openlit 1.3.0__tar.gz → 1.4.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {openlit-1.3.0 → openlit-1.4.0}/PKG-INFO +2 -1
- {openlit-1.3.0 → openlit-1.4.0}/README.md +1 -0
- {openlit-1.3.0 → openlit-1.4.0}/pyproject.toml +1 -1
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/__init__.py +3 -0
- openlit-1.4.0/src/openlit/instrumentation/groq/__init__.py +50 -0
- openlit-1.4.0/src/openlit/instrumentation/groq/async_groq.py +331 -0
- openlit-1.4.0/src/openlit/instrumentation/groq/groq.py +331 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/otel/tracing.py +3 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/semcov/__init__.py +1 -0
- {openlit-1.3.0 → openlit-1.4.0}/LICENSE +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/__helpers.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/anthropic/__init__.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/anthropic/anthropic.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/anthropic/async_anthropic.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/bedrock/__init__.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/bedrock/bedrock.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/chroma/__init__.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/chroma/chroma.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/cohere/__init__.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/cohere/cohere.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/haystack/__init__.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/haystack/haystack.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/langchain/__init__.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/langchain/langchain.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/llamaindex/__init__.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/llamaindex/llamaindex.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/mistral/__init__.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/mistral/async_mistral.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/mistral/mistral.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/openai/__init__.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/openai/async_azure_openai.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/openai/async_openai.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/openai/azure_openai.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/openai/openai.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/pinecone/__init__.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/pinecone/pinecone.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/transformers/__init__.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/transformers/transformers.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/vertexai/__init__.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/vertexai/async_vertexai.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/instrumentation/vertexai/vertexai.py +0 -0
- {openlit-1.3.0 → openlit-1.4.0}/src/openlit/otel/metrics.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: openlit
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.4.0
|
4
4
|
Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications, facilitating the integration of observability into your GenAI-driven projects
|
5
5
|
Home-page: https://github.com/openlit/openlit/tree/main/openlit/python
|
6
6
|
Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT
|
@@ -57,6 +57,7 @@ This project adheres to the [Semantic Conventions](https://github.com/open-telem
|
|
57
57
|
- [✅ HuggingFace Transformers](https://docs.openlit.io/latest/integrations/huggingface)
|
58
58
|
- [✅ Amazon Bedrock](https://docs.openlit.io/latest/integrations/bedrock)
|
59
59
|
- [✅ Vertex AI](https://docs.openlit.io/latest/integrations/vertexai)
|
60
|
+
- [✅ Groq](https://docs.openlit.io/latest/integrations/groq)
|
60
61
|
|
61
62
|
### Vector DBs
|
62
63
|
- [✅ ChromaDB](https://docs.openlit.io/latest/integrations/chromadb)
|
@@ -32,6 +32,7 @@ This project adheres to the [Semantic Conventions](https://github.com/open-telem
|
|
32
32
|
- [✅ HuggingFace Transformers](https://docs.openlit.io/latest/integrations/huggingface)
|
33
33
|
- [✅ Amazon Bedrock](https://docs.openlit.io/latest/integrations/bedrock)
|
34
34
|
- [✅ Vertex AI](https://docs.openlit.io/latest/integrations/vertexai)
|
35
|
+
- [✅ Groq](https://docs.openlit.io/latest/integrations/groq)
|
35
36
|
|
36
37
|
### Vector DBs
|
37
38
|
- [✅ ChromaDB](https://docs.openlit.io/latest/integrations/chromadb)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
[tool.poetry]
|
2
2
|
name = "openlit"
|
3
|
-
version = "1.
