openlit 1.29.3__tar.gz → 1.29.4__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {openlit-1.29.3 → openlit-1.29.4}/PKG-INFO +1 -1
- {openlit-1.29.3 → openlit-1.29.4}/pyproject.toml +1 -1
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/__helpers.py +14 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/openai/async_openai.py +61 -34
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/openai/openai.py +206 -154
- {openlit-1.29.3 → openlit-1.29.4}/LICENSE +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/README.md +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/evals/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/evals/all.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/evals/bias_detection.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/evals/hallucination.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/evals/toxicity.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/evals/utils.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/guard/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/guard/all.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/guard/prompt_injection.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/guard/restrict_topic.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/guard/sensitive_topic.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/guard/utils.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/anthropic/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/anthropic/anthropic.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/anthropic/async_anthropic.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/azure_ai_inference/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/azure_ai_inference/async_azure_ai_inference.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/azure_ai_inference/azure_ai_inference.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/bedrock/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/bedrock/bedrock.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/chroma/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/chroma/chroma.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/cohere/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/cohere/cohere.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/elevenlabs/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/elevenlabs/async_elevenlabs.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/elevenlabs/elevenlabs.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/embedchain/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/embedchain/embedchain.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/google_ai_studio/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/google_ai_studio/async_google_ai_studio.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/google_ai_studio/google_ai_studio.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/gpt4all/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/gpt4all/gpt4all.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/gpu/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/groq/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/groq/async_groq.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/groq/groq.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/haystack/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/haystack/haystack.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/langchain/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/langchain/langchain.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/llamaindex/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/llamaindex/llamaindex.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/milvus/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/milvus/milvus.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/mistral/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/mistral/async_mistral.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/mistral/mistral.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/ollama/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/ollama/async_ollama.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/ollama/ollama.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/openai/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/openai/async_azure_openai.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/openai/azure_openai.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/pinecone/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/pinecone/pinecone.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/qdrant/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/qdrant/async_qdrant.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/qdrant/qdrant.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/transformers/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/transformers/transformers.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/vertexai/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/vertexai/async_vertexai.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/vertexai/vertexai.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/vllm/__init__.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/vllm/vllm.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/otel/metrics.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/otel/tracing.py +0 -0
- {openlit-1.29.3 → openlit-1.29.4}/src/openlit/semcov/__init__.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: openlit
|
3
|
-
Version: 1.29.
|
3
|
+
Version: 1.29.4
|
4
4
|
Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects
|
5
5
|
Home-page: https://github.com/openlit/openlit/tree/main/openlit/python
|
6
6
|
Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT,gpu
|
@@ -1,6 +1,6 @@
|
|
1
1
|
[tool.poetry]
|
2
2
|
name = "openlit"
|
3
|
-
version = "1.29.
|
3
|
+
version = "1.29.4"
|
4
4
|
description = "OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects"
|
5
5
|
authors = ["OpenLIT"]
|
6
6
|
repository = "https://github.com/openlit/openlit/tree/main/openlit/python"
|
@@ -13,6 +13,20 @@ from opentelemetry.trace import Status, StatusCode
|
|
13
13
|
# Set up logging
|
14
14
|
logger = logging.getLogger(__name__)
|
15
15
|
|
16
|
+
def response_as_dict(response):
|
17
|
+
"""
|
18
|
+
Return parsed response as a dict
|
19
|
+
"""
|
20
|
+
# pylint: disable=no-else-return
|
21
|
+
if isinstance(response, dict):
|
22
|
+
return response
|
23
|
+
if hasattr(response, "model_dump"):
|
24
|
+
return response.model_dump()
|
25
|
+
elif hasattr(response, "parse"):
|
26
|
+
return response_as_dict(response.parse())
|
27
|
+
else:
|
28
|
+
return response
|
29
|
+
|
16
30
|
def get_env_variable(name, arg_value, error_message):
|
17
31
|
"""
|
18
32
|
Retrieve an environment variable if the argument is not provided
|
@@ -6,8 +6,15 @@ Module for monitoring OpenAI API calls.
