openlit 1.30.1__tar.gz → 1.30.3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {openlit-1.30.1 → openlit-1.30.3}/PKG-INFO +3 -2
- {openlit-1.30.1 → openlit-1.30.3}/README.md +2 -1
- {openlit-1.30.1 → openlit-1.30.3}/pyproject.toml +1 -1
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/__init__.py +2 -2
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/evals/utils.py +5 -2
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/guard/utils.py +5 -1
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/azure_ai_inference/async_azure_ai_inference.py +0 -1
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/azure_ai_inference/azure_ai_inference.py +0 -1
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/google_ai_studio/google_ai_studio.py +0 -1
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/litellm/__init__.py +16 -2
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/litellm/async_litellm.py +115 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/litellm/litellm.py +115 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/openai/async_openai.py +8 -6
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/openai/openai.py +8 -6
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/otel/metrics.py +6 -3
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/otel/tracing.py +5 -2
- {openlit-1.30.1 → openlit-1.30.3}/LICENSE +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/__helpers.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/evals/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/evals/all.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/evals/bias_detection.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/evals/hallucination.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/evals/toxicity.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/guard/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/guard/all.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/guard/prompt_injection.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/guard/restrict_topic.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/guard/sensitive_topic.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/anthropic/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/anthropic/anthropic.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/anthropic/async_anthropic.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/azure_ai_inference/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/bedrock/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/bedrock/bedrock.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/chroma/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/chroma/chroma.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/cohere/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/cohere/cohere.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/crewai/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/crewai/crewai.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/elevenlabs/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/elevenlabs/async_elevenlabs.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/elevenlabs/elevenlabs.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/embedchain/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/embedchain/embedchain.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/google_ai_studio/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/google_ai_studio/async_google_ai_studio.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/gpt4all/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/gpt4all/gpt4all.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/gpu/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/groq/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/groq/async_groq.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/groq/groq.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/haystack/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/haystack/haystack.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/langchain/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/langchain/langchain.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/llamaindex/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/llamaindex/llamaindex.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/milvus/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/milvus/milvus.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/mistral/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/mistral/async_mistral.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/mistral/mistral.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/ollama/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/ollama/async_ollama.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/ollama/ollama.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/openai/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/openai/async_azure_openai.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/openai/azure_openai.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/pinecone/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/pinecone/pinecone.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/qdrant/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/qdrant/async_qdrant.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/qdrant/qdrant.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/transformers/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/transformers/transformers.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/vertexai/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/vertexai/async_vertexai.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/vertexai/vertexai.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/vllm/__init__.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/vllm/vllm.py +0 -0
