openlit 1.34.19__py3-none-any.whl → 1.34.22__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/__helpers.py +40 -0
- openlit/instrumentation/bedrock/__init__.py +19 -14
- openlit/instrumentation/bedrock/bedrock.py +169 -35
- openlit/instrumentation/bedrock/utils.py +143 -172
- openlit/instrumentation/litellm/async_litellm.py +2 -2
- openlit/instrumentation/openai/__init__.py +63 -68
- openlit/instrumentation/openai/async_openai.py +203 -1277
- openlit/instrumentation/openai/openai.py +200 -1274
- openlit/instrumentation/openai/utils.py +794 -0
- openlit/instrumentation/vertexai/__init__.py +18 -23
- openlit/instrumentation/vertexai/async_vertexai.py +46 -364
- openlit/instrumentation/vertexai/utils.py +204 -0
- openlit/instrumentation/vertexai/vertexai.py +46 -364
- {openlit-1.34.19.dist-info → openlit-1.34.22.dist-info}/METADATA +1 -1
- {openlit-1.34.19.dist-info → openlit-1.34.22.dist-info}/RECORD +17 -15
- {openlit-1.34.19.dist-info → openlit-1.34.22.dist-info}/LICENSE +0 -0
- {openlit-1.34.19.dist-info → openlit-1.34.22.dist-info}/WHEEL +0 -0
@@ -1,4 +1,3 @@
|
|
1
|
-
# pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
|
2
1
|
"""Initializer of Auto Instrumentation of VertexAI Functions"""
|
3
2
|
|
4
3
|
from typing import Collection
|
@@ -6,92 +5,88 @@ import importlib.metadata
|
|
6
5
|
from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
7
6
|
from wrapt import wrap_function_wrapper
|
8
7
|
|
9
|
-
from openlit.instrumentation.vertexai.vertexai import
|
10
|
-
|
11
|
-
)
|
12
|
-
from openlit.instrumentation.vertexai.async_vertexai import (
|
13
|
-
async_send_message
|
14
|
-
)
|
15
|
-
|
8
|
+
from openlit.instrumentation.vertexai.vertexai import send_message
|
9
|
+
from openlit.instrumentation.vertexai.async_vertexai import async_send_message
|
16
10
|
|
17
11
|
_instruments = ("google-cloud-aiplatform >= 1.38.1",)
|
18
12
|
|
19
13
|
class VertexAIInstrumentor(BaseInstrumentor):
|
20
14
|
"""
|
21
|
-
An instrumentor for VertexAI
|
15
|
+
An instrumentor for VertexAI client library.
|
22
16
|
"""
|
23
17
|
|
24
18
|
def instrumentation_dependencies(self) -> Collection[str]:
|
25
19
|
return _instruments
|
26
20
|
|
27
21
|
def _instrument(self, **kwargs):
|
28
|
-
|
22
|
+
version = importlib.metadata.version("google-cloud-aiplatform")
|
29
23
|
environment = kwargs.get("environment", "default")
|
24
|
+
application_name = kwargs.get("application_name", "default")
|
30
25
|
tracer = kwargs.get("tracer")
|
31
|
-
metrics = kwargs.get("metrics_dict")
|
32
26
|
pricing_info = kwargs.get("pricing_info", {})
|
33
27
|
capture_message_content = kwargs.get("capture_message_content", False)
|
28
|
+
metrics = kwargs.get("metrics_dict")
|
34
29
|
disable_metrics = kwargs.get("disable_metrics")
|
35
|
-
version = importlib.metadata.version("google-cloud-aiplatform")
|
36
30
|
|
37
|
-
#sync
|
31
|
+
# sync generative models
|
38
32
|
wrap_function_wrapper(
|
39
33
|
"vertexai.generative_models",
|
40
34
|
"GenerativeModel.generate_content",
|
41
35
|
send_message(version, environment, application_name,
|
42
|
-
|
36
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
43
37
|
)
|
44
38
|
|
45
39
|
wrap_function_wrapper(
|
46
40
|
"vertexai.generative_models",
|
47
41
|
"ChatSession.send_message",
|
48
42
|
send_message(version, environment, application_name,
|
49
|
-
|
43
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
