openlit 1.34.22__py3-none-any.whl → 1.34.24__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/__helpers.py +48 -3
- openlit/__init__.py +3 -0
- openlit/instrumentation/ag2/__init__.py +22 -18
- openlit/instrumentation/ag2/ag2.py +75 -124
- openlit/instrumentation/ag2/async_ag2.py +114 -0
- openlit/instrumentation/ag2/utils.py +175 -0
- openlit/instrumentation/langchain/__init__.py +11 -35
- openlit/instrumentation/langchain/async_langchain.py +51 -337
- openlit/instrumentation/langchain/langchain.py +50 -310
- openlit/instrumentation/langchain/utils.py +252 -0
- openlit/instrumentation/langchain_community/__init__.py +74 -0
- openlit/instrumentation/langchain_community/async_langchain_community.py +49 -0
- openlit/instrumentation/langchain_community/langchain_community.py +49 -0
- openlit/instrumentation/langchain_community/utils.py +69 -0
- openlit/instrumentation/pinecone/__init__.py +128 -20
- openlit/instrumentation/pinecone/async_pinecone.py +59 -0
- openlit/instrumentation/pinecone/pinecone.py +36 -150
- openlit/instrumentation/pinecone/utils.py +182 -0
- openlit/semcov/__init__.py +13 -1
- {openlit-1.34.22.dist-info → openlit-1.34.24.dist-info}/METADATA +1 -1
- {openlit-1.34.22.dist-info → openlit-1.34.24.dist-info}/RECORD +23 -14
- {openlit-1.34.22.dist-info → openlit-1.34.24.dist-info}/LICENSE +0 -0
- {openlit-1.34.22.dist-info → openlit-1.34.24.dist-info}/WHEEL +0 -0
@@ -0,0 +1,175 @@
|
|
1
|
+
"""
|
2
|
+
AG2 OpenTelemetry instrumentation utility functions
|
3
|
+
"""
|
4
|
+
import time
|
5
|
+
|
6
|
+
from opentelemetry.trace import Status, StatusCode
|
7
|
+
|
8
|
+
from openlit.__helpers import (
|
9
|
+
get_chat_model_cost,
|
10
|
+
common_span_attributes,
|
11
|
+
record_completion_metrics,
|
12
|
+
)
|
13
|
+
from openlit.semcov import SemanticConvention
|
14
|
+
|
15
|
+
def calculate_tokens_and_cost(response, request_model, pricing_info):
|
16
|
+
"""
|
17
|
+
Calculate the input, output tokens, and their respective costs from AG2 response.
|
18
|
+
"""
|
19
|
+
input_tokens = 0
|
20
|
+
output_tokens = 0
|
21
|
+
|
22
|
+
# Early return if response doesn't have cost data
|
23
|
+
if not hasattr(response, "cost") or response.cost is None:
|
24
|
+
cost = get_chat_model_cost(request_model, pricing_info, input_tokens, output_tokens)
|
25
|
+
return input_tokens, output_tokens, cost
|
26
|
+
|
27
|
+
try:
|
28
|
+
input_tokens, output_tokens = _extract_tokens_from_cost(response.cost)
|
29
|
+
except (AttributeError, TypeError):
|
30
|
+
# If theres any issue accessing cost data, default to 0 tokens
|
31
|
+
input_tokens = 0
|
32
|
+
output_tokens = 0
|
33
|
+
|
34
|
+
cost = get_chat_model_cost(request_model, pricing_info, input_tokens, output_tokens)
|
35
|
+
return input_tokens, output_tokens, cost
|
36
|
+
|
37
|
+
def _extract_tokens_from_cost(cost_data):
|
38
|
+
"""
|
39
|
+
Extract input and output tokens from AG2 cost data structure.