- {openlit-1.30.1 → openlit-1.30.3}/src/openlit/semcov/__init__.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: openlit
|
3
|
-
Version: 1.30.
|
3
|
+
Version: 1.30.3
|
4
4
|
Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects
|
5
5
|
Home-page: https://github.com/openlit/openlit/tree/main/openlit/python
|
6
6
|
Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT,gpu
|
@@ -72,7 +72,7 @@ This project proudly follows and maintains the [Semantic Conventions](https://gi
|
|
72
72
|
| [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere) | | [✅ EmbedChain](https://docs.openlit.io/latest/integrations/embedchain) | |
|
73
73
|
| [✅ Mistral](https://docs.openlit.io/latest/integrations/mistral) | | [✅ Guardrails](https://docs.openlit.io/latest/integrations/guardrails) | |
|
74
74
|
| [✅ Azure OpenAI](https://docs.openlit.io/latest/integrations/azure-openai) | | [✅ CrewAI](https://docs.openlit.io/latest/integrations/crewai) | |
|
75
|
-
| [✅ Azure AI Inference](https://docs.openlit.io/latest/integrations/azure-ai-inference) | |
|
75
|
+
| [✅ Azure AI Inference](https://docs.openlit.io/latest/integrations/azure-ai-inference) | | [✅ DSPy](https://docs.openlit.io/latest/integrations/dspy) | |
|
76
76
|
| [✅ GitHub AI Models](https://docs.openlit.io/latest/integrations/github-models) | | | |
|
77
77
|
| [✅ HuggingFace Transformers](https://docs.openlit.io/latest/integrations/huggingface) | | | |
|
78
78
|
| [✅ Amazon Bedrock](https://docs.openlit.io/latest/integrations/bedrock) | | | |
|
@@ -84,6 +84,7 @@ This project proudly follows and maintains the [Semantic Conventions](https://gi
|
|
84
84
|
| [✅ Google AI Studio](https://docs.openlit.io/latest/integrations/google-ai-studio) | | | |
|
85
85
|
| [✅ NVIDIA NIM](https://docs.openlit.io/latest/integrations/nvidia-nim) | | | |
|
86
86
|
|
87
|
+
|
87
88
|
## Supported Destinations
|
88
89
|
- [✅ OpenTelemetry Collector](https://docs.openlit.io/latest/connections/otelcol)
|
89
90
|
- [✅ Prometheus + Tempo](https://docs.openlit.io/latest/connections/prometheus-tempo)
|
@@ -41,7 +41,7 @@ This project proudly follows and maintains the [Semantic Conventions](https://gi
|
|
41
41
|
| [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere) | | [✅ EmbedChain](https://docs.openlit.io/latest/integrations/embedchain) | |
|
42
42
|
| [✅ Mistral](https://docs.openlit.io/latest/integrations/mistral) | | [✅ Guardrails](https://docs.openlit.io/latest/integrations/guardrails) | |
|
43
43
|
| [✅ Azure OpenAI](https://docs.openlit.io/latest/integrations/azure-openai) | | [✅ CrewAI](https://docs.openlit.io/latest/integrations/crewai) | |
|
44
|
-
| [✅ Azure AI Inference](https://docs.openlit.io/latest/integrations/azure-ai-inference) | |
|
44
|
+
| [✅ Azure AI Inference](https://docs.openlit.io/latest/integrations/azure-ai-inference) | | [✅ DSPy](https://docs.openlit.io/latest/integrations/dspy) | |
|
45
45
|
| [✅ GitHub AI Models](https://docs.openlit.io/latest/integrations/github-models) | | | |
|
46
46
|
| [✅ HuggingFace Transformers](https://docs.openlit.io/latest/integrations/huggingface) | | | |
|
47
47
|
| [✅ Amazon Bedrock](https://docs.openlit.io/latest/integrations/bedrock) | | | |
|
@@ -53,6 +53,7 @@ This project proudly follows and maintains the [Semantic Conventions](https://gi
|
|
53
53
|
| [✅ Google AI Studio](https://docs.openlit.io/latest/integrations/google-ai-studio) | | | |
|
54
54
|
| [✅ NVIDIA NIM](https://docs.openlit.io/latest/integrations/nvidia-nim) | | | |
|
55
55
|
|
56
|
+
|
56
57
|
## Supported Destinations
|
57
58
|
- [✅ OpenTelemetry Collector](https://docs.openlit.io/latest/connections/otelcol)
|
58
59
|
- [✅ Prometheus + Tempo](https://docs.openlit.io/latest/connections/prometheus-tempo)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
[tool.poetry]
|
2
2
|
name = "openlit"
|
3
|
-
version = "1.30.
|
3
|
+
version = "1.30.3"
|
4
4
|
description = "OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects"
|
5
5
|
authors = ["OpenLIT"]
|
6
6
|
repository = "https://github.com/openlit/openlit/tree/main/openlit/python"
|
@@ -379,7 +379,7 @@ def get_prompt(url=None, name=None, api_key=None, prompt_id=None,
|
|
379
379
|
# Return the JSON response
|
380
380
|
return response.json()
|
381
381
|
except requests.RequestException as error:
|
382
|
-
|
382
|
+
logger.error("Error fetching prompt: '%s'", error)
|
383
383
|
return None
|
384
384
|
|
385
385
|
def get_secrets(url=None, api_key=None, key=None, tags=None, should_set_env=None):
|
@@ -437,7 +437,7 @@ def get_secrets(url=None, api_key=None, key=None, tags=None, should_set_env=None
|
|
437
437
|
os.environ[token] = str(value)
|
438
438
|
return vault_response
|
439
439
|
except requests.RequestException as error:
|
440
|
-
|
440
|
+
logger.error("Error fetching secrets: '%s'", error)
|
441
441
|
return None
|
442
442
|
|
443
443
|
def trace(wrapped):
|
@@ -3,15 +3,18 @@
|
|
3
3
|
|
4
4
|
import json
|
5
5
|
import os
|
6
|
+
import logging
|
6
7
|
from typing import Optional, Tuple, List
|
7
8
|
from pydantic import BaseModel
|
8
|
-
|
9
9
|
from opentelemetry.metrics import get_meter
|
10
10
|
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
11
11
|
from anthropic import Anthropic
|
12
12
|
from openai import OpenAI
|
13
13
|
from openlit.semcov import SemanticConvetion
|
14
14
|
|
15
|
+
# Initialize logger for logging potential issues and operations
|
16
|
+
logger = logging.getLogger(__name__)
|
17
|
+
|
15
18
|
class JsonOutput(BaseModel):
|
16
19
|
"""
|
17
20
|
A model representing the structure of JSON output for prompt injection detection.
