynchronously invoking the model: {e.__class__.__name__}: {str(e)}")
|
|
171
|
+
return Chat_message(text="Fail to get response. Please see the error message.", role=Role.ai, raw_response=None)
|
|
172
|
+
|
|
173
|
+
async def async_invoke_stream(
|
|
174
|
+
self,
|
|
175
|
+
model: LLMModel,
|
|
176
|
+
system_prompt: Chat_message,
|
|
177
|
+
querys: list[Chat_message],
|
|
178
|
+
tools: list[tool_model] = [],
|
|
179
|
+
provider: ProviderConfig = None
|
|
180
|
+
) -> AsyncIterator[ChatCompletionChunk]:
|
|
181
|
+
try:
|
|
182
|
+
messages = self.make_prompt(system_prompt, querys)
|
|
183
|
+
|
|
184
|
+
tool_defs = [tool.tool_definition for tool in tools] if tools else None
|
|
185
|
+
provider_dict = provider.to_dict() if provider else None
|
|
186
|
+
|
|
187
|
+
response = await self.async_client.chat.completions.create(
|
|
188
|
+
model=model.name,
|
|
189
|
+
messages=messages,
|
|
190
|
+
tools=tool_defs,
|
|
191
|
+
extra_body={"provider": provider_dict},
|
|
192
|
+
stream=True
|
|
193
|
+
)
|
|
194
|
+
|
|
195
|
+
async for chunk in response:
|
|
196
|
+
yield chunk
|
|
197
|
+
|
|
198
|
+
except Exception as e:
|
|
199
|
+
logger.exception(f"An error occurred while asynchronously streaming the model: {e.__class__.__name__}: {str(e)}")
|
|
200
|
+
return
|
|
201
|
+
|
|
202
|
+
|
|
@@ -1,112 +0,0 @@
|
|
|
1
|
-
import logging
|
|
2
|
-
from .Chat_message import *
|
|
3
|
-
from .Tool import tool_model
|
|
4
|
-
from .LLMs import *
|
|
5
|
-
|
|
6
|
-
from openai import OpenAI
|
|
7
|
-
from dotenv import load_dotenv
|
|
8
|
-
import os
|
|
9
|
-
from dataclasses import dataclass, field, asdict
|
|
10
|
-
from typing import List, Optional, Literal
|
|
11
|
-
import json
|
|
12
|
-
|
|
13
|
-
# エラーのみ表示、詳細なトレースバック付き
|
|
14
|
-
logging.basicConfig(level=logging.ERROR, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
15
|
-
logger = logging.getLogger(__name__)
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
@dataclass
|
|
19
|
-
class ProviderConfig:
|
|
20
|
-
order: Optional[List[str]] = None
|
|
21
|
-
allow_fallbacks: bool = None
|
|
22
|
-
require_parameters: bool = None
|
|
23
|
-
data_collection: Literal["allow", "deny"] = None
|
|
24
|
-
only: Optional[List[str]] = None
|
|
25
|
-
ignore: Optional[List[str]] = None
|
|
26
|
-
quantizations: Optional[List[str]] = None
|
|
27
|
-
sort: Optional[Literal["price", "throughput"]] = None
|
|
28
|
-
max_price: Optional[dict] = None
|
|
29
|
-
|
|
30
|
-
def to_dict(self) -> dict:
|
|
31
|
-
return {k: v for k, v in asdict(self).items() if v is not None}
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
class OpenRouterProvider:
|
|
35
|
-
def __init__(self) -> None:
|
|
36
|
-
load_dotenv()
|
|
37
|
-
api_key = os.getenv("OPENROUTER_API_KEY")
|
|
38
|
-
if not api_key:
|
|
39
|
-
logger.error("OPENROUTER_API_KEY is not set in environment variables.")