|
3
|
+
version = "1.4.0"
|
4
4
|
description = "OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications, facilitating the integration of observability into your GenAI-driven projects"
|
5
5
|
authors = ["OpenLIT"]
|
6
6
|
repository = "https://github.com/openlit/openlit/tree/main/openlit/python"
|
@@ -19,6 +19,7 @@ from openlit.instrumentation.cohere import CohereInstrumentor
|
|
19
19
|
from openlit.instrumentation.mistral import MistralInstrumentor
|
20
20
|
from openlit.instrumentation.bedrock import BedrockInstrumentor
|
21
21
|
from openlit.instrumentation.vertexai import VertexAIInstrumentor
|
22
|
+
from openlit.instrumentation.groq import GroqInstrumentor
|
22
23
|
from openlit.instrumentation.langchain import LangChainInstrumentor
|
23
24
|
from openlit.instrumentation.llamaindex import LlamaIndexInstrumentor
|
24
25
|
from openlit.instrumentation.haystack import HaystackInstrumentor
|
@@ -151,6 +152,7 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
|
|
151
152
|
"mistral": "mistralai",
|
152
153
|
"bedrock": "boto3",
|
153
154
|
"vertexai": "vertexai",
|
155
|
+
"groq": "groq",
|
154
156
|
"langchain": "langchain",
|
155
157
|
"llama_index": "llama_index",
|
156
158
|
"haystack": "haystack",
|
@@ -201,6 +203,7 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
|
|
201
203
|
"mistral": MistralInstrumentor(),
|
202
204
|
"bedrock": BedrockInstrumentor(),
|
203
205
|
"vertexai": VertexAIInstrumentor(),
|
206
|
+
"groq": GroqInstrumentor(),
|
204
207
|
"langchain": LangChainInstrumentor(),
|
205
208
|
"llama_index": LlamaIndexInstrumentor(),
|
206
209
|
"haystack": HaystackInstrumentor(),
|
@@ -0,0 +1,50 @@
|
|
1
|
+
# pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
|
2
|
+
"""Initializer of Auto Instrumentation of Groq Functions"""
|
3
|
+
|
4
|
+
from typing import Collection
|
5
|
+
import importlib.metadata
|
6
|
+
from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
7
|
+
from wrapt import wrap_function_wrapper
|
8
|
+
|
9
|
+
from openlit.instrumentation.groq.groq import chat
|
10
|
+
from openlit.instrumentation.groq.async_groq import async_chat
|
11
|
+
|
12
|
+
_instruments = ("groq >= 0.5.0",)
|
13
|
+
|
14
|
+
class GroqInstrumentor(BaseInstrumentor):
|
15
|
+
"""
|
16
|
+
An instrumentor for Groq's client library.
|
17
|
+
"""
|
18
|
+
|
19
|
+
def instrumentation_dependencies(self) -> Collection[str]:
|
20
|
+
return _instruments
|
21
|
+
|
22
|
+
def _instrument(self, **kwargs):
|
23
|
+
application_name = kwargs.get("application_name", "default_application")
|
24
|
+
environment = kwargs.get("environment", "default_environment")
|
25
|
+
tracer = kwargs.get("tracer")
|
26
|
+
metrics = kwargs.get("metrics_dict")
|
27
|
+
pricing_info = kwargs.get("pricing_info", {})
|
28
|
+
trace_content = kwargs.get("trace_content", False)
|
29
|
+
disable_metrics = kwargs.get("disable_metrics")
|
30
|
+
version = importlib.metadata.version("groq")
|
31
|
+
|
32
|
+
#sync
|
33
|
+
wrap_function_wrapper(
|
34
|
+
"groq.resources.chat.completions",
|
35
|
+
"Completions.create",
|
36
|
+
chat("groq.chat.completions", version, environment, application_name,
|
37
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
38
|
+
)
|
39
|
+
|
40
|
+
#async
|
41
|
+
wrap_function_wrapper(
|
42
|
+
"groq.resources.chat.completions",
|
43
|
+
"AsyncCompletions.create",
|
44
|
+
async_chat("groq.chat.completions", version, environment, application_name,
|
45
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
46
|
+
)
|
47
|
+
|
48
|
+
def _uninstrument(self, **kwargs):
|
49
|
+
# Proper uninstrumentation logic to revert patched methods
|
50
|
+
pass
|
@@ -0,0 +1,331 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, used-before-assignment, too-many-branches
|
2
|
+
"""
|
3
|
+
Module for monitoring Groq API calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
+
from openlit.__helpers import get_chat_model_cost, handle_exception
|
10
|
+
from openlit.semcov import SemanticConvetion
|
11
|
+
|
12
|
+
# Initialize logger for logging potential issues and operations
|
13
|
+
logger = logging.getLogger(__name__)
|
14
|
+
|
15
|
+
def async_chat(gen_ai_endpoint, version, environment, application_name,
|
16
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
17
|
+
"""
|
18
|
+
Generates a telemetry wrapper for chat completions to collect metrics.
|
19
|
+
|
20
|
+
Args:
|
21
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
22
|
+
version: Version of the monitoring package.
|
23
|
+
environment: Deployment environment (e.g., production, staging).
|
24
|
+
application_name: Name of the application using the Groq API.
