openlit 1.34.22__py3-none-any.whl → 1.34.23__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/__init__.py +3 -0
- openlit/instrumentation/ag2/__init__.py +22 -18
- openlit/instrumentation/ag2/ag2.py +75 -124
- openlit/instrumentation/ag2/async_ag2.py +114 -0
- openlit/instrumentation/ag2/utils.py +175 -0
- openlit/instrumentation/langchain/__init__.py +11 -35
- openlit/instrumentation/langchain/async_langchain.py +51 -337
- openlit/instrumentation/langchain/langchain.py +50 -310
- openlit/instrumentation/langchain/utils.py +252 -0
- openlit/instrumentation/langchain_community/__init__.py +74 -0
- openlit/instrumentation/langchain_community/async_langchain_community.py +49 -0
- openlit/instrumentation/langchain_community/langchain_community.py +49 -0
- openlit/instrumentation/langchain_community/utils.py +69 -0
- {openlit-1.34.22.dist-info → openlit-1.34.23.dist-info}/METADATA +1 -1
- {openlit-1.34.22.dist-info → openlit-1.34.23.dist-info}/RECORD +17 -10
- {openlit-1.34.22.dist-info → openlit-1.34.23.dist-info}/LICENSE +0 -0
- {openlit-1.34.22.dist-info → openlit-1.34.23.dist-info}/WHEEL +0 -0
openlit/__init__.py
CHANGED
@@ -42,6 +42,7 @@ from openlit.instrumentation.premai import PremAIInstrumentor
|
|
42
42
|
from openlit.instrumentation.assemblyai import AssemblyAIInstrumentor
|
43
43
|
from openlit.instrumentation.azure_ai_inference import AzureAIInferenceInstrumentor
|
44
44
|
from openlit.instrumentation.langchain import LangChainInstrumentor
|
45
|
+
from openlit.instrumentation.langchain_community import LangChainCommunityInstrumentor
|
45
46
|
from openlit.instrumentation.llamaindex import LlamaIndexInstrumentor
|
46
47
|
from openlit.instrumentation.haystack import HaystackInstrumentor
|
47
48
|
from openlit.instrumentation.embedchain import EmbedChainInstrumentor
|
@@ -267,6 +268,7 @@ def init(
|
|
267
268
|
"google-ai-studio": "google.genai",
|
268
269
|
"azure-ai-inference": "azure.ai.inference",
|
269
270
|
"langchain": "langchain",
|
271
|
+
"langchain_community": "langchain_community",
|
270
272
|
"llama_index": "llama_index",
|
271
273
|
"haystack": "haystack",
|
272
274
|
"embedchain": "embedchain",
|
@@ -387,6 +389,7 @@ def init(
|
|
387
389
|
"google-ai-studio": GoogleAIStudioInstrumentor(),
|
388
390
|
"azure-ai-inference": AzureAIInferenceInstrumentor(),
|
389
391
|
"langchain": LangChainInstrumentor(),
|
392
|
+
"langchain_community": LangChainCommunityInstrumentor(),
|
390
393
|
"llama_index": LlamaIndexInstrumentor(),
|
391
394
|
"haystack": HaystackInstrumentor(),
|
392
395
|
"embedchain": EmbedChainInstrumentor(),
|
@@ -8,40 +8,44 @@ from wrapt import wrap_function_wrapper
|
|
8
8
|
from openlit.instrumentation.ag2.ag2 import (
|
9
9
|
conversable_agent, agent_run
|
10
10
|
)
|
11
|
+
from openlit.instrumentation.ag2.async_ag2 import (
|
12
|
+
async_conversable_agent, async_agent_run
|
13
|
+
)
|
11
14
|
|
12
|
-
_instruments = (
|
15
|
+
_instruments = ("ag2 >= 0.3.2",)
|
13
16
|
|
14
17
|
class AG2Instrumentor(BaseInstrumentor):
|
15
18
|
"""
|
16
|
-
An instrumentor for AG2
|
19
|
+
An instrumentor for AG2 client library.