|
40
|
+
"""
|
41
|
+
input_tokens = 0
|
42
|
+
output_tokens = 0
|
43
|
+
|
44
|
+
for usage_data in cost_data.values():
|
45
|
+
if not isinstance(usage_data, dict):
|
46
|
+
continue
|
47
|
+
|
48
|
+
for model_data in usage_data.values():
|
49
|
+
if isinstance(model_data, dict):
|
50
|
+
input_tokens += model_data.get("prompt_tokens", 0)
|
51
|
+
output_tokens += model_data.get("completion_tokens", 0)
|
52
|
+
|
53
|
+
return input_tokens, output_tokens
|
54
|
+
|
55
|
+
def format_content(chat_history):
|
56
|
+
"""
|
57
|
+
Format the chat history into a string for span events.
|
58
|
+
"""
|
59
|
+
if not chat_history:
|
60
|
+
return ""
|
61
|
+
|
62
|
+
formatted_messages = []
|
63
|
+
for chat in chat_history:
|
64
|
+
role = chat.get("role", "user")
|
65
|
+
content = chat.get("content", "")
|
66
|
+
formatted_messages.append(f"{role}: {content}")
|
67
|
+
|
68
|
+
return "\n".join(formatted_messages)
|
69
|
+
|
70
|
+
def common_agent_logic(scope, pricing_info, environment, application_name, metrics,
|
71
|
+
capture_message_content, disable_metrics, version, operation_type):
|
72
|
+
"""
|
73
|
+
Process agent request and generate Telemetry
|
74
|
+
"""
|
75
|
+
|
76
|
+
# Common Span Attributes
|
77
|
+
common_span_attributes(scope,
|
78
|
+
operation_type, SemanticConvention.GEN_AI_SYSTEM_AG2,
|
79
|
+
scope._server_address, scope._server_port, scope._request_model, scope._response_model,
|
80
|
+
environment, application_name, False, 0, scope._end_time - scope._start_time, version)
|
81
|
+
|
82
|
+
# Span Attributes for Agent-specific parameters
|
83
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_AGENT_NAME, scope._agent_name)
|
84
|
+
|
85
|
+
# Span Attributes for Response parameters
|
86
|
+
if hasattr(scope, "_input_tokens"):
|
87
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, scope._input_tokens)
|
88
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS, scope._output_tokens)
|
89
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CLIENT_TOKEN_USAGE, scope._input_tokens + scope._output_tokens)
|
90
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, scope._cost)
|
91
|
+
|
92
|
+
# Span Attributes for Content
|
93
|
+
if capture_message_content and hasattr(scope, "_chat_history"):
|
94
|
+
chat_content = format_content(scope._chat_history)
|
95
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CONTENT_COMPLETION, chat_content)
|
96
|
+
|
97
|
+
# To be removed once the change to span_attributes (from span events) is complete
|
98
|
+
scope._span.add_event(
|
99
|
+
name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
|
100
|
+
attributes={
|
101
|
+
SemanticConvention.GEN_AI_CONTENT_COMPLETION: chat_content,
|
102
|
+
},
|
103
|
+
)
|
104
|
+
|
105
|
+
# Set agent description for create agent operation
|
106
|
+
if hasattr(scope, "_system_message"):
|
107
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_AGENT_DESCRIPTION, scope._system_message)
|
108
|
+
|
109
|
+
scope._span.set_status(Status(StatusCode.OK))
|
110
|
+
|
111
|
+
# Metrics
|
112
|
+
if not disable_metrics and hasattr(scope, "_input_tokens"):
|
113
|
+
record_completion_metrics(metrics, operation_type, SemanticConvention.GEN_AI_SYSTEM_AG2,
|
114
|
+