|
25
|
+
tracer: OpenTelemetry tracer for creating spans.
|
26
|
+
pricing_info: Information used for calculating the cost of Groq usage.
|
27
|
+
trace_content: Flag indicating whether to trace the actual content.
|
28
|
+
|
29
|
+
Returns:
|
30
|
+
A function that wraps the chat completions method to add telemetry.
|
31
|
+
"""
|
32
|
+
|
33
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
34
|
+
"""
|
35
|
+
Wraps the 'chat.completions' API call to add telemetry.
|
36
|
+
|
37
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
38
|
+
gracefully, adding details to the trace for observability.
|
39
|
+
|
40
|
+
Args:
|
41
|
+
wrapped: The original 'chat.completions' method to be wrapped.
|
42
|
+
instance: The instance of the class where the original method is defined.
|
43
|
+
args: Positional arguments for the 'chat.completions' method.
|
44
|
+
kwargs: Keyword arguments for the 'chat.completions' method.
|
45
|
+
|
46
|
+
Returns:
|
47
|
+
The response from the original 'chat.completions' method.
|
48
|
+
"""
|
49
|
+
|
50
|
+
# Check if streaming is enabled for the API call
|
51
|
+
streaming = kwargs.get("stream", False)
|
52
|
+
|
53
|
+
# pylint: disable=no-else-return
|
54
|
+
if streaming:
|
55
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
56
|
+
async def stream_generator():
|
57
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
58
|
+
# Placeholder for aggregating streaming response
|
59
|
+
llmresponse = ""
|
60
|
+
|
61
|
+
# Loop through streaming events capturing relevant details
|
62
|
+
async for chunk in await wrapped(*args, **kwargs):
|
63
|
+
# Collect message IDs and aggregated response from events
|
64
|
+
if len(chunk.choices) > 0:
|
65
|
+
# pylint: disable=line-too-long
|
66
|
+
if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
|
67
|
+
content = chunk.choices[0].delta.content
|
68
|
+
if content:
|
69
|
+
llmresponse += content
|
70
|
+
if chunk.x_groq is not None and chunk.x_groq.usage is not None:
|
71
|
+
prompt_tokens = chunk.x_groq.usage.prompt_tokens
|
72
|
+
completion_tokens = chunk.x_groq.usage.completion_tokens
|
73
|
+
total_tokens = chunk.x_groq.usage.total_tokens
|
74
|
+
response_id = chunk.x_groq.id
|
75
|
+
yield chunk
|
76
|
+
|
77
|
+
# Handling exception ensure observability without disrupting operation
|
78
|
+
try:
|
79
|
+
# Format 'messages' into a single string
|
80
|
+
message_prompt = kwargs.get("messages", "")
|
81
|
+
formatted_messages = []
|
82
|
+
for message in message_prompt:
|
83
|
+
role = message["role"]
|
84
|
+
content = message["content"]
|
85
|
+
|
86
|
+
if isinstance(content, list):
|
87
|
+
content_str = ", ".join(
|
88
|
+
# pylint: disable=line-too-long
|
89
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
90
|
+
if "type" in item else f'text: {item["text"]}'
|
91
|
+
for item in content
|
92
|
+
)
|
93
|
+
formatted_messages.append(f"{role}: {content_str}")
|
94
|
+
else:
|
95
|
+
formatted_messages.append(f"{role}: {content}")
|
96
|
+
prompt = "\n".join(formatted_messages)
|
97
|
+
|
98
|
+
# Calculate cost of the operation
|
99
|
+
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
100
|
+
pricing_info, prompt_tokens,
|
101
|
+
completion_tokens)
|
102
|
+
|
103
|
+
# Set Span attributes
|
104
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
105
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
106
|
+
SemanticConvetion.GEN_AI_SYSTEM_GROQ)
|
107
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
108
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
109
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
110
|
+
gen_ai_endpoint)
|
111
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
112
|
+
response_id)
|
113
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
114
|
+
environment)
|
115
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
116
|
+
application_name)
|
117
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
118
|
+
kwargs.get("model", "gpt-3.5-turbo"))
|
119
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
120
|
+
kwargs.get("user", ""))
|
121
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
122
|
+
kwargs.get("top_p", 1))
|
123
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
124
|
+
kwargs.get("max_tokens", ""))
|
125
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
126
|
+
kwargs.get("temperature", 1))
|
127
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
128
|
+
kwargs.get("presence_penalty", 0))
|
129
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
130
|
+
kwargs.get("frequency_penalty", 0))
|
131
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
132
|
+