|
|
6
6
|
import logging
|
7
7
|
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
8
|
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
-
from openlit.__helpers import
|
10
|
-
|
9
|
+
from openlit.__helpers import (
|
10
|
+
get_chat_model_cost,
|
11
|
+
get_embed_model_cost,
|
12
|
+
get_audio_model_cost,
|
13
|
+
get_image_model_cost,
|
14
|
+
openai_tokens,
|
15
|
+
handle_exception,
|
16
|
+
response_as_dict,
|
17
|
+
)
|
11
18
|
from openlit.semcov import SemanticConvetion
|
12
19
|
|
13
20
|
# Initialize logger for logging potential issues and operations
|
@@ -46,8 +53,8 @@ def async_chat_completions(gen_ai_endpoint, version, environment, application_na
|
|
46
53
|
self,
|
47
54
|
wrapped,
|
48
55
|
span,
|
49
|
-
|
50
|
-
**
|
56
|
+
kwargs,
|
57
|
+
**args,
|
51
58
|
):
|
52
59
|
self.__wrapped__ = wrapped
|
53
60
|
self._span = span
|
@@ -68,17 +75,22 @@ def async_chat_completions(gen_ai_endpoint, version, environment, application_na
|
|
68
75
|
def __aiter__(self):
|
69
76
|
return self
|
70
77
|
|
78
|
+
async def __getattr__(self, name):
|
79
|
+
"""Delegate attribute access to the wrapped object."""
|
80
|
+
return getattr(await self.__wrapped__, name)
|
81
|
+
|
71
82
|
async def __anext__(self):
|
72
83
|
try:
|
73
84
|
chunk = await self.__wrapped__.__anext__()
|
85
|
+
chunked = response_as_dict(chunk)
|
74
86
|
# Collect message IDs and aggregated response from events
|
75
|
-
if len(
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
self._response_id =
|
87
|
+
if (len(chunked.get('choices')) > 0 and ('delta' in chunked.get('choices')[0] and
|
88
|
+
'content' in chunked.get('choices')[0].get('delta'))):
|
89
|
+
|
90
|
+
content = chunked.get('choices')[0].get('delta').get('content')
|
91
|
+
if content:
|
92
|
+
self._llmresponse += content
|
93
|
+
self._response_id = chunked.get('id')
|
82
94
|
return chunk
|
83
95
|
except StopAsyncIteration:
|
84
96
|
# Handling exception ensure observability without disrupting operation
|
@@ -226,7 +238,7 @@ def async_chat_completions(gen_ai_endpoint, version, environment, application_na
|
|
226
238
|
awaited_wrapped = await wrapped(*args, **kwargs)
|
227
239
|
span = tracer.start_span(gen_ai_endpoint, kind=SpanKind.CLIENT)
|
228
240
|
|
229
|
-
return TracedAsyncStream(awaited_wrapped, span)
|
241
|
+
return TracedAsyncStream(awaited_wrapped, span, kwargs)
|
230
242
|
|
231
243
|
# Handling for non-streaming responses
|
232
244
|
else:
|
@@ -234,6 +246,8 @@ def async_chat_completions(gen_ai_endpoint, version, environment, application_na
|
|
234
246
|
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
235
247
|
response = await wrapped(*args, **kwargs)
|
236
248
|
|
249
|
+
response_dict = response_as_dict(response)
|
250
|
+
|
237
251
|
try:
|
238
252
|
# Format 'messages' into a single string
|
239
253
|
message_prompt = kwargs.get("messages", "")
|
@@ -263,7 +277,7 @@ def async_chat_completions(gen_ai_endpoint, version, environment, application_na
|
|
263
277
|
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
264
278
|
gen_ai_endpoint)
|
265
279
|
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
266
|
-
|
280
|
+
response_dict.get("id"))
|
267
281
|
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
268
282
|
environment)
|
269
283
|
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
@@ -294,23 +308,21 @@ def async_chat_completions(gen_ai_endpoint, version, environment, application_na
|
|
294
308
|
},
|
295
309
|
)
|
296
310
|
|
297
|
-
span.set_status(Status(StatusCode.OK))
|
298
|
-
|
299
311
|
# Set span attributes when tools is not passed to the function call
|
300
312
|