|
17
20
|
"""
|
18
21
|
|
19
22
|
def instrumentation_dependencies(self) -> Collection[str]:
|
20
23
|
return _instruments
|
21
24
|
|
22
25
|
def _instrument(self, **kwargs):
|
23
|
-
|
24
|
-
environment = kwargs.get(
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
disable_metrics = kwargs.get(
|
31
|
-
|
32
|
-
|
26
|
+
version = importlib.metadata.version("ag2")
|
27
|
+
environment = kwargs.get("environment", "default")
|
28
|
+
application_name = kwargs.get("application_name", "default")
|
29
|
+
tracer = kwargs.get("tracer")
|
30
|
+
pricing_info = kwargs.get("pricing_info", {})
|
31
|
+
capture_message_content = kwargs.get("capture_message_content", False)
|
32
|
+
metrics = kwargs.get("metrics_dict")
|
33
|
+
disable_metrics = kwargs.get("disable_metrics")
|
34
|
+
|
35
|
+
# sync conversable agent
|
33
36
|
wrap_function_wrapper(
|
34
|
-
|
35
|
-
|
37
|
+
"autogen.agentchat.conversable_agent",
|
38
|
+
"ConversableAgent.__init__",
|
36
39
|
conversable_agent(version, environment, application_name,
|
37
|
-
|
40
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
38
41
|
)
|
39
42
|
|
43
|
+
# sync agent run
|
40
44
|
wrap_function_wrapper(
|
41
|
-
|
42
|
-
|
45
|
+
"autogen.agentchat.conversable_agent",
|
46
|
+
"ConversableAgent.run",
|
43
47
|
agent_run(version, environment, application_name,
|
44
|
-
|
48
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
45
49
|
)
|
46
50
|
|
47
51
|
def _uninstrument(self, **kwargs):
|
@@ -2,162 +2,113 @@
|
|
2
2
|
Module for monitoring AG2 API calls.
|
3
3
|
"""
|
4
4
|
|
5
|
-
import logging
|
6
5
|
import time
|
7
|
-
from opentelemetry.trace import SpanKind
|
8
|
-
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
6
|
+
from opentelemetry.trace import SpanKind
|
9
7
|
from openlit.__helpers import (
|
10
8
|
handle_exception,
|
11
|
-
|
12
|
-
|
9
|
+
set_server_address_and_port
|
10
|
+
)
|
11
|
+
from openlit.instrumentation.ag2.utils import (
|
12
|
+
process_agent_creation,
|
13
|
+
process_agent_run,
|
13
14
|
)
|
14
15
|
from openlit.semcov import SemanticConvention
|
15
16
|
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
AGENT_NAME = ''
|
20
|
-
REQUEST_MODEL = ''
|
21
|
-
SYSTEM_MESSAGE = ''
|
22
|
-
MODEL_AND_NAME_SET = False
|
23
|
-
|
24
|
-
def set_span_attributes(span, version, operation_name, environment,
|
25
|
-
application_name, server_address, server_port, request_model):
|
26
|
-
"""
|
27
|
-
Set common attributes for the span.