50
44
|
)
|
51
45
|
|
46
|
+
# sync language models
|
52
47
|
wrap_function_wrapper(
|
53
48
|
"vertexai.language_models",
|
54
49
|
"ChatSession.send_message",
|
55
50
|
send_message(version, environment, application_name,
|
56
|
-
|
51
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
57
52
|
)
|
58
53
|
|
59
54
|
wrap_function_wrapper(
|
60
55
|
"vertexai.language_models",
|
61
56
|
"ChatSession.send_message_streaming",
|
62
57
|
send_message(version, environment, application_name,
|
63
|
-
|
58
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
64
59
|
)
|
65
60
|
|
66
|
-
#async
|
61
|
+
# async generative models
|
67
62
|
wrap_function_wrapper(
|
68
63
|
"vertexai.generative_models",
|
69
64
|
"GenerativeModel.generate_content_async",
|
70
65
|
async_send_message(version, environment, application_name,
|
71
|
-
|
66
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
72
67
|
)
|
73
68
|
|
74
69
|
wrap_function_wrapper(
|
75
70
|
"vertexai.generative_models",
|
76
71
|
"ChatSession.send_message_async",
|
77
72
|
async_send_message(version, environment, application_name,
|
78
|
-
|
73
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
79
74
|
)
|
80
75
|
|
76
|
+
# async language models
|
81
77
|
wrap_function_wrapper(
|
82
78
|
"vertexai.language_models",
|
83
79
|
"ChatSession.send_message_async",
|
84
80
|
async_send_message(version, environment, application_name,
|
85
|
-
|
81
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
86
82
|
)
|
87
83
|
|
88
84
|
wrap_function_wrapper(
|
89
85
|
"vertexai.language_models",
|
90
86
|
"ChatSession.send_message_streaming_async",
|
91
87
|
async_send_message(version, environment, application_name,
|
92
|
-
|
88
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
93
89
|
)
|
94
90
|
|
95
91
|
def _uninstrument(self, **kwargs):
|
96
|
-
# Proper uninstrumentation logic to revert patched methods
|
97
92
|
pass
|
@@ -4,14 +4,15 @@ Module for monitoring VertexAI API calls.
|
|
4
4
|
|
5
5
|
import logging
|
6
6
|
import time
|
7
|
-
from opentelemetry.trace import SpanKind
|
8
|
-
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
7
|
+
from opentelemetry.trace import SpanKind
|
9
8
|
from openlit.__helpers import (
|
10
|
-
get_chat_model_cost,
|
11
9
|
handle_exception,
|
12
|
-
|
13
|
-
|
14
|
-
|
10
|
+
)
|
11
|
+
from openlit.instrumentation.vertexai.utils import (
|
12
|
+
process_chunk,
|
13
|
+
process_chat_response,
|
14
|
+
process_streaming_chat_response,
|
15
|
+
extract_vertexai_details,
|
15
16
|
)
|
16
17
|
from openlit.semcov import SemanticConvention
|
17
18
|
|
@@ -21,35 +22,19 @@ logger = logging.getLogger(__name__)
|
|
21
22
|
def async_send_message(version, environment, application_name, tracer,
|
22
23
|
pricing_info, capture_message_content, metrics, disable_metrics):
|
23
24
|
"""
|
24
|
-
Generates a telemetry wrapper for
|
25
|
-
|
26
|
-
Args:
|
27
|
-
version: Version of the monitoring package.
|
28
|
-
environment: Deployment environment (e.g., production, staging).
|
29
|
-
application_name: Name of the application using the VertexAI API.
|
30
|
-
tracer: OpenTelemetry tracer for creating spans.
|
31
|
-
pricing_info: Information used for calculating the cost of VertexAI usage.
|
32
|
-
capture_message_content: Flag indicating whether to trace the actual content.
|
33
|
-
|
34
|
-
Returns:
|
35
|
-
A function that wraps the chat method to add telemetry.