kwargs.get("seed", ""))
|
133
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
134
|
+
True)
|
135
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
136
|
+
prompt_tokens)
|
137
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
138
|
+
completion_tokens)
|
139
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
140
|
+
prompt_tokens + completion_tokens)
|
141
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
142
|
+
cost)
|
143
|
+
if trace_content:
|
144
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
145
|
+
prompt)
|
146
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
147
|
+
llmresponse)
|
148
|
+
|
149
|
+
span.set_status(Status(StatusCode.OK))
|
150
|
+
|
151
|
+
if disable_metrics is False:
|
152
|
+
attributes = {
|
153
|
+
TELEMETRY_SDK_NAME:
|
154
|
+
"openlit",
|
155
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
156
|
+
application_name,
|
157
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
158
|
+
SemanticConvetion.GEN_AI_SYSTEM_GROQ,
|
159
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
160
|
+
environment,
|
161
|
+
SemanticConvetion.GEN_AI_TYPE:
|
162
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
163
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
164
|
+
kwargs.get("model", "gpt-3.5-turbo")
|
165
|
+
}
|
166
|
+
|
167
|
+
metrics["genai_requests"].add(1, attributes)
|
168
|
+
metrics["genai_total_tokens"].add(
|
169
|
+
total_tokens, attributes
|
170
|
+
)
|
171
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
172
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
173
|
+
metrics["genai_cost"].record(cost, attributes)
|
174
|
+
|
175
|
+
except Exception as e:
|
176
|
+
handle_exception(span, e)
|
177
|
+
logger.error("Error in trace creation: %s", e)
|
178
|
+
|
179
|
+
return stream_generator()
|
180
|
+
|
181
|
+
# Handling for non-streaming responses
|
182
|
+
else:
|
183
|
+
# pylint: disable=line-too-long
|
184
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
185
|
+
response = await wrapped(*args, **kwargs)
|
186
|
+
|
187
|
+
try:
|
188
|
+
# Format 'messages' into a single string
|
189
|
+
message_prompt = kwargs.get("messages", "")
|
190
|
+
formatted_messages = []
|
191
|
+
for message in message_prompt:
|
192
|
+
role = message["role"]
|
193
|
+
content = message["content"]
|
194
|
+
|
195
|
+
if isinstance(content, list):
|
196
|
+
content_str = ", ".join(
|
197
|
+
# pylint: disable=line-too-long
|
198
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
199
|
+
if "type" in item else f'text: {item["text"]}'
|
200
|
+
for item in content
|
201
|
+
)
|
202
|
+
formatted_messages.append(f"{role}: {content_str}")
|
203
|
+
else:
|
204
|
+
formatted_messages.append(f"{role}: {content}")
|
205
|
+
prompt = "\n".join(formatted_messages)
|
206
|
+
|
207
|
+
# Set base span attribues
|
208
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
209
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
210
|
+
SemanticConvetion.GEN_AI_SYSTEM_GROQ)
|
211
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
212
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
213
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
214
|
+
gen_ai_endpoint)
|
215
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
216
|
+
response.x_groq["id"])
|
217
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
218
|
+
environment)
|
219
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
220
|
+
application_name)
|
221
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
222
|
+
kwargs.get("model", "llama3-8b-8192"))
|
223
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
224
|
+
kwargs.get("top_p", 1))
|
225
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
226
|
+
kwargs.get("max_tokens", ""))
|
227
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
228
|
+
kwargs.get("name", ""))
|
229
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
230
|
+
kwargs.get("temperature", 1))
|
231
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
232
|
+
kwargs.get("presence_penalty", 0))
|
233
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
234
|
+
kwargs.get("frequency_penalty", 0))
|
235
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
236
|
+
kwargs.get("seed", ""))
|
237
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
238
|
+
False)
|
239
|
+
if trace_content:
|
240
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
241
|
+
prompt)
|
242
|
+
|
243
|
+
# Set span attributes when tools is not passed to the function call
|
244
|
+
if "tools" not in kwargs:
|
245
|
+
# Calculate cost of the operation
|
246
|
+
cost = get_chat_model_cost(kwargs.get("model", "llama3-8b-8192"),