|
28
|
-
"""
|
29
|
-
|
30
|
-
# Set Span attributes (OTel Semconv)
|
31
|
-
span.set_attribute(TELEMETRY_SDK_NAME, 'openlit')
|
32
|
-
span.set_attribute(SemanticConvention.GEN_AI_OPERATION, operation_name)
|
33
|
-
span.set_attribute(SemanticConvention.GEN_AI_SYSTEM, SemanticConvention.GEN_AI_SYSTEM_AG2)
|
34
|
-
span.set_attribute(SemanticConvention.GEN_AI_AGENT_NAME, AGENT_NAME)
|
35
|
-
span.set_attribute(SemanticConvention.SERVER_ADDRESS, server_address)
|
36
|
-
span.set_attribute(SemanticConvention.SERVER_PORT, server_port)
|
37
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL, request_model)
|
38
|
-
|
39
|
-
# Set Span attributes (Extras)
|
40
|
-
span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
|
41
|
-
span.set_attribute(SERVICE_NAME, application_name)
|
42
|
-
span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION, version)
|
43
|
-
|
44
|
-
def calculate_tokens_and_cost(response, request_model, pricing_info):
|
17
|
+
def conversable_agent(version, environment, application_name, tracer, pricing_info,
|
18
|
+
capture_message_content, metrics, disable_metrics):
|
45
19
|
"""
|
46
|
-
|
20
|
+
Generates a telemetry wrapper for AG2 conversable agent creation.
|
47
21
|
"""
|
48
|
-
input_tokens = 0
|
49
|
-
output_tokens = 0
|
50
22
|
|
51
|
-
for usage_data in response.cost.values():
|
52
|
-
if isinstance(usage_data, dict):
|
53
|
-
for model_data in usage_data.values():
|
54
|
-
if isinstance(model_data, dict):
|
55
|
-
input_tokens += model_data.get('prompt_tokens', 0)
|
56
|
-
output_tokens += model_data.get('completion_tokens', 0)
|
57
|
-
|
58
|
-
cost = get_chat_model_cost(request_model, pricing_info, input_tokens, output_tokens)
|
59
|
-
return input_tokens, output_tokens, cost
|
60
|
-
|
61
|
-
def emit_events(response, event_provider, capture_message_content):
|
62
|
-
"""
|
63
|
-
Emit OpenTelemetry events for each chat history entry.
|
64
|
-
"""
|
65
|
-
for chat in response.chat_history:
|
66
|
-
event_type = (
|
67
|
-
SemanticConvention.GEN_AI_CHOICE if chat['role'] == 'user'
|
68
|
-
else SemanticConvention.GEN_AI_USER_MESSAGE
|
69
|
-
)
|
70
|
-
choice_event = otel_event(
|
71
|
-
name=event_type,
|
72
|
-
attributes={
|
73
|
-
SemanticConvention.GEN_AI_SYSTEM: SemanticConvention.GEN_AI_SYSTEM_AG2
|
74
|
-
},
|
75
|
-
body={
|
76
|
-
'index': response.chat_history.index(chat),
|
77
|
-
'message': {
|
78
|
-
**({'content': chat['content']} if capture_message_content else {}),
|
79
|
-
'role': 'assistant' if chat['role'] == 'user' else 'user'
|
80
|
-
}
|
81
|
-
}
|
82
|
-
)
|
83
|
-
event_provider.emit(choice_event)
|
84
|
-
|
85
|
-
def conversable_agent(version, environment, application_name,
|
86
|
-
tracer, event_provider, pricing_info, capture_message_content, metrics, disable_metrics):
|
87
|
-
"""
|
88
|
-
Generates a telemetry wrapper for GenAI function call
|
89
|
-
"""
|
90
23
|
def wrapper(wrapped, instance, args, kwargs):
|
91
|
-
|
92
|
-
|
24
|
+
"""
|
25
|
+
Wraps the AG2 conversable agent creation call.