scope._server_address, scope._server_port, scope._request_model, scope._response_model, environment,
|
115
|
+
application_name, scope._start_time, scope._end_time, scope._input_tokens, scope._output_tokens,
|
116
|
+
scope._cost, 0, scope._end_time - scope._start_time)
|
117
|
+
|
118
|
+
def process_agent_creation(agent_name, llm_config, system_message, pricing_info, server_port, server_address,
|
119
|
+
environment, application_name, metrics, start_time, span, capture_message_content=False,
|
120
|
+
disable_metrics=False, version="1.0.0", **kwargs):
|
121
|
+
"""
|
122
|
+
Process agent creation and generate Telemetry
|
123
|
+
"""
|
124
|
+
|
125
|
+
# Create scope object
|
126
|
+
scope = type("GenericScope", (), {})()
|
127
|
+
|
128
|
+
scope._start_time = start_time
|
129
|
+
scope._end_time = time.time()
|
130
|
+
scope._span = span
|
131
|
+
scope._agent_name = agent_name
|
132
|
+
scope._request_model = llm_config.get("model", "gpt-4o")
|
133
|
+
scope._response_model = scope._request_model
|
134
|
+
scope._system_message = system_message
|
135
|
+
scope._server_address, scope._server_port = server_address, server_port
|
136
|
+
|
137
|
+
common_agent_logic(scope, pricing_info, environment, application_name, metrics,
|
138
|
+
capture_message_content, disable_metrics, version, SemanticConvention.GEN_AI_OPERATION_TYPE_CREATE_AGENT)
|
139
|
+
|
140
|
+
def process_agent_run(response, agent_name, request_model, pricing_info, server_port, server_address,
|
141
|
+
environment, application_name, metrics, start_time, span, capture_message_content=False,
|
142
|
+
disable_metrics=False, version="1.0.0", **kwargs):
|
143
|
+
"""
|
144
|
+
Process agent run and generate Telemetry
|
145
|
+
"""
|
146
|
+
|
147
|
+
# Create scope object
|
148
|
+
scope = type("GenericScope", (), {})()
|
149
|
+
|
150
|
+
scope._start_time = start_time
|
151
|
+
scope._end_time = time.time()
|
152
|
+
scope._span = span
|
153
|
+
scope._agent_name = agent_name
|
154
|
+
scope._request_model = request_model
|
155
|
+
scope._chat_history = getattr(response, "chat_history", [])
|
156
|
+
scope._server_address, scope._server_port = server_address, server_port
|
157
|
+
|
158
|
+
# Calculate tokens and cost
|
159
|
+
scope._input_tokens, scope._output_tokens, scope._cost = calculate_tokens_and_cost(
|
160
|
+
response, request_model, pricing_info)
|
161
|
+
|
162
|
+
# Extract response model from cost data
|
163
|
+
try:
|
164
|
+
if hasattr(response, "cost") and response.cost is not None:
|
165
|
+
cost_data = response.cost.get("usage_including_cached_inference", {})
|
166
|
+
scope._response_model = list(cost_data.keys())[1] if len(cost_data) > 1 else request_model
|
167
|
+
else:
|
168
|
+
scope._response_model = request_model
|
169
|
+
except (AttributeError, IndexError, KeyError, TypeError):
|
170
|
+
scope._response_model = request_model
|
171
|
+
|
172
|
+
common_agent_logic(scope, pricing_info, environment, application_name, metrics,
|
173
|
+
capture_message_content, disable_metrics, version, SemanticConvention.GEN_AI_OPERATION_TYPE_EXECUTE_AGENT_TASK)
|
174
|
+
|
175
|
+
return response
|
@@ -1,4 +1,3 @@
|
|
1
|
-
# pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
|
2
1
|
"""Initializer of Auto Instrumentation of LangChain Functions"""
|
3
2
|
from typing import Collection