|
@@ -216,7 +219,7 @@ def parse_llm_response(response) -> JsonOutput:
|
|
216
219
|
|
217
220
|
return JsonOutput(**data)
|
218
221
|
except (json.JSONDecodeError, TypeError) as e:
|
219
|
-
|
222
|
+
logger.error("Error parsing LLM response: '%s'", e)
|
220
223
|
return JsonOutput(score=0, classification="none", explanation="none",
|
221
224
|
verdict="no", evaluation="none")
|
222
225
|
|
@@ -4,6 +4,7 @@
|
|
4
4
|
import re
|
5
5
|
import json
|
6
6
|
import os
|
7
|
+
import logging
|
7
8
|
from typing import Optional, Tuple
|
8
9
|
from pydantic import BaseModel
|
9
10
|
from opentelemetry.metrics import get_meter
|
@@ -12,6 +13,9 @@ from anthropic import Anthropic
|
|
12
13
|
from openai import OpenAI
|
13
14
|
from openlit.semcov import SemanticConvetion
|
14
15
|
|
16
|
+
# Initialize logger for logging potential issues and operations
|
17
|
+
logger = logging.getLogger(__name__)
|
18
|
+
|
15
19
|
class JsonOutput(BaseModel):
|
16
20
|
"""
|
17
21
|
A model representing the structure of JSON output for prompt injection detection.
|
@@ -158,7 +162,7 @@ def parse_llm_response(response) -> JsonOutput:
|
|
158
162
|
|
159
163
|
return JsonOutput(**data)
|
160
164
|
except (json.JSONDecodeError, TypeError) as e:
|
161
|
-
|
165
|
+
logger.error("Error parsing LLM response: '%s'", e)
|
162
166
|
return JsonOutput(score=0, classification="none", explanation="none",
|
163
167
|
verdict="none", guard="none")
|
164
168
|
|
@@ -195,7 +195,6 @@ def async_complete(gen_ai_endpoint, version, environment, application_name,
|
|
195
195
|
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
196
196
|
response = await wrapped(*args, **kwargs)
|
197
197
|
|
198
|
-
# print(instance._system_instruction.__dict__["_pb"].parts[0].text)
|
199
198
|
try:
|
200
199
|
# Format 'messages' into a single string
|
201
200
|
message_prompt = kwargs.get("messages", "")
|
@@ -195,7 +195,6 @@ def complete(gen_ai_endpoint, version, environment, application_name,
|
|
195
195
|
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
196
196
|
response = wrapped(*args, **kwargs)
|
197
197
|
|
198
|
-
# print(instance._system_instruction.__dict__["_pb"].parts[0].text)
|
199
198
|
try:
|
200
199
|
# Format 'messages' into a single string
|
201
200
|
message_prompt = kwargs.get("messages", "")
|
{openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/google_ai_studio/google_ai_studio.py
RENAMED
@@ -164,7 +164,6 @@ def generate(gen_ai_endpoint, version, environment, application_name,
|
|
164
164
|
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
165
165
|
response = wrapped(*args, **kwargs)
|
166
166
|
|
167
|
-
# print(instance._system_instruction.__dict__["_pb"].parts[0].text)
|
168
167
|
try:
|
169
168
|
prompt = ""
|
170
169
|
for arg in args:
|
@@ -7,10 +7,10 @@ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
|
7
7
|
from wrapt import wrap_function_wrapper
|
8
8
|
|
9
9
|
from openlit.instrumentation.litellm.litellm import (
|
10
|
-
completion
|
10
|
+
completion, embedding
|
11
11
|
)
|
12
12
|
from openlit.instrumentation.litellm.async_litellm import (
|
13
|
-
acompletion
|
13
|
+
acompletion, aembedding
|
14
14
|
)
|
15
15
|
|
16
16
|
_instruments = ("litellm >= 1.52.6",)
|
@@ -48,6 +48,20 @@ class LiteLLMInstrumentor(BaseInstrumentor):
|
|
48
48
|
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
49
49
|
)
|
50
50
|
|
51
|
+
wrap_function_wrapper(
|
52
|
+
"litellm",
|
53
|
+
"embedding",
|
54
|
+
embedding("litellm.embedding", version, environment, application_name,
|
55
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
56
|
+
)
|
57
|
+
|
58
|
+
wrap_function_wrapper(
|
59
|
+
"litellm",
|
60
|
+
"aembedding",
|
61
|
+
aembedding("litellm.embedding", version, environment, application_name,
|
62