if "tools" not in kwargs:
|
301
313
|
# Calculate cost of the operation
|
302
314
|
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
303
|
-
pricing_info,
|
304
|
-
|
315
|
+
pricing_info, response_dict.get('usage', {}).get('prompt_tokens', None),
|
316
|
+
response_dict.get('usage', {}).get('completion_tokens', None))
|
305
317
|
|
306
318
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
307
|
-
|
319
|
+
response_dict.get('usage', {}).get('prompt_tokens', None))
|
308
320
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
309
|
-
|
321
|
+
response_dict.get('usage', {}).get('completion_tokens', None))
|
310
322
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
311
|
-
|
323
|
+
response_dict.get('usage', {}).get('total_tokens', None))
|
312
324
|
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
313
|
-
|
325
|
+
[response_dict.get('choices', [])[0].get('finish_reason', None)])
|
314
326
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
315
327
|
cost)
|
316
328
|
|
@@ -320,7 +332,7 @@ def async_chat_completions(gen_ai_endpoint, version, environment, application_na
|
|
320
332
|
span.add_event(
|
321
333
|
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
322
334
|
attributes={
|
323
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION:
|
335
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response_dict.get('choices', [])[0].get("message").get("content"),
|
324
336
|
},
|
325
337
|
)
|
326
338
|
|
@@ -332,7 +344,7 @@ def async_chat_completions(gen_ai_endpoint, version, environment, application_na
|
|
332
344
|
span.add_event(
|
333
345
|
name=attribute_name,
|
334
346
|
attributes={
|
335
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION:
|
347
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response_dict.get('choices')[i].get("message").get("content"),
|
336
348
|
},
|
337
349
|
)
|
338
350
|
i += 1
|
@@ -344,9 +356,8 @@ def async_chat_completions(gen_ai_endpoint, version, environment, application_na
|
|
344
356
|
elif "tools" in kwargs:
|
345
357
|
# Calculate cost of the operation
|
346
358
|
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
347
|
-
pricing_info,
|
348
|
-
|
349
|
-
|
359
|
+
pricing_info, response_dict.get('usage').get('prompt_tokens'),
|
360
|
+
response_dict.get('usage').get('completion_tokens'))
|
350
361
|
span.add_event(
|
351
362
|
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
352
363
|
attributes={
|
@@ -354,11 +365,11 @@ def async_chat_completions(gen_ai_endpoint, version, environment, application_na
|
|
354
365
|
},
|
355
366
|
)
|
356
367
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
357
|
-
|
368
|
+
response_dict.get('usage').get('prompt_tokens'))
|
358
369
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
359
|
-
|
370
|
+
response_dict.get('usage').get('completion_tokens'))
|
360
371
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
361
|
-
|
372
|
+
response_dict.get('usage').get('total_tokens'))
|
362
373
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
363
374
|
cost)
|
364
375
|
|
@@ -381,9 +392,9 @@ def async_chat_completions(gen_ai_endpoint, version, environment, application_na
|
|
381
392
|
}
|
382
393
|
|
383
394
|
metrics["genai_requests"].add(1, attributes)
|
384
|
-
metrics["genai_total_tokens"].add(
|
385
|
-
metrics["genai_completion_tokens"].add(
|
386
|
-
metrics["genai_prompt_tokens"].add(
|
395
|
+
metrics["genai_total_tokens"].add(response_dict.get('usage').get('total_tokens'), attributes)
|
396
|
+
metrics["genai_completion_tokens"].add(response_dict.get('usage').get('completion_tokens'), attributes)
|
397
|
+