|
25
|
+
Generates a telemetry wrapper for VertexAI AsyncMessages calls.
|
36
26
|
"""
|
37
27
|
|
38
28
|
class TracedAsyncStream:
|
39
29
|
"""
|
40
|
-
Wrapper for streaming responses to collect
|
41
|
-
Wraps the response to collect message IDs and aggregated response.
|
42
|
-
|
43
|
-
This class implements the '__aiter__' and '__anext__' methods that
|
44
|
-
handle asynchronous streaming responses.
|
45
|
-
|
46
|
-
This class also implements '__aenter__' and '__aexit__' methods that
|
47
|
-
handle asynchronous context management protocol.
|
30
|
+
Wrapper for async streaming responses to collect telemetry.
|
48
31
|
"""
|
32
|
+
|
49
33
|
def __init__(
|
50
34
|
self,
|
51
35
|
wrapped,
|
52
36
|
span,
|
37
|
+
span_name,
|
53
38
|
kwargs,
|
54
39
|
server_address,
|
55
40
|
server_port,
|
@@ -58,12 +43,10 @@ def async_send_message(version, environment, application_name, tracer,
|
|
58
43
|
):
|
59
44
|
self.__wrapped__ = wrapped
|
60
45
|
self._span = span
|
61
|
-
|
46
|
+
self._span_name = span_name
|
62
47
|
self._llmresponse = ""
|
63
|
-
self._input_tokens =
|
64
|
-
self._output_tokens =
|
65
|
-
|
66
|
-
self._args = args
|
48
|
+
self._input_tokens = 0
|
49
|
+
self._output_tokens = 0
|
67
50
|
self._kwargs = kwargs
|
68
51
|
self._start_time = time.time()
|
69
52
|
self._end_time = None
|
@@ -73,6 +56,7 @@ def async_send_message(version, environment, application_name, tracer,
|
|
73
56
|
self._server_address = server_address
|
74
57
|
self._server_port = server_port
|
75
58
|
self._request_model = request_model
|
59
|
+
self._args = args
|
76
60
|
|
77
61
|
async def __aenter__(self):
|
78
62
|
await self.__wrapped__.__aenter__()
|
@@ -91,369 +75,67 @@ def async_send_message(version, environment, application_name, tracer,
|
|
91
75
|
async def __anext__(self):
|
92
76
|
try:
|
93
77
|
chunk = await self.__wrapped__.__anext__()
|
94
|
-
|
95
|
-
# Record the timestamp for the current chunk
|
96
|
-
self._timestamps.append(end_time)
|
97
|
-
|
98
|
-
if len(self._timestamps) == 1:
|
99
|
-
# Calculate time to first chunk
|
100
|
-
self._ttft = calculate_ttft(self._timestamps, self._start_time)
|
101
|
-
|
102
|
-
self._llmresponse += str(chunk.text)
|
103
|
-
self._input_tokens = chunk.usage_metadata.prompt_token_count
|
104
|
-
self._output_tokens = chunk.usage_metadata.candidates_token_count
|
105
|
-
|
78
|
+
process_chunk(self, chunk)
|
106
79
|
return chunk
|
107
80
|
except StopAsyncIteration:
|
108
|
-
# Handling exception ensure observability without disrupting operation
|
109
81
|
try:
|
110
|
-
self.