|
26
|
+
"""
|
93
27
|
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
MODEL_AND_NAME_SET = True
|
28
|
+
server_address, server_port = set_server_address_and_port(instance, "127.0.0.1", 80)
|
29
|
+
agent_name = kwargs.get("name", "NOT_FOUND")
|
30
|
+
llm_config = kwargs.get("llm_config", {})
|
31
|
+
system_message = kwargs.get("system_message", "")
|
99
32
|
|
100
|
-
span_name = f
|
33
|
+
span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CREATE_AGENT} {agent_name}"
|
101
34
|
|
102
35
|
with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
|
103
|
-
|
104
|
-
|
105
|
-
response = wrapped(*args, **kwargs)
|
106
|
-
end_time = time.time()
|
107
|
-
|
108
|
-
set_span_attributes(span, version, SemanticConvention.GEN_AI_OPERATION_TYPE_CREATE_AGENT,
|
109
|
-
environment, application_name, server_address, server_port, REQUEST_MODEL)
|
110
|
-
span.set_attribute(SemanticConvention.GEN_AI_AGENT_DESCRIPTION, SYSTEM_MESSAGE)
|
111
|
-
span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL, REQUEST_MODEL)
|
112
|
-
span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT, end_time - start_time)
|
113
|
-
|
114
|
-
span.set_status(Status(StatusCode.OK))
|
36
|
+
start_time = time.time()
|
37
|
+
response = wrapped(*args, **kwargs)
|
115
38
|
|
116
|
-
|
39
|
+
try:
|
40
|
+
process_agent_creation(
|
41
|
+
agent_name=agent_name,
|
42
|
+
llm_config=llm_config,
|
43
|
+
system_message=system_message,
|
44
|
+
pricing_info=pricing_info,
|
45
|
+
server_port=server_port,
|
46
|
+
server_address=server_address,
|
47
|
+
environment=environment,
|
48
|
+
application_name=application_name,
|
49
|
+
metrics=metrics,
|
50
|
+
start_time=start_time,
|
51
|
+
span=span,
|
52
|
+
capture_message_content=capture_message_content,
|
53
|
+
disable_metrics=disable_metrics,
|
54
|
+
version=version
|
55
|
+
)
|
117
56
|
|
118
57
|
except Exception as e:
|
119
58
|
handle_exception(span, e)
|
120
|
-
|
121
|
-
|
59
|
+
|
60
|
+
return response
|
122
61
|
|
123
62
|
return wrapper
|
124
63
|
|
125
|
-
def agent_run(version, environment, application_name,
|
126
|
-
|
64
|
+
def agent_run(version, environment, application_name, tracer, pricing_info,
|
65
|
+
capture_message_content, metrics, disable_metrics):
|
127
66
|
"""
|
128
|
-
Generates a telemetry wrapper for
|
67
|
+
Generates a telemetry wrapper for AG2 agent run execution.
|
129
68
|
"""
|
69
|
+
|
130
70
|
def wrapper(wrapped, instance, args, kwargs):
|
131
|
-
|
71
|
+
"""
|
72
|
+
Wraps the AG2 agent run execution call.
|
73
|
+
"""
|
132
74
|
|
133
|
-
|
75
|
+
server_address, server_port = set_server_address_and_port(instance, "127.0.0.1", 80)
|
134
76
|
|
135
|
-
|
136
|
-
|
137
|
-
start_time = time.time()
|
138
|
-
response = wrapped(*args, **kwargs)
|
139
|
-
end_time = time.time()
|
77
|
+
# Extract agent name from instance
|
78
|
+
agent_name = getattr(instance, "name", "NOT_FOUND")
|
140
79
|
|
141
|
-
|
142
|
-
|
80
|
+
# Extract model from instance llm_config
|
81
|
+
request_model = "gpt-4o"
|
82
|
+
if hasattr(instance, "llm_config") and isinstance(instance.llm_config, dict):
|
83
|
+
request_model = instance.llm_config.get("model", "gpt-4o")
|
143
84
|
|
144
|
-
|
145
|
-
environment, application_name, server_address, server_port, REQUEST_MODEL)
|
146
|
-
span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL, response_model)
|
147
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, input_tokens)
|
148
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS, output_tokens)
|
149
|
-
span.set_attribute(SemanticConvention.GEN_AI_CLIENT_TOKEN_USAGE, input_tokens + output_tokens)