|
4
3
|
import importlib.metadata
|
@@ -6,41 +5,17 @@ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
|
6
5
|
from wrapt import wrap_function_wrapper
|
7
6
|
|
8
7
|
from openlit.instrumentation.langchain.langchain import (
|
9
|
-
general_wrap,
|
10
8
|
hub,
|
11
9
|
chat
|
12
10
|
)
|
13
11
|
from openlit.instrumentation.langchain.async_langchain import (
|
12
|
+
async_hub,
|
14
13
|
async_chat
|
15
14
|
)
|
16
15
|
|
17
16
|
_instruments = ("langchain >= 0.1.20",)
|
18
17
|
|
19
18
|
WRAPPED_METHODS = [
|
20
|
-
{
|
21
|
-
"package": "langchain_community.document_loaders.base",
|
22
|
-
"object": "BaseLoader.load",
|
23
|
-
"endpoint": "langchain.retrieve.load",
|
24
|
-
"wrapper": general_wrap,
|
25
|
-
},
|
26
|
-
{
|
27
|
-
"package": "langchain_community.document_loaders.base",
|
28
|
-
"object": "BaseLoader.aload",
|
29
|
-
"endpoint": "langchain.retrieve.load",
|
30
|
-
"wrapper": general_wrap,
|
31
|
-
},
|
32
|
-
{
|
33
|
-
"package": "langchain_text_splitters.base",
|
34
|
-
"object": "TextSplitter.split_documents",
|
35
|
-
"endpoint": "langchain.retrieve.split_documents",
|
36
|
-
"wrapper": general_wrap,
|
37
|
-
},
|
38
|
-
{
|
39
|
-
"package": "langchain_text_splitters.base",
|
40
|
-
"object": "TextSplitter.create_documents",
|
41
|
-
"endpoint": "langchain.retrieve.create_documents",
|
42
|
-
"wrapper": general_wrap,
|
43
|
-
},
|
44
19
|
{
|
45
20
|
"package": "langchain.hub",
|
46
21
|
"object": "pull",
|
@@ -79,27 +54,29 @@ WRAPPED_METHODS = [
|
|
79
54
|
},
|
80
55
|
{
|
81
56
|
"package": "langchain.chains.base",
|
82
|
-
"object": "Chain.
|
57
|
+
"object": "Chain.ainvoke",
|
83
58
|
"endpoint": "langchain.chain.invoke",
|
84
59
|
"wrapper": async_chat,
|
85
60
|
}
|
86
61
|
]
|
87
62
|
|
88
63
|
class LangChainInstrumentor(BaseInstrumentor):
|
89
|
-
"""
|
64
|
+
"""
|
65
|
+
An instrumentor for LangChain client library.
|
66
|
+
"""
|
90
67
|
|
91
68
|
def instrumentation_dependencies(self) -> Collection[str]:
|
92
69
|
return _instruments
|
93
70
|
|
94
71
|
def _instrument(self, **kwargs):
|
95
|
-
|
96
|
-
environment = kwargs.get("environment")
|
72
|
+
version = importlib.metadata.version("langchain")
|
73
|
+
environment = kwargs.get("environment", "default")
|
74
|
+
application_name = kwargs.get("application_name", "default")
|
97
75
|
tracer = kwargs.get("tracer")
|
98
|
-
pricing_info = kwargs.get("pricing_info")
|
99
|
-
capture_message_content = kwargs.get("capture_message_content")
|
76
|
+
pricing_info = kwargs.get("pricing_info", {})
|
77
|
+
capture_message_content = kwargs.get("capture_message_content", False)
|
100
78
|
metrics = kwargs.get("metrics_dict")
|
101
79
|
disable_metrics = kwargs.get("disable_metrics")
|
102
|
-
version = importlib.metadata.version("langchain")
|
103
80
|
|
104
81
|
for wrapped_method in WRAPPED_METHODS:
|
105
82
|
wrap_package = wrapped_method.get("package")
|
@@ -110,9 +87,8 @@ class LangChainInstrumentor(BaseInstrumentor):
|
|
110
87
|
wrap_package,
|
111
88
|
wrap_object,
|
112
89
|
wrapper(gen_ai_endpoint, version, environment, application_name,
|
113
|
-
|
90
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
114
91
|
)
|
115
92
|
|
116
|
-
@staticmethod
|
117
93
|
def _uninstrument(self, **kwargs):
|
118
94
|
pass
|