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
63
|
+
)
|
64
|
+
|
51
65
|
|
52
66
|
def _uninstrument(self, **kwargs):
|
53
67
|
# Proper uninstrumentation logic to revert patched methods
|
@@ -8,6 +8,7 @@ from opentelemetry.trace import SpanKind, Status, StatusCode
|
|
8
8
|
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
9
|
from openlit.__helpers import (
|
10
10
|
get_chat_model_cost,
|
11
|
+
get_embed_model_cost,
|
11
12
|
openai_tokens,
|
12
13
|
handle_exception,
|
13
14
|
response_as_dict,
|
@@ -404,3 +405,117 @@ def acompletion(gen_ai_endpoint, version, environment, application_name,
|
|
404
405
|
return response
|
405
406
|
|
406
407
|
return wrapper
|
408
|
+
|
409
|
+
def aembedding(gen_ai_endpoint, version, environment, application_name,
|
410
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
411
|
+
"""
|
412
|
+
Generates a telemetry wrapper for embeddings to collect metrics.
|
413
|
+
|
414
|
+
Args:
|
415
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
416
|
+
version: Version of the monitoring package.
|
417
|
+
environment: Deployment environment (e.g., production, staging).
|
418
|
+
application_name: Name of the application using the OpenAI API.
|
419
|
+
tracer: OpenTelemetry tracer for creating spans.
|
420
|
+
pricing_info: Information used for calculating the cost of OpenAI usage.
|
421
|
+
trace_content: Flag indicating whether to trace the actual content.
|
422
|
+
|
423
|
+
Returns:
|
424
|
+
A function that wraps the embeddings method to add telemetry.
|
425
|
+
"""
|
426
|
+
|
427
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
428
|
+
"""
|
429
|
+
Wraps the 'embeddings' API call to add telemetry.
|
430
|
+
|
431
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
432
|
+
gracefully, adding details to the trace for observability.
|
433
|
+
|
434
|
+
Args:
|
435
|
+
wrapped: The original 'embeddings' method to be wrapped.
|
436
|
+
instance: The instance of the class where the original method is defined.
|
437
|
+
args: Positional arguments for the 'embeddings' method.
|
438
|
+
kwargs: Keyword arguments for the 'embeddings' method.
|
439
|
+
|
440
|
+
Returns:
|
441
|
+
The response from the original 'embeddings' method.
|
442
|
+
"""
|
443
|
+
|
444
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
445
|
+
response = await wrapped(*args, **kwargs)
|
446
|
+
response_dict = response_as_dict(response)
|
447
|
+
try:
|
448
|
+
# Calculate cost of the operation
|
449
|
+
cost = get_embed_model_cost(kwargs.get("model", "text-embedding-ada-002"),
|
450
|
+
pricing_info, response_dict.get('usage').get('prompt_tokens'))
|
451
|
+
|
452
|
+
# Set Span attributes
|
453
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
454
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
455
|
+
SemanticConvetion.GEN_AI_SYSTEM_OPENAI)
|
456
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
457
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING)
|
458
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
459
|
+
gen_ai_endpoint)
|
460
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
461
|
+
environment)
|
462
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
463
|
+
application_name)
|
464
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
465
|
+
kwargs.get("model", "text-embedding-ada-002"))
|
466
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_FORMAT,
|
467
|
+
kwargs.get("encoding_format", "float"))
|
468
|
+
# span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_DIMENSION,
|
469
|
+
# kwargs.get("dimensions", "null"))
|
470
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
471
|
+
kwargs.get("user", ""))
|
472
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
473
|
+
response_dict.get('usage').get('prompt_tokens'))
|
474
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