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
if isinstance(content, list):
|
122
|
-
content_str_list = []
|
123
|
-
for item in content:
|
124
|
-
if item["type"] == "text":
|
125
|
-
content_str_list.append(f'text: {item["text"]}')
|
126
|
-
elif (item["type"] == "image_url" and
|
127
|
-
not item["image_url"]["url"].startswith("data:")):
|
128
|
-
content_str_list.append(f'image_url: {item["image_url"]["url"]}')
|
129
|
-
content_str = ", ".join(content_str_list)
|
130
|
-
formatted_messages.append(f"{role}: {content_str}")
|
131
|
-
else:
|
132
|
-
formatted_messages.append(f"{role}: {content}")
|
133
|
-
prompt = "\n".join(formatted_messages) or str(self._args[0][0])
|
134
|
-
|
135
|
-
# Calculate cost of the operation
|
136
|
-
cost = get_chat_model_cost(self._request_model,
|
137
|
-
pricing_info, self._input_tokens,
|
138
|
-
self._output_tokens)
|
139
|
-
|
140
|
-
# Set Span attributes (OTel Semconv)
|
141
|
-
self._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
142
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_OPERATION,
|
143
|
-
SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT)
|
144
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_SYSTEM,
|
145
|
-
SemanticConvention.GEN_AI_SYSTEM_VERTEXAI)
|
146
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL,
|
147
|
-
self._request_model)
|
148
|
-
self._span.set_attribute(SemanticConvention.SERVER_PORT,
|
149
|
-
self._server_port)
|
150
|
-
|
151
|
-
inference_config = self._kwargs.get('generation_config', {})
|
152
|
-
|
153
|
-
# List of attributes and their config keys
|
154
|
-
attributes = [
|
155
|
-
(SemanticConvention.GEN_AI_REQUEST_FREQUENCY_PENALTY, 'frequency_penalty'),
|
156
|
-
(SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS, 'max_output_tokens'),
|
157
|
-
(SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY, 'presence_penalty'),
|
158
|
-
(SemanticConvention.GEN_AI_REQUEST_STOP_SEQUENCES, 'stop_sequences'),
|
159
|
-
(SemanticConvention.GEN_AI_REQUEST_TEMPERATURE, 'temperature'),
|
160
|
-
(SemanticConvention.GEN_AI_REQUEST_TOP_P, 'top_p'),
|
161
|
-
(SemanticConvention.GEN_AI_REQUEST_TOP_K, 'top_k'),
|
162
|
-
]
|
163
|
-
|
164
|
-
# Set each attribute if the corresponding value exists and is not None
|
165
|
-
for attribute, key in attributes:
|
166
|
-
# Use the `get` method to safely access keys in the dictionary
|
167
|
-
value = inference_config.get(key)
|
168
|
-
if value is not None:
|
169
|
-
self._span.set_attribute(attribute, value)
|
170
|
-
|
171
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL,
|
172
|
-
self._request_model)
|
173
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS,
|
174
|
-
self._input_tokens)
|
175
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS,
|
176
|
-
self._output_tokens)
|
177
|
-
self._span.set_attribute(SemanticConvention.SERVER_ADDRESS,
|
178
|
-
self._server_address)
|
179
|
-
if isinstance(self._llmresponse, str):
|
180
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
|
181
|
-
"text")
|
182
|
-
else:
|
183
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
|
184
|
-
"json")
|
185
|
-
|
186
|
-
# Set Span attributes (Extra)
|
187
|
-
self._span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
188
|
-
environment)
|
189
|
-
self._span.set_attribute(SERVICE_NAME,
|
190
|
-
application_name)
|
191
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM,
|
192
|
-
True)
|
193
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_USAGE_TOTAL_TOKENS,