|
247
|
+
pricing_info, response.usage.prompt_tokens,
|
248
|
+
response.usage.completion_tokens)
|
249
|
+
|
250
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
251
|
+
response.usage.prompt_tokens)
|
252
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
253
|
+
response.usage.completion_tokens)
|
254
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
255
|
+
response.usage.total_tokens)
|
256
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
257
|
+
response.choices[0].finish_reason)
|
258
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
259
|
+
cost)
|
260
|
+
|
261
|
+
# Set span attributes for when n = 1 (default)
|
262
|
+
if "n" not in kwargs or kwargs["n"] == 1:
|
263
|
+
if trace_content:
|
264
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
265
|
+
response.choices[0].message.content)
|
266
|
+
|
267
|
+
# Set span attributes for when n > 0
|
268
|
+
else:
|
269
|
+
i = 0
|
270
|
+
while i < kwargs["n"] and trace_content is True:
|
271
|
+
attribute_name = f"gen_ai.content.completion.{i}"
|
272
|
+
span.set_attribute(attribute_name,
|
273
|
+
response.choices[i].message.content)
|
274
|
+
i += 1
|
275
|
+
|
276
|
+
# Return original response
|
277
|
+
return response
|
278
|
+
|
279
|
+
# Set span attributes when tools is passed to the function call
|
280
|
+
elif "tools" in kwargs:
|
281
|
+
# Calculate cost of the operation
|
282
|
+
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
283
|
+
pricing_info, response.usage.prompt_tokens,
|
284
|
+
response.usage.completion_tokens)
|
285
|
+
|
286
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
287
|
+
"Function called with tools")
|
288
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
289
|
+
response.usage.prompt_tokens)
|
290
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
291
|
+
response.usage.completion_tokens)
|
292
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
293
|
+
response.usage.total_tokens)
|
294
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
295
|
+
cost)
|
296
|
+
|
297
|
+
span.set_status(Status(StatusCode.OK))
|
298
|
+
|
299
|
+
if disable_metrics is False:
|
300
|
+
attributes = {
|
301
|
+
TELEMETRY_SDK_NAME:
|
302
|
+
"openlit",
|
303
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
304
|
+
application_name,
|
305
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
306
|
+
SemanticConvetion.GEN_AI_SYSTEM_GROQ,
|
307
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
308
|
+
environment,
|
309
|
+
SemanticConvetion.GEN_AI_TYPE:
|
310
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
311
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
312
|
+
kwargs.get("model", "gpt-3.5-turbo")
|
313
|
+
}
|
314
|
+
|
315
|
+
metrics["genai_requests"].add(1, attributes)
|
316
|
+
metrics["genai_total_tokens"].add(response.usage.total_tokens, attributes)
|
317
|
+
metrics["genai_completion_tokens"].add(response.usage.completion_tokens, attributes)
|
318
|
+
metrics["genai_prompt_tokens"].add(response.usage.prompt_tokens, attributes)
|
319
|
+
metrics["genai_cost"].record(cost, attributes)
|
320
|
+
|
321
|
+
# Return original response
|
322
|
+
return response
|
323
|
+
|
324
|
+
except Exception as e:
|
325
|
+
handle_exception(span, e)
|
326
|
+
logger.error("Error in trace creation: %s", e)
|
327
|
+
|
328
|
+
# Return original response
|
329
|
+
return response
|
330
|
+
|
331
|
+
return wrapper
|
@@ -0,0 +1,331 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, used-before-assignment, too-many-branches
|
2
|
+
"""
|
3
|
+
Module for monitoring Groq API calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
+
from openlit.__helpers import get_chat_model_cost, handle_exception
|
10
|
+
from openlit.semcov import SemanticConvetion
|
11
|
+
|
12
|
+
# Initialize logger for logging potential issues and operations
|
13
|
+
logger = logging.getLogger(__name__)
|
14
|
+
|
15
|
+
def chat(gen_ai_endpoint, version, environment, application_name,
|
16
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
17
|
+
"""
|
18
|
+
Generates a telemetry wrapper for chat completions to collect metrics.
|
19
|
+
|
20
|
+
Args:
|
21
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
22
|
+
version: Version of the monitoring package.
|
23
|
+
environment: Deployment environment (e.g., production, staging).
|
24
|
+
application_name: Name of the application using the Groq API.
|
25
|
+
tracer: OpenTelemetry tracer for creating spans.
|
26
|
+
pricing_info: Information used for calculating the cost of Groq usage.
|
27
|
+
trace_content: Flag indicating whether to trace the actual content.