|
150
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
|
151
|
-
span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT, end_time - start_time)
|
85
|
+
span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_EXECUTE_AGENT_TASK} {agent_name}"
|
152
86
|
|
153
|
-
|
154
|
-
|
87
|
+
with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
|
88
|
+
start_time = time.time()
|
89
|
+
response = wrapped(*args, **kwargs)
|
155
90
|
|
156
|
-
|
91
|
+
try:
|
92
|
+
response = process_agent_run(
|
93
|
+
response=response,
|
94
|
+
agent_name=agent_name,
|
95
|
+
request_model=request_model,
|
96
|
+
pricing_info=pricing_info,
|
97
|
+
server_port=server_port,
|
98
|
+
server_address=server_address,
|
99
|
+
environment=environment,
|
100
|
+
application_name=application_name,
|
101
|
+
metrics=metrics,
|
102
|
+
start_time=start_time,
|
103
|
+
span=span,
|
104
|
+
capture_message_content=capture_message_content,
|
105
|
+
disable_metrics=disable_metrics,
|
106
|
+
version=version
|
107
|
+
)
|
157
108
|
|
158
109
|
except Exception as e:
|
159
110
|
handle_exception(span, e)
|
160
|
-
|
161
|
-
|
111
|
+
|
112
|
+
return response
|
162
113
|
|
163
114
|
return wrapper
|
@@ -0,0 +1,114 @@
|
|
1
|
+
"""
|
2
|
+
Module for monitoring AG2 API calls (async version).
|
3
|
+
"""
|
4
|
+
|
5
|
+
import time
|
6
|
+
from opentelemetry.trace import SpanKind
|
7
|
+
from openlit.__helpers import (
|
8
|
+
handle_exception,
|
9
|
+
set_server_address_and_port
|
10
|
+
)
|
11
|
+
from openlit.instrumentation.ag2.utils import (
|
12
|
+
process_agent_creation,
|
13
|
+
process_agent_run,
|
14
|
+
)
|
15
|
+
from openlit.semcov import SemanticConvention
|
16
|
+
|
17
|
+
def async_conversable_agent(version, environment, application_name, tracer, pricing_info,
|
18
|
+
capture_message_content, metrics, disable_metrics):
|
19
|
+
"""
|
20
|
+
Generates a telemetry wrapper for AG2 async conversable agent creation.
|
21
|
+
"""
|
22
|
+
|
23
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
24
|
+
"""
|
25
|
+
Wraps the AG2 async conversable agent creation call.
|
26
|
+
"""
|
27
|
+
|
28
|
+
server_address, server_port = set_server_address_and_port(instance, "127.0.0.1", 80)
|
29
|
+
agent_name = kwargs.get("name", "NOT_FOUND")
|
30
|
+
llm_config = kwargs.get("llm_config", {})
|
31
|
+
system_message = kwargs.get("system_message", "")
|
32
|
+
|
33
|
+
span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CREATE_AGENT} {agent_name}"
|
34
|
+
|
35
|
+
with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
|
36
|
+
start_time = time.time()
|
37
|
+
response = await wrapped(*args, **kwargs)
|
38
|
+
|
39
|
+
try:
|
40
|
+
process_agent_creation(
|
41
|
+
agent_name=agent_name,
|
42
|
+
llm_config=llm_config,
|
43
|
+
system_message=system_message,
|
44
|
+
pricing_info=pricing_info,
|
45
|
+
server_port=server_port,
|
46
|
+
server_address=server_address,
|
47
|
+
environment=environment,
|
48
|
+
application_name=application_name,
|
49
|
+
metrics=metrics,
|
50
|
+
start_time=start_time,
|
51
|
+
span=span,
|
52
|
+
capture_message_content=capture_message_content,
|
53
|
+
disable_metrics=disable_metrics,
|
54
|
+
version=version
|
55
|
+
)
|
56
|
+
|
57
|
+
except Exception as e:
|
58
|
+
handle_exception(span, e)
|
59
|
+
|
60
|
+
return response
|
61
|
+
|
62
|
+
return wrapper
|
63
|
+
|
64
|
+
def async_agent_run(version, environment, application_name, tracer, pricing_info,
|
65
|
+
capture_message_content, metrics, disable_metrics):
|
66
|
+
"""
|
67
|
+
Generates a telemetry wrapper for AG2 async agent run execution.