|
194
|
-
self._input_tokens + self._output_tokens)
|
195
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST,
|
196
|
-
cost)
|
197
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TBT,
|
198
|
-
self._tbt)
|
199
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT,
|
200
|
-
self._ttft)
|
201
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION,
|
202
|
-
version)
|
203
|
-
if capture_message_content:
|
204
|
-
self._span.add_event(
|
205
|
-
name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
|
206
|
-
attributes={
|
207
|
-
SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt,
|
208
|
-
},
|
209
|
-
)
|
210
|
-
self._span.add_event(
|
211
|
-
name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
|
212
|
-
attributes={
|
213
|
-
SemanticConvention.GEN_AI_CONTENT_COMPLETION: self._llmresponse,
|
214
|
-
},
|
215
|
-
)
|
216
|
-
self._span.set_status(Status(StatusCode.OK))
|
217
|
-
|
218
|
-
if disable_metrics is False:
|
219
|
-
attributes = create_metrics_attributes(
|
220
|
-
service_name=application_name,
|
221
|
-
deployment_environment=environment,
|
222
|
-
operation=SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT,
|
223
|
-
system=SemanticConvention.GEN_AI_SYSTEM_VERTEXAI,
|
224
|
-
request_model=self._request_model,
|
225
|
-
server_address=self._server_address,
|
226
|
-
server_port=self._server_port,
|
227
|
-
response_model=self._request_model,
|
228
|
-
)
|
229
|
-
|
230
|
-
metrics["genai_client_usage_tokens"].record(
|
231
|
-
self._input_tokens + self._output_tokens, attributes
|
232
|
-
)
|
233
|
-
metrics["genai_client_operation_duration"].record(
|
234
|
-
self._end_time - self._start_time, attributes
|
235
|
-
)
|
236
|
-
metrics["genai_server_tbt"].record(
|
237
|
-
self._tbt, attributes
|
238
|
-
)
|
239
|
-
metrics["genai_server_ttft"].record(
|
240
|
-
self._ttft, attributes
|
82
|
+
with self._span:
|
83
|
+
process_streaming_chat_response(
|
84
|
+
self,
|
85
|
+
pricing_info=pricing_info,
|
86
|
+
environment=environment,
|
87
|
+
application_name=application_name,
|
88
|
+
metrics=metrics,
|
89
|
+
capture_message_content=capture_message_content,
|
90
|
+
disable_metrics=disable_metrics,
|
91
|
+
version=version
|
241
92
|
)
|
242
|
-
metrics["genai_requests"].add(1, attributes)
|
243
|
-
metrics["genai_completion_tokens"].add(self._output_tokens, attributes)
|
244
|
-
metrics["genai_prompt_tokens"].add(self._input_tokens, attributes)
|
245
|
-
metrics["genai_cost"].record(cost, attributes)
|
246
|
-
|
247
93
|
except Exception as e:
|
248
94
|
handle_exception(self._span, e)
|
249
|
-
logger.error("Error in trace creation: %s", e)
|
250
|
-
finally:
|
251
|
-
self._span.end()
|
252
95
|
raise
|
253
96
|
|
254
97
|
async def wrapper(wrapped, instance, args, kwargs):
|
255
98
|
"""
|
256
|
-
Wraps the
|
257
|
-
|
258
|
-
This collects metrics such as execution time, cost, and token usage, and handles errors
|
259
|
-
gracefully, adding details to the trace for observability.
|
260
|
-
|
261
|
-
Args:
|
262
|
-
wrapped: The original 'messages' method to be wrapped.
|
263
|
-
instance: The instance of the class where the original method is defined.
|
264
|
-
args: Positional arguments for the 'messages' method.
|
265
|
-
kwargs: Keyword arguments for the 'messages' method.
|
266
|
-
|
267
|
-
Returns:
|
268
|
-
The response from the original 'messages' method.
|
99
|
+
Wraps the VertexAI async API call to add telemetry.