|
28
|
+
|
29
|
+
Returns:
|
30
|
+
A function that wraps the chat completions method to add telemetry.
|
31
|
+
"""
|
32
|
+
|
33
|
+
def wrapper(wrapped, instance, args, kwargs):
|
34
|
+
"""
|
35
|
+
Wraps the 'chat.completions' API call to add telemetry.
|
36
|
+
|
37
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
38
|
+
gracefully, adding details to the trace for observability.
|
39
|
+
|
40
|
+
Args:
|
41
|
+
wrapped: The original 'chat.completions' method to be wrapped.
|
42
|
+
instance: The instance of the class where the original method is defined.
|
43
|
+
args: Positional arguments for the 'chat.completions' method.
|
44
|
+
kwargs: Keyword arguments for the 'chat.completions' method.
|
45
|
+
|
46
|
+
Returns:
|
47
|
+
The response from the original 'chat.completions' method.
|
48
|
+
"""
|
49
|
+
|
50
|
+
# Check if streaming is enabled for the API call
|
51
|
+
streaming = kwargs.get("stream", False)
|
52
|
+
|
53
|
+
# pylint: disable=no-else-return
|
54
|
+
if streaming:
|
55
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
56
|
+
def stream_generator():
|
57
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
58
|
+
# Placeholder for aggregating streaming response
|
59
|
+
llmresponse = ""
|
60
|
+
|
61
|
+
# Loop through streaming events capturing relevant details
|
62
|
+
for chunk in wrapped(*args, **kwargs):
|
63
|
+
# Collect message IDs and aggregated response from events
|
64
|
+
if len(chunk.choices) > 0:
|
65
|
+
# pylint: disable=line-too-long
|
66
|
+
if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
|
67
|
+
content = chunk.choices[0].delta.content
|
68
|
+
if content:
|
69
|
+
llmresponse += content
|
70
|
+
if chunk.x_groq is not None and chunk.x_groq.usage is not None:
|
71
|
+
prompt_tokens = chunk.x_groq.usage.prompt_tokens
|
72
|
+
completion_tokens = chunk.x_groq.usage.completion_tokens
|
73
|
+
total_tokens = chunk.x_groq.usage.total_tokens
|
74
|
+
response_id = chunk.x_groq.id
|
75
|
+
yield chunk
|
76
|
+
|
77
|
+
# Handling exception ensure observability without disrupting operation
|
78
|
+
try:
|
79
|
+
# Format 'messages' into a single string
|
80
|
+
message_prompt = kwargs.get("messages", "")
|
81
|
+
formatted_messages = []
|
82
|
+
for message in message_prompt:
|
83
|
+
role = message["role"]
|
84
|
+
content = message["content"]
|
85
|
+
|
86
|
+
if isinstance(content, list):
|
87
|
+
content_str = ", ".join(
|
88
|
+
# pylint: disable=line-too-long
|
89
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
90
|
+
if "type" in item else f'text: {item["text"]}'
|
91
|
+
for item in content
|
92
|
+
)
|
93
|
+
formatted_messages.append(f"{role}: {content_str}")
|
94
|
+
else:
|
95
|
+
formatted_messages.append(f"{role}: {content}")
|
96
|
+
prompt = "\n".join(formatted_messages)
|
97
|
+
|
98
|
+
# Calculate cost of the operation
|
99
|
+
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
100
|
+
pricing_info, prompt_tokens,
|
101
|
+
completion_tokens)
|
102
|
+
|
103
|
+
# Set Span attributes
|
104
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
105
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
106
|
+
SemanticConvetion.GEN_AI_SYSTEM_GROQ)
|
107
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
108
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
109
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
110
|
+
gen_ai_endpoint)
|
111
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
112
|
+
response_id)
|
113
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
114
|
+
environment)
|
115
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
116
|
+
application_name)
|
117
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
118
|
+
kwargs.get("model", "gpt-3.5-turbo"))
|
119
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
120
|
+
kwargs.get("user", ""))
|
121
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
122
|
+
kwargs.get("top_p", 1))
|
123
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
124
|
+
kwargs.get("max_tokens", ""))
|
125
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
126
|
+
kwargs.get("temperature", 1))
|
127
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
128
|
+
kwargs.get("presence_penalty", 0))
|
129
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
130
|
+
kwargs.get("frequency_penalty", 0))
|
131
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
132
|
+
kwargs.get("seed", ""))
|
133