|
68
|
+
"""
|
69
|
+
|
70
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
71
|
+
"""
|
72
|
+
Wraps the AG2 async agent run execution call.
|
73
|
+
"""
|
74
|
+
|
75
|
+
server_address, server_port = set_server_address_and_port(instance, "127.0.0.1", 80)
|
76
|
+
|
77
|
+
# Extract agent name from instance
|
78
|
+
agent_name = getattr(instance, "name", "NOT_FOUND")
|
79
|
+
|
80
|
+
# Extract model from instance llm_config
|
81
|
+
request_model = "gpt-4o"
|
82
|
+
if hasattr(instance, "llm_config") and isinstance(instance.llm_config, dict):
|
83
|
+
request_model = instance.llm_config.get("model", "gpt-4o")
|
84
|
+
|
85
|
+
span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_EXECUTE_AGENT_TASK} {agent_name}"
|
86
|
+
|
87
|
+
with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
|
88
|
+
start_time = time.time()
|
89
|
+
response = await wrapped(*args, **kwargs)
|
90
|
+
|
91
|
+
try:
|
92
|
+
response = process_agent_run(
|
93
|
+
response=response,
|
94
|
+
agent_name=agent_name,
|
95
|
+
request_model=request_model,
|
96
|
+
pricing_info=pricing_info,
|
97
|
+
server_port=server_port,
|
98
|
+
server_address=server_address,
|
99
|
+
environment=environment,
|
100
|
+
application_name=application_name,
|
101
|
+
metrics=metrics,
|
102
|
+
start_time=start_time,
|
103
|
+
span=span,
|
104
|
+
capture_message_content=capture_message_content,
|
105
|
+
disable_metrics=disable_metrics,
|
106
|
+
version=version
|
107
|
+
)
|
108
|
+
|
109
|
+
except Exception as e:
|
110
|
+
handle_exception(span, e)
|
111
|
+
|
112
|
+
return response
|
113
|
+
|
114
|
+
return wrapper
|
@@ -0,0 +1,175 @@
|
|
1
|
+
"""
|
2
|
+
AG2 OpenTelemetry instrumentation utility functions
|
3
|
+
"""
|
4
|
+
import time
|
5
|
+
|
6
|
+
from opentelemetry.trace import Status, StatusCode
|
7
|
+
|
8
|
+
from openlit.__helpers import (
|
9
|
+
get_chat_model_cost,
|
10
|
+
common_span_attributes,
|
11
|
+
record_completion_metrics,
|
12
|
+
)
|
13
|
+
from openlit.semcov import SemanticConvention
|
14
|
+
|
15
|
+
def calculate_tokens_and_cost(response, request_model, pricing_info):
|
16
|
+
"""
|
17
|
+
Calculate the input, output tokens, and their respective costs from AG2 response.
|
18
|
+
"""
|
19
|
+
input_tokens = 0
|
20
|
+
output_tokens = 0
|
21
|
+
|
22
|
+
# Early return if response doesn't have cost data
|
23
|
+
if not hasattr(response, "cost") or response.cost is None:
|
24
|
+
cost = get_chat_model_cost(request_model, pricing_info, input_tokens, output_tokens)
|
25
|
+
return input_tokens, output_tokens, cost
|
26
|
+
|
27
|
+
try:
|
28
|
+
input_tokens, output_tokens = _extract_tokens_from_cost(response.cost)
|
29
|
+
except (AttributeError, TypeError):
|
30
|
+
# If theres any issue accessing cost data, default to 0 tokens
|
31
|
+
input_tokens = 0
|
32
|
+
output_tokens = 0
|
33
|
+
|
34
|
+
cost = get_chat_model_cost(request_model, pricing_info, input_tokens, output_tokens)
|
35
|
+
return input_tokens, output_tokens, cost
|
36
|
+
|
37
|
+
def _extract_tokens_from_cost(cost_data):
|
38
|
+
"""
|
39
|
+
Extract input and output tokens from AG2 cost data structure.