|
269
100
|
"""
|
270
101
|
|
271
|
-
# Check if streaming is enabled for the API call
|
272
102
|
streaming = kwargs.get("stream", False)
|
273
|
-
|
274
|
-
try:
|
275
|
-
location = instance._model._location
|
276
|
-
request_model = "/".join(instance._model._model_name.split("/")[3:])
|
277
|
-
except:
|
278
|
-
location = instance._location
|
279
|
-
request_model = "/".join(instance._model_name.split("/")[3:])
|
280
|
-
|
281
|
-
server_address, server_port = location + '-aiplatform.googleapis.com', 443
|
103
|
+
server_address, server_port, request_model = extract_vertexai_details(instance)
|
282
104
|
|
283
105
|
span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
|
284
106
|
|
285
|
-
# pylint: disable=no-else-return
|
286
107
|
if streaming:
|
287
|
-
# Special handling for streaming response to accommodate the nature of data flow
|
288
108
|
awaited_wrapped = await wrapped(*args, **kwargs)
|
289
109
|
span = tracer.start_span(span_name, kind=SpanKind.CLIENT)
|
290
110
|
|
291
|
-
return TracedAsyncStream(awaited_wrapped, span, kwargs, server_address, server_port, request_model, args)
|
111
|
+
return TracedAsyncStream(awaited_wrapped, span, span_name, kwargs, server_address, server_port, request_model, args)
|
292
112
|
|
293
|
-
# Handling for non-streaming responses
|
294
113
|
else:
|
295
114
|
with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
|
296
115
|
start_time = time.time()
|
297
116
|
response = await wrapped(*args, **kwargs)
|
298
|
-
end_time = time.time()
|
299
117
|
|
300
118
|
try:
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
content_str.append(f"thought: {part.thought}")
|
318
|
-
if part.code_execution_result:
|
319
|
-
content_str.append(f"code_execution_result: {part.code_execution_result}")
|
320
|
-
if part.executable_code:
|
321
|
-
content_str.append(f"executable_code: {part.executable_code}")
|
322
|
-
if part.file_data:
|
323
|
-
content_str.append(f"file_data: {part.file_data}")
|
324
|
-
if part.function_call:
|
325
|
-
content_str.append(f"function_call: {part.function_call}")
|
326
|
-
if part.function_response:
|
327
|
-
content_str.append(f"function_response: {part.function_response}")
|
328
|
-
if part.inline_data:
|
329
|
-
content_str.append(f"inline_data: {part.inline_data}")
|
330
|
-
|
331
|
-
formatted_messages.append(f"{role}: {', '.join(content_str)}")
|
332
|
-
|
333
|
-
prompt = "\n".join(formatted_messages) or str(args[0][0])
|
334
|
-
|
335
|
-
input_tokens = response.usage_metadata.prompt_token_count
|
336
|
-
output_tokens = response.usage_metadata.candidates_token_count
|
337
|
-
|
338
|
-
# Calculate cost of the operation
|
339
|
-
cost = get_chat_model_cost(request_model,
|
340
|
-
pricing_info, input_tokens,
|
341
|
-
output_tokens)
|
342
|
-
|
343
|
-
# Set base span attribues (OTel Semconv)
|
344
|
-
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
345
|
-
span.set_attribute(SemanticConvention.GEN_AI_OPERATION,
|
346
|
-
SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT)
|
347
|
-
span.set_attribute(SemanticConvention.GEN_AI_SYSTEM,
|
348
|
-
SemanticConvention.GEN_AI_SYSTEM_VERTEXAI)
|
349
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL,
|
350
|
-
request_model)
|
351
|
-
span.set_attribute(SemanticConvention.SERVER_PORT,
|
352
|
-
server_port)
|
353
|
-
|
354
|
-
inference_config = kwargs.get('generation_config', {})
|
355
|
-
|
356
|
-
# List of attributes and their config keys
|
357
|
-
attributes = [
|
358
|
-
(SemanticConvention.GEN_AI_REQUEST_FREQUENCY_PENALTY, 'frequency_penalty'),
|
359
|
-
(SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS, 'max_output_tokens'),
|
360
|
-
(SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY, 'presence_penalty'),
|
361
|
-
(SemanticConvention.GEN_AI_REQUEST_STOP_SEQUENCES, 'stop_sequences'),
|
362
|
-
(SemanticConvention.GEN_AI_REQUEST_TEMPERATURE, 'temperature'),
|
363
|
-
(SemanticConvention.GEN_AI_REQUEST_TOP_P, 'top_p'),
|
364
|
-
(SemanticConvention.GEN_AI_REQUEST_TOP_K, 'top_k'),
|
365
|
-
]
|
366
|
-
|
367
|
-
# Set each attribute if the corresponding value exists and is not None
|
368
|
-