475
|
+
response_dict.get('usage').get('total_tokens'))
|
476
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
477
|
+
cost)
|
478
|
+
if trace_content:
|
479
|
+
span.add_event(
|
480
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
481
|
+
attributes={
|
482
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: kwargs.get("input", ""),
|
483
|
+
},
|
484
|
+
)
|
485
|
+
|
486
|
+
span.set_status(Status(StatusCode.OK))
|
487
|
+
|
488
|
+
if disable_metrics is False:
|
489
|
+
attributes = {
|
490
|
+
TELEMETRY_SDK_NAME:
|
491
|
+
"openlit",
|
492
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
493
|
+
application_name,
|
494
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
495
|
+
SemanticConvetion.GEN_AI_SYSTEM_OPENAI,
|
496
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
497
|
+
environment,
|
498
|
+
SemanticConvetion.GEN_AI_TYPE:
|
499
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING,
|
500
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
501
|
+
kwargs.get("model", "text-embedding-ada-002")
|
502
|
+
}
|
503
|
+
|
504
|
+
metrics["genai_requests"].add(1, attributes)
|
505
|
+
metrics["genai_total_tokens"].add(
|
506
|
+
response_dict.get('usage').get('total_tokens'), attributes)
|
507
|
+
metrics["genai_prompt_tokens"].add(
|
508
|
+
response_dict.get('usage').get('prompt_tokens'), attributes)
|
509
|
+
metrics["genai_cost"].record(cost, attributes)
|
510
|
+
|
511
|
+
# Return original response
|
512
|
+
return response
|
513
|
+
|
514
|
+
except Exception as e:
|
515
|
+
handle_exception(span, e)
|
516
|
+
logger.error("Error in trace creation: %s", e)
|
517
|
+
|
518
|
+
# Return original response
|
519
|
+
return response
|
520
|
+
|
521
|
+
return wrapper
|
@@ -8,6 +8,7 @@ from opentelemetry.trace import SpanKind, Status, StatusCode
|
|
8
8
|
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
9
|
from openlit.__helpers import (
|
10
10
|
get_chat_model_cost,
|
11
|
+
get_embed_model_cost,
|
11
12
|
openai_tokens,
|
12
13
|
handle_exception,
|
13
14
|
response_as_dict,
|
@@ -404,3 +405,117 @@ def completion(gen_ai_endpoint, version, environment, application_name,
|
|
404
405
|
return response
|
405
406
|
|
406
407
|
return wrapper
|
408
|
+
|
409
|
+
def embedding(gen_ai_endpoint, version, environment, application_name,
|
410
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
411
|
+
"""
|
412
|
+
Generates a telemetry wrapper for embeddings to collect metrics.
|
413
|
+
|
414
|
+
Args:
|
415
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
416
|
+
version: Version of the monitoring package.
|
417
|
+
environment: Deployment environment (e.g., production, staging).
|
418
|
+
application_name: Name of the application using the OpenAI API.
|
419
|
+
tracer: OpenTelemetry tracer for creating spans.
|
420
|
+
pricing_info: Information used for calculating the cost of OpenAI usage.
|
421
|
+
trace_content: Flag indicating whether to trace the actual content.
|
422
|
+
|
423
|
+
Returns:
|
424
|
+
A function that wraps the embeddings method to add telemetry.
|
425
|
+
"""
|
426
|
+
|
427
|
+
def wrapper(wrapped, instance, args, kwargs):
|
428
|
+
"""
|
429
|
+
Wraps the 'embeddings' API call to add telemetry.
|
430
|
+
|
431
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
432
|
+
gracefully, adding details to the trace for observability.
|
433
|
+
|
434
|
+
Args:
|
435
|
+
wrapped: The original 'embeddings' method to be wrapped.
|
436
|
+
instance: The instance of the class where the original method is defined.
|
437
|
+
args: Positional arguments for the 'embeddings' method.
|
438
|
+
kwargs: Keyword arguments for the 'embeddings' method.
|
439
|
+
|
440
|
+
Returns:
|
441
|
+
The response from the original 'embeddings' method.