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
134
|
+
True)
|
135
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
136
|
+
prompt_tokens)
|
137
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
138
|
+
completion_tokens)
|
139
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
140
|
+
prompt_tokens + completion_tokens)
|
141
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
142
|
+
cost)
|
143
|
+
if trace_content:
|
144
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
145
|
+
prompt)
|
146
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
147
|
+
llmresponse)
|
148
|
+
|
149
|
+
span.set_status(Status(StatusCode.OK))
|
150
|
+
|
151
|
+
if disable_metrics is False:
|
152
|
+
attributes = {
|
153
|
+
TELEMETRY_SDK_NAME:
|
154
|
+
"openlit",
|
155
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
156
|
+
application_name,
|
157
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
158
|
+
SemanticConvetion.GEN_AI_SYSTEM_GROQ,
|
159
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
160
|
+
environment,
|
161
|
+
SemanticConvetion.GEN_AI_TYPE:
|
162
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
163
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
164
|
+
kwargs.get("model", "gpt-3.5-turbo")
|
165
|
+
}
|
166
|
+
|
167
|
+
metrics["genai_requests"].add(1, attributes)
|
168
|
+
metrics["genai_total_tokens"].add(
|
169
|
+
total_tokens, attributes
|
170
|
+
)
|
171
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
172
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
173
|
+
metrics["genai_cost"].record(cost, attributes)
|
174
|
+
|
175
|
+
except Exception as e:
|
176
|
+
handle_exception(span, e)
|
177
|
+
logger.error("Error in trace creation: %s", e)
|
178
|
+
|
179
|
+
return stream_generator()
|
180
|
+
|
181
|
+
# Handling for non-streaming responses
|
182
|
+
else:
|
183
|
+
# pylint: disable=line-too-long
|
184
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
185
|
+
response = wrapped(*args, **kwargs)
|
186
|
+
|
187
|
+
try:
|
188
|
+
# Format 'messages' into a single string
|
189
|
+
message_prompt = kwargs.get("messages", "")
|
190
|
+
formatted_messages = []
|
191
|
+
for message in message_prompt:
|
192
|
+
role = message["role"]
|
193
|
+
content = message["content"]
|
194
|
+
|
195
|
+
if isinstance(content, list):
|
196
|
+
content_str = ", ".join(
|
197
|
+
# pylint: disable=line-too-long
|
198
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
199
|
+
if "type" in item else f'text: {item["text"]}'
|
200
|
+
for item in content
|
201
|
+
)
|
202
|
+
formatted_messages.append(f"{role}: {content_str}")
|
203
|
+
else:
|
204
|
+
formatted_messages.append(f"{role}: {content}")
|
205
|
+
prompt = "\n".join(formatted_messages)
|
206
|
+
|
207
|
+
# Set base span attribues
|
208
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
209
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
210
|
+
SemanticConvetion.GEN_AI_SYSTEM_GROQ)
|
211
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
212
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
213
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
214
|
+
gen_ai_endpoint)
|
215
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
216
|
+
response.x_groq["id"])
|
217
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
218
|
+
environment)
|
219
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
220
|
+
application_name)
|
221
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
222
|
+
kwargs.get("model", "llama3-8b-8192"))
|
223
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
224
|
+
kwargs.get("top_p", 1))
|
225
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
226
|
+
kwargs.get("max_tokens", ""))
|
227
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
228
|
+
kwargs.get("name", ""))
|
229
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
230
|
+
kwargs.get("temperature", 1))
|
231
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
232
|
+
kwargs.get("presence_penalty", 0))
|
233
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
234
|
+
kwargs.get("frequency_penalty", 0))
|
235
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
236
|
+
kwargs.get("seed", ""))
|
237
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
238
|
+
False)
|
239
|
+
if trace_content:
|
240
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
241
|
+
prompt)
|
242
|
+
|
243
|
+