for attribute, key in attributes:
|
369
|
-
# Use the `get` method to safely access keys in the dictionary
|
370
|
-
value = inference_config.get(key)
|
371
|
-
if value is not None:
|
372
|
-
span.set_attribute(attribute, value)
|
373
|
-
|
374
|
-
span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL,
|
375
|
-
request_model)
|
376
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS,
|
377
|
-
input_tokens)
|
378
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS,
|
379
|
-
output_tokens)
|
380
|
-
span.set_attribute(SemanticConvention.SERVER_ADDRESS,
|
381
|
-
server_address)
|
382
|
-
# span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_FINISH_REASON,
|
383
|
-
# [str(response.candidates[0].finish_reason)])
|
384
|
-
|
385
|
-
# Set base span attribues (Extras)
|
386
|
-
span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
387
|
-
environment)
|
388
|
-
span.set_attribute(SERVICE_NAME,
|
389
|
-
application_name)
|
390
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM,
|
391
|
-
False)
|
392
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_TOTAL_TOKENS,
|
393
|
-
input_tokens + output_tokens)
|
394
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST,
|
395
|
-
cost)
|
396
|
-
span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT,
|
397
|
-
end_time - start_time)
|
398
|
-
span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION,
|
399
|
-
version)
|
400
|
-
if capture_message_content:
|
401
|
-
span.add_event(
|
402
|
-
name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
|
403
|
-
attributes={
|
404
|
-
SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt,
|
405
|
-
},
|
406
|
-
)
|
407
|
-
span.add_event(
|
408
|
-
name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
|
409
|
-
attributes={
|
410
|
-
SemanticConvention.GEN_AI_CONTENT_COMPLETION: response.text,
|
411
|
-
},
|
412
|
-
)
|
413
|
-
|
414
|
-
if isinstance(response.text, str):
|
415
|
-
span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
|
416
|
-
"text")
|
417
|
-
elif response.text is not None:
|
418
|
-
span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
|
419
|
-
"json")
|
420
|
-
|
421
|
-
span.set_status(Status(StatusCode.OK))
|
422
|
-
|
423
|
-
if disable_metrics is False:
|
424
|
-
attributes = create_metrics_attributes(
|
425
|
-
service_name=application_name,
|
426
|
-
deployment_environment=environment,
|
427
|
-
operation=SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT,
|
428
|
-
system=SemanticConvention.GEN_AI_SYSTEM_VERTEXAI,
|
429
|
-
request_model=request_model,
|
430
|
-
server_address=server_address,
|
431
|
-
server_port=server_port,
|
432
|
-
response_model=request_model,
|
433
|
-
)
|
434
|
-
|
435
|
-
metrics["genai_client_usage_tokens"].record(
|
436
|
-
input_tokens + output_tokens, attributes
|
437
|
-
)
|
438
|
-
metrics["genai_client_operation_duration"].record(
|
439
|
-
end_time - start_time, attributes
|
440
|
-
)
|
441
|
-
metrics["genai_server_ttft"].record(
|
442
|
-
end_time - start_time, attributes
|
443
|
-
)
|
444
|
-
metrics["genai_requests"].add(1, attributes)
|
445
|
-
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
446
|
-
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
447
|
-
metrics["genai_cost"].record(cost, attributes)
|
448
|
-
|
449
|
-
# Return original response
|
450
|
-
return response
|
119
|
+
response = process_chat_response(
|
120
|
+
response=response,
|
121
|
+
request_model=request_model,
|
122
|
+
pricing_info=pricing_info,
|
123
|
+
server_port=server_port,
|
124
|
+
server_address=server_address,
|
125
|
+
environment=environment,
|
126
|
+
application_name=application_name,
|
127
|
+
metrics=metrics,
|
128
|
+
start_time=start_time,
|
129
|
+
span=span,
|
130
|
+
capture_message_content=capture_message_content,
|
131
|
+
disable_metrics=disable_metrics,
|
132
|
+
version=version,
|
133
|
+
**kwargs
|
134
|
+
)
|
451
135
|
|
452
136
|
except Exception as e:
|
453
137
|
handle_exception(span, e)
|
454
|
-
logger.error("Error in trace creation: %s", e)
|
455
138
|
|
456
|
-
|
457
|
-
return response
|
139
|
+
return response
|
458
140
|
|
459
141
|
return wrapper
|