|
40
|
+
"""
|
41
|
+
input_tokens = 0
|
42
|
+
output_tokens = 0
|
43
|
+
|
44
|
+
for usage_data in cost_data.values():
|
45
|
+
if not isinstance(usage_data, dict):
|
46
|
+
continue
|
47
|
+
|
48
|
+
for model_data in usage_data.values():
|
49
|
+
if isinstance(model_data, dict):
|
50
|
+
input_tokens += model_data.get("prompt_tokens", 0)
|
51
|
+
output_tokens += model_data.get("completion_tokens", 0)
|
52
|
+
|
53
|
+
return input_tokens, output_tokens
|
54
|
+
|
55
|
+
def format_content(chat_history):
|
56
|
+
"""
|
57
|
+
Format the chat history into a string for span events.
|
58
|
+
"""
|
59
|
+
if not chat_history:
|
60
|
+
return ""
|
61
|
+
|
62
|
+
formatted_messages = []
|
63
|
+
for chat in chat_history:
|
64
|
+
role = chat.get("role", "user")
|
65
|
+
content = chat.get("content", "")
|
66
|
+
formatted_messages.append(f"{role}: {content}")
|
67
|
+
|
68
|
+
return "\n".join(formatted_messages)
|
69
|
+
|
70
|
+
def common_agent_logic(scope, pricing_info, environment, application_name, metrics,
|
71
|
+
capture_message_content, disable_metrics, version, operation_type):
|
72
|
+
"""
|
73
|
+
Process agent request and generate Telemetry
|
74
|
+
"""
|
75
|
+
|
76
|
+
# Common Span Attributes
|
77
|
+
common_span_attributes(scope,
|
78
|
+
operation_type, SemanticConvention.GEN_AI_SYSTEM_AG2,
|
79
|
+
scope._server_address, scope._server_port, scope._request_model, scope._response_model,
|
80
|
+
environment, application_name, False, 0, scope._end_time - scope._start_time, version)
|
81
|
+
|
82
|
+
# Span Attributes for Agent-specific parameters
|
83
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_AGENT_NAME, scope._agent_name)
|
84
|
+
|
85
|
+
# Span Attributes for Response parameters
|
86
|
+
if hasattr(scope, "_input_tokens"):
|
87
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, scope._input_tokens)
|
88
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS, scope._output_tokens)
|
89
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CLIENT_TOKEN_USAGE, scope._input_tokens + scope._output_tokens)
|
90
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, scope._cost)
|
91
|
+
|
92
|
+
# Span Attributes for Content
|
93
|
+
if capture_message_content and hasattr(scope, "_chat_history"):
|
94
|
+
chat_content = format_content(scope._chat_history)
|
95
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CONTENT_COMPLETION, chat_content)
|
96
|
+
|
97
|
+
# To be removed once the change to span_attributes (from span events) is complete
|
98
|
+
scope._span.add_event(
|
99
|
+
name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
|
100
|
+
attributes={
|
101
|
+
SemanticConvention.GEN_AI_CONTENT_COMPLETION: chat_content,
|
102
|
+
},
|
103
|
+
)
|
104
|
+
|
105
|
+
# Set agent description for create agent operation
|
106
|
+
if hasattr(scope, "_system_message"):
|
107
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_AGENT_DESCRIPTION, scope._system_message)
|
108
|
+
|
109
|
+
scope._span.set_status(Status(StatusCode.OK))
|
110
|
+
|
111
|
+
# Metrics
|
112
|
+
if not disable_metrics and hasattr(scope, "_input_tokens"):
|
113
|
+
record_completion_metrics(metrics, operation_type, SemanticConvention.GEN_AI_SYSTEM_AG2,