|
442
|
+
"""
|
443
|
+
|
444
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
445
|
+
response = wrapped(*args, **kwargs)
|
446
|
+
response_dict = response_as_dict(response)
|
447
|
+
try:
|
448
|
+
# Calculate cost of the operation
|
449
|
+
cost = get_embed_model_cost(kwargs.get("model", "text-embedding-ada-002"),
|
450
|
+
pricing_info, response_dict.get('usage').get('prompt_tokens'))
|
451
|
+
|
452
|
+
# Set Span attributes
|
453
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
454
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
455
|
+
SemanticConvetion.GEN_AI_SYSTEM_OPENAI)
|
456
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
457
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING)
|
458
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
459
|
+
gen_ai_endpoint)
|
460
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
461
|
+
environment)
|
462
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
463
|
+
application_name)
|
464
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
465
|
+
kwargs.get("model", "text-embedding-ada-002"))
|
466
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_FORMAT,
|
467
|
+
kwargs.get("encoding_format", "float"))
|
468
|
+
# span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_DIMENSION,
|
469
|
+
# kwargs.get("dimensions", "null"))
|
470
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
471
|
+
kwargs.get("user", ""))
|
472
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
473
|
+
response_dict.get('usage').get('prompt_tokens'))
|
474
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
475
|
+
response_dict.get('usage').get('total_tokens'))
|
476
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
477
|
+
cost)
|
478
|
+
if trace_content:
|
479
|
+
span.add_event(
|
480
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
481
|
+
attributes={
|
482
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: kwargs.get("input", ""),
|
483
|
+
},
|
484
|
+
)
|
485
|
+
|
486
|
+
span.set_status(Status(StatusCode.OK))
|
487
|
+
|
488
|
+
if disable_metrics is False:
|
489
|
+
attributes = {
|
490
|
+
TELEMETRY_SDK_NAME:
|
491
|
+
"openlit",
|
492
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
493
|
+
application_name,
|
494
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
495
|
+
SemanticConvetion.GEN_AI_SYSTEM_OPENAI,
|
496
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
497
|
+
environment,
|
498
|
+
SemanticConvetion.GEN_AI_TYPE:
|
499
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING,
|
500
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
501
|
+
kwargs.get("model", "text-embedding-ada-002")
|
502
|
+
}
|
503
|
+
|
504
|
+
metrics["genai_requests"].add(1, attributes)
|
505
|
+
metrics["genai_total_tokens"].add(
|
506
|
+
response_dict.get('usage').get('total_tokens'), attributes)
|
507
|
+
metrics["genai_prompt_tokens"].add(
|
508
|
+
response_dict.get('usage').get('prompt_tokens'), attributes)
|
509
|
+
metrics["genai_cost"].record(cost, attributes)
|
510
|
+
|
511
|
+
# Return original response
|
512
|
+
return response
|
513
|
+
|
514
|
+
except Exception as e:
|
515
|
+
handle_exception(span, e)
|
516
|
+
logger.error("Error in trace creation: %s", e)
|
517
|
+
|
518
|
+
# Return original response
|
519
|
+
return response
|
520
|
+
|
521
|
+
return wrapper
|
@@ -446,11 +446,11 @@ def async_embedding(gen_ai_endpoint, version, environment, application_name,
|
|
446
446
|
|
447
447
|
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
448
448
|
response = await wrapped(*args, **kwargs)
|
449
|
-
|
449
|
+
response_dict = response_as_dict(response)
|
450
450
|
try:
|
451
451
|
# Calculate cost of the operation
|
452
452
|
cost = get_embed_model_cost(kwargs.get("model", "text-embedding-ada-002"),
|
453
|
-
|
453
|
+
pricing_info, response_dict.get('usage').get('prompt_tokens'))
|
454
454
|
|
455
455
|
# Set Span attributes
|
456
456
|
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
@@ -473,9 +473,9 @@ def async_embedding(gen_ai_endpoint, version, environment, application_name,
|
|
473
473
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
474
474
|
kwargs.get("user", ""))
|
475
475
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
476
|
-
|
476
|
+
response_dict.get('usage').get('prompt_tokens'))
|
477
477
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
478
|
-
|
478
|
+
response_dict.get('usage').get('total_tokens'))
|
479
479
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
480
480
|
cost)
|
481
481
|
if trace_content:
|