# Set span attributes when tools is not passed to the function call
|
244
|
+
if "tools" not in kwargs:
|
245
|
+
# Calculate cost of the operation
|
246
|
+
cost = get_chat_model_cost(kwargs.get("model", "llama3-8b-8192"),
|
247
|
+
pricing_info, response.usage.prompt_tokens,
|
248
|
+
response.usage.completion_tokens)
|
249
|
+
|
250
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
251
|
+
response.usage.prompt_tokens)
|
252
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
253
|
+
response.usage.completion_tokens)
|
254
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
255
|
+
response.usage.total_tokens)
|
256
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
257
|
+
response.choices[0].finish_reason)
|
258
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
259
|
+
cost)
|
260
|
+
|
261
|
+
# Set span attributes for when n = 1 (default)
|
262
|
+
if "n" not in kwargs or kwargs["n"] == 1:
|
263
|
+
if trace_content:
|
264
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
265
|
+
response.choices[0].message.content)
|
266
|
+
|
267
|
+
# Set span attributes for when n > 0
|
268
|
+
else:
|
269
|
+
i = 0
|
270
|
+
while i < kwargs["n"] and trace_content is True:
|
271
|
+
attribute_name = f"gen_ai.content.completion.{i}"
|
272
|
+
span.set_attribute(attribute_name,
|
273
|
+
response.choices[i].message.content)
|
274
|
+
i += 1
|
275
|
+
|
276
|
+
# Return original response
|
277
|
+
return response
|
278
|
+
|
279
|
+
# Set span attributes when tools is passed to the function call
|
280
|
+
elif "tools" in kwargs:
|
281
|
+
# Calculate cost of the operation
|
282
|
+
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
283
|
+
pricing_info, response.usage.prompt_tokens,
|
284
|
+
response.usage.completion_tokens)
|
285
|
+
|
286
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
287
|
+
"Function called with tools")
|
288
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
289
|
+
response.usage.prompt_tokens)
|
290
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
291
|
+
response.usage.completion_tokens)
|
292
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
293
|
+
response.usage.total_tokens)
|
294
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
295
|
+
cost)
|
296
|
+
|
297
|
+
span.set_status(Status(StatusCode.OK))
|
298
|
+
|
299
|
+
if disable_metrics is False:
|
300
|
+
attributes = {
|
301
|
+
TELEMETRY_SDK_NAME:
|
302
|
+
"openlit",
|
303
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
304
|
+
application_name,
|
305
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
306
|
+
SemanticConvetion.GEN_AI_SYSTEM_GROQ,
|
307
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
308
|
+
environment,
|
309
|
+
SemanticConvetion.GEN_AI_TYPE:
|
310
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
311
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
312
|
+
kwargs.get("model", "gpt-3.5-turbo")
|
313
|
+
}
|
314
|
+
|
315
|
+
metrics["genai_requests"].add(1, attributes)
|
316
|
+
metrics["genai_total_tokens"].add(response.usage.total_tokens, attributes)
|
317
|
+
metrics["genai_completion_tokens"].add(response.usage.completion_tokens, attributes)
|
318
|
+
metrics["genai_prompt_tokens"].add(response.usage.prompt_tokens, attributes)
|
319
|
+
metrics["genai_cost"].record(cost, attributes)
|
320
|
+
|
321
|
+
# Return original response
|
322
|
+
return response
|
323
|
+
|
324
|
+
except Exception as e:
|
325
|
+
handle_exception(span, e)
|
326
|
+
logger.error("Error in trace creation: %s", e)
|
327
|
+
|
328
|
+
# Return original response
|
329
|
+
return response
|
330
|
+
|
331
|
+
return wrapper
|
@@ -40,6 +40,9 @@ def setup_tracing(application_name, environment, tracer, otlp_endpoint, otlp_hea
|
|
40
40
|
global TRACER_SET
|
41
41
|
|
42
42
|
try:
|
43
|
+
#Disable Haystack Auto Tracing
|
44
|
+
os.environ["HAYSTACK_AUTO_TRACE_ENABLED"] = "false"
|
45
|
+
|
43
46
|
if not TRACER_SET:
|
44
47
|
# Create a resource with the service name attribute.
|
45
48
|
resource = Resource(attributes={
|
@@ -87,6 +87,7 @@ class SemanticConvetion:
|
|
87
87
|
GEN_AI_SYSTEM_MISTRAL = "mistral"
|
88
88
|
GEN_AI_SYSTEM_BEDROCK = "bedrock"
|
89
89
|
GEN_AI_SYSTEM_VERTEXAI = "vertexai"
|
90
|
+
GEN_AI_SYSTEM_GROQ = "groq"
|
90
91
|
GEN_AI_SYSTEM_LANGCHAIN = "langchain"
|
91
92
|
GEN_AI_SYSTEM_LLAMAINDEX = "llama_index"
|
92
93
|
GEN_AI_SYSTEM_HAYSTACK = "haystack"
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|