|
114
|
+
scope._server_address, scope._server_port, scope._request_model, scope._response_model, environment,
|
115
|
+
application_name, scope._start_time, scope._end_time, scope._input_tokens, scope._output_tokens,
|
116
|
+
scope._cost, 0, scope._end_time - scope._start_time)
|
117
|
+
|
118
|
+
def process_agent_creation(agent_name, llm_config, system_message, pricing_info, server_port, server_address,
|
119
|
+
environment, application_name, metrics, start_time, span, capture_message_content=False,
|
120
|
+
disable_metrics=False, version="1.0.0", **kwargs):
|
121
|
+
"""
|
122
|
+
Process agent creation and generate Telemetry
|
123
|
+
"""
|
124
|
+
|
125
|
+
# Create scope object
|
126
|
+
scope = type("GenericScope", (), {})()
|
127
|
+
|
128
|
+
scope._start_time = start_time
|
129
|
+
scope._end_time = time.time()
|
130
|
+
scope._span = span
|
131
|
+
scope._agent_name = agent_name
|
132
|
+
scope._request_model = llm_config.get("model", "gpt-4o")
|
133
|
+
scope._response_model = scope._request_model
|
134
|
+
scope._system_message = system_message
|
135
|
+
scope._server_address, scope._server_port = server_address, server_port
|
136
|
+
|
137
|
+
common_agent_logic(scope, pricing_info, environment, application_name, metrics,
|
138
|
+
capture_message_content, disable_metrics, version, SemanticConvention.GEN_AI_OPERATION_TYPE_CREATE_AGENT)
|
139
|
+
|
140
|
+
def process_agent_run(response, agent_name, request_model, pricing_info, server_port, server_address,
|
141
|
+
environment, application_name, metrics, start_time, span, capture_message_content=False,
|
142
|
+
disable_metrics=False, version="1.0.0", **kwargs):
|
143
|
+
"""
|
144
|
+
Process agent run and generate Telemetry
|
145
|
+
"""
|
146
|
+
|
147
|
+
# Create scope object
|
148
|
+
scope = type("GenericScope", (), {})()
|
149
|
+
|
150
|
+
scope._start_time = start_time
|
151
|
+
scope._end_time = time.time()
|
152
|
+
scope._span = span
|
153
|
+
scope._agent_name = agent_name
|
154
|
+
scope._request_model = request_model
|
155
|
+
scope._chat_history = getattr(response, "chat_history", [])
|
156
|
+
scope._server_address, scope._server_port = server_address, server_port
|
157
|
+
|
158
|
+
# Calculate tokens and cost
|
159
|
+
scope._input_tokens, scope._output_tokens, scope._cost = calculate_tokens_and_cost(
|
160
|
+
response, request_model, pricing_info)
|
161
|
+
|
162
|
+
# Extract response model from cost data
|
163
|
+
try:
|
164
|
+
if hasattr(response, "cost") and response.cost is not None:
|
165
|
+
cost_data = response.cost.get("usage_including_cached_inference", {})
|
166
|
+
scope._response_model = list(cost_data.keys())[1] if len(cost_data) > 1 else request_model
|
167
|
+
else:
|
168
|
+
scope._response_model = request_model
|
169
|
+
except (AttributeError, IndexError, KeyError, TypeError):
|
170
|
+
scope._response_model = request_model
|
171
|
+
|
172
|
+
common_agent_logic(scope, pricing_info, environment, application_name, metrics,
|
173
|
+
capture_message_content, disable_metrics, version, SemanticConvention.GEN_AI_OPERATION_TYPE_EXECUTE_AGENT_TASK)
|
174
|
+
|
175
|
+
return response
|