|
|
40
|
-
self.client = OpenAI(
|
|
41
|
-
base_url="https://openrouter.ai/api/v1",
|
|
42
|
-
api_key=api_key,
|
|
43
|
-
)
|
|
44
|
-
|
|
45
|
-
def make_prompt(self, system_prompt: Chat_message,
|
|
46
|
-
querys: list[Chat_message]) -> list[dict]:
|
|
47
|
-
messages = [{"role": "system", "content": system_prompt.text}]
|
|
48
|
-
|
|
49
|
-
for query in querys:
|
|
50
|
-
if query.role == Role.user:
|
|
51
|
-
if query.images is None:
|
|
52
|
-
messages.append({"role": "user", "content": query.text})
|
|
53
|
-
else:
|
|
54
|
-
content = [{"type": "text", "text": query.text}]
|
|
55
|
-
for img in query.images[:50]:
|
|
56
|
-
content.append(
|
|
57
|
-
{"type": "image_url",
|
|
58
|
-
"image_url": {"url": f"data:image/jpeg;base64,{img}"}})
|
|
59
|
-
messages.append({"role": "user", "content": content})
|
|
60
|
-
|
|
61
|
-
elif query.role == Role.ai or query.role == Role.tool:
|
|
62
|
-
assistant_msg = {"role": "assistant"}
|
|
63
|
-
assistant_msg["content"] = query.text or None
|
|
64
|
-
|
|
65
|
-
if query.tool_calls:
|
|
66
|
-
assistant_msg["tool_calls"] = [
|
|
67
|
-
{
|
|
68
|
-
"id": str(t.id),
|
|
69
|
-
"type": "function",
|
|
70
|
-
"function": {
|
|
71
|
-
"name": t.name,
|
|
72
|
-
"arguments": t.arguments
|
|
73
|
-
}
|
|
74
|
-
}
|
|
75
|
-
for t in query.tool_calls
|
|
76
|
-
]
|
|
77
|
-
messages.append(assistant_msg)
|
|
78
|
-
|
|
79
|
-
for t in query.tool_calls:
|
|
80
|
-
messages.append({
|
|
81
|
-
"role": "tool",
|
|
82
|
-
"tool_call_id": str(t.id),
|
|
83
|
-
"content": str(t.result)
|
|
84
|
-
})
|
|
85
|
-
|
|
86
|
-
return messages
|
|
87
|
-
|
|
88
|
-
def invoke(self, model: LLMModel, system_prompt: Chat_message, querys: list[Chat_message], tools: list[tool_model] = [], provider: ProviderConfig = None) -> Chat_message:
|
|
89
|
-
try:
|
|
90
|
-
messages = self.make_prompt(system_prompt, querys)
|
|
91
|
-
|
|
92
|
-
tool_defs = [tool.tool_definition for tool in tools] if tools else None
|
|
93
|
-
provider_dict = provider.to_dict() if provider else None
|
|
94
|
-
|
|
95
|
-
response = self.client.chat.completions.create(
|
|
96
|
-
model=model.name,
|
|
97
|
-
messages=messages,
|
|
98
|
-
tools=tool_defs,
|
|
99
|
-
extra_body={"provider": provider_dict}
|
|
100
|
-
)
|
|
101
|
-
|
|
102
|
-
reply = Chat_message(text=response.choices[0].message.content, role=Role.ai, raw_response=response)
|
|
103
|
-
|
|
104
|
-
if response.choices[0].message.tool_calls:
|
|
105
|
-
reply.role = Role.tool
|
|
106
|
-
for tool in response.choices[0].message.tool_calls:
|
|
107
|
-
reply.tool_calls.append(ToolCall(id=tool.id, name=tool.function.name, arguments=tool.function.arguments))
|
|
108
|
-
return reply
|
|
109
|
-
|
|
110
|
-
except Exception as e:
|
|
111
|
-
logger.exception(f"An error occurred while invoking the model: {e.__class__.__name__}: {str(e)}")
|
|
112
|
-
return Chat_message(text="Fail to get response. Please see the error message.", role=Role.ai, raw_response=None)
|
|
File without changes
|
|
File without changes
|
{openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/src/OpenRouterProvider/Chat_message.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{openrouter_provider-0.0.5 → openrouter_provider-0.0.7}/src/openrouter_provider.egg-info/SOURCES.txt
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|