@@ -505,8 +505,10 @@ def async_embedding(gen_ai_endpoint, version, environment, application_name,
|
|
505
505
|
}
|
506
506
|
|
507
507
|
metrics["genai_requests"].add(1, attributes)
|
508
|
-
metrics["genai_total_tokens"].add(
|
509
|
-
|
508
|
+
metrics["genai_total_tokens"].add(
|
509
|
+
response_dict.get('usage').get('total_tokens'), attributes)
|
510
|
+
metrics["genai_prompt_tokens"].add(
|
511
|
+
response_dict.get('usage').get('prompt_tokens'), attributes)
|
510
512
|
metrics["genai_cost"].record(cost, attributes)
|
511
513
|
|
512
514
|
# Return original response
|
@@ -446,11 +446,11 @@ def embedding(gen_ai_endpoint, version, environment, application_name,
|
|
446
446
|
|
447
447
|
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
448
448
|
response = wrapped(*args, **kwargs)
|
449
|
-
|
449
|
+
response_dict = response_as_dict(response)
|
450
450
|
try:
|
451
451
|
# Calculate cost of the operation
|
452
452
|
cost = get_embed_model_cost(kwargs.get("model", "text-embedding-ada-002"),
|
453
|
-
|
453
|
+
pricing_info, response_dict.get('usage').get('prompt_tokens'))
|
454
454
|
|
455
455
|
# Set Span attributes
|
456
456
|
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
@@ -473,9 +473,9 @@ def embedding(gen_ai_endpoint, version, environment, application_name,
|
|
473
473
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
474
474
|
kwargs.get("user", ""))
|
475
475
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
476
|
-
|
476
|
+
response_dict.get('usage').get('prompt_tokens'))
|
477
477
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
478
|
-
|
478
|
+
response_dict.get('usage').get('total_tokens'))
|
479
479
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
480
480
|
cost)
|
481
481
|
if trace_content:
|
@@ -505,8 +505,10 @@ def embedding(gen_ai_endpoint, version, environment, application_name,
|
|
505
505
|
}
|
506
506
|
|
507
507
|
metrics["genai_requests"].add(1, attributes)
|
508
|
-
metrics["genai_total_tokens"].add(
|
509
|
-
|
508
|
+
metrics["genai_total_tokens"].add(
|
509
|
+
response_dict.get('usage').get('total_tokens'), attributes)
|
510
|
+
metrics["genai_prompt_tokens"].add(
|
511
|
+
response_dict.get('usage').get('prompt_tokens'), attributes)
|
510
512
|
metrics["genai_cost"].record(cost, attributes)
|
511
513
|
|
512
514
|
# Return original response
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# pylint: disable=duplicate-code, line-too-long
|
1
|
+
# pylint: disable=duplicate-code, line-too-long, ungrouped-imports
|
2
2
|
"""
|
3
3
|
Setups up OpenTelemetry Meter
|
4
4
|
"""
|
@@ -8,10 +8,13 @@ from opentelemetry.sdk.metrics import MeterProvider
|
|
8
8
|
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader, ConsoleMetricExporter
|
9
9
|
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
10
10
|
from opentelemetry.sdk.resources import Resource
|
11
|
-
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
|
12
|
-
|
13
11
|
from openlit.semcov import SemanticConvetion
|
14
12
|
|
13
|
+
if os.environ.get("OTEL_EXPORTER_OTLP_PROTOCOL") == "grpc":
|
14
|
+
from opentelemetry.exporter.otlp.proto.grpc.metric_exporter import OTLPMetricExporter
|
15
|
+
else:
|
16
|
+
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
|
17
|
+
|
15
18
|
# Global flag to check if the meter provider initialization is complete.
|
16
19
|
METER_SET = False
|
17
20
|
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# pylint: disable=duplicate-code, line-too-long
|
1
|
+
# pylint: disable=duplicate-code, line-too-long, ungrouped-imports
|
2
2
|
"""
|
3
3
|
Setups up OpenTelemetry tracer
|
4
4
|
"""
|
@@ -10,8 +10,11 @@ from opentelemetry.sdk.resources import Resource
|
|
10
10
|
from opentelemetry.sdk.trace import TracerProvider
|
11
11
|
from opentelemetry.sdk.trace.export import BatchSpanProcessor, SimpleSpanProcessor
|
12
12
|
from opentelemetry.sdk.trace.export import ConsoleSpanExporter
|
13
|
-
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
|
14
13
|
|
14
|
+
if os.environ.get("OTEL_EXPORTER_OTLP_PROTOCOL") == "grpc":
|
15
|
+
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
|
16
|
+
else:
|
17
|
+
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
|
15
18
|
|
16
19
|
# Global flag to check if the tracer provider initialization is complete.
|
17
20
|
TRACER_SET = False
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/azure_ai_inference/__init__.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{openlit-1.30.1 → openlit-1.30.3}/src/openlit/instrumentation/elevenlabs/async_elevenlabs.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|