metrics["genai_prompt_tokens"].add(response_dict.get('usage').get('prompt_tokens'), attributes)
|
387
398
|
metrics["genai_cost"].record(cost, attributes)
|
388
399
|
|
389
400
|
# Return original response
|
@@ -548,13 +559,14 @@ def async_finetune(gen_ai_endpoint, version, environment, application_name,
|
|
548
559
|
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
549
560
|
response = await wrapped(*args, **kwargs)
|
550
561
|
|
562
|
+
# Handling exception ensure observability without disrupting operation
|
551
563
|
try:
|
552
564
|
# Set Span attributes
|
553
565
|
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
554
566
|
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
555
567
|
SemanticConvetion.GEN_AI_SYSTEM_OPENAI)
|
556
568
|
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
557
|
-
|
569
|
+
SemanticConvetion.GEN_AI_TYPE_FINETUNING)
|
558
570
|
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
559
571
|
gen_ai_endpoint)
|
560
572
|
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
@@ -585,7 +597,22 @@ def async_finetune(gen_ai_endpoint, version, environment, application_name,
|
|
585
597
|
span.set_status(Status(StatusCode.OK))
|
586
598
|
|
587
599
|
if disable_metrics is False:
|
588
|
-
|
600
|
+
attributes = {
|
601
|
+
TELEMETRY_SDK_NAME:
|
602
|
+
"openlit",
|
603
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
604
|
+
application_name,
|
605
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
606
|
+
SemanticConvetion.GEN_AI_SYSTEM_OPENAI,
|
607
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
608
|
+
environment,
|
609
|
+
SemanticConvetion.GEN_AI_TYPE:
|
610
|
+
SemanticConvetion.GEN_AI_TYPE_FINETUNING,
|
611
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
612
|
+
kwargs.get("model", "gpt-3.5-turbo")
|
613
|
+
}
|
614
|
+
|
615
|
+
metrics["genai_requests"].add(1, attributes)
|
589
616
|
|
590
617
|
# Return original response
|
591
618
|
return response
|
@@ -6,8 +6,15 @@ Module for monitoring OpenAI API calls.
|
|
6
6
|
import logging
|
7
7
|
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
8
|
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
-
from openlit.__helpers import
|
10
|
-
|
9
|
+
from openlit.__helpers import (
|
10
|
+
get_chat_model_cost,
|
11
|
+
get_embed_model_cost,
|
12
|
+
get_audio_model_cost,
|
13
|
+
get_image_model_cost,
|
14
|
+
openai_tokens,
|
15
|
+
handle_exception,
|
16
|
+
response_as_dict,
|
17
|
+
)
|
11
18
|
from openlit.semcov import SemanticConvetion
|
12
19
|
|
13
20
|
# Initialize logger for logging potential issues and operations
|
@@ -31,10 +38,184 @@ def chat_completions(gen_ai_endpoint, version, environment, application_name,
|
|
31
38
|
A function that wraps the chat completions method to add telemetry.
|
32
39
|
"""
|
33
40
|
|
41
|
+
class TracedSyncStream:
|
42
|
+
"""
|
43
|
+
Wrapper for streaming responses to collect metrics and trace data.
|
44
|
+
Wraps the 'openai.AsyncStream' response to collect message IDs and aggregated response.
|
45
|
+
|
46
|
+
This class implements the '__aiter__' and '__anext__' methods that
|
47
|
+
handle asynchronous streaming responses.
|
48
|
+
|
49
|
+
This class also implements '__aenter__' and '__aexit__' methods that
|
50
|
+
handle asynchronous context management protocol.
|
51
|
+
"""
|
52
|
+
def __init__(
|
53
|
+
self,
|
54
|
+
wrapped,
|
55
|
+
span,
|
56
|
+
kwargs,
|
57
|
+
**args,
|
58
|
+
):
|
59
|
+
self.__wrapped__ = wrapped
|
60
|
+
self._span = span
|
61
|
+
# Placeholder for aggregating streaming response
|
62
|
+
self._llmresponse = ""
|
63
|
+
self._response_id = ""
|
64
|
+
|
65
|
+
self._args = args
|
66
|
+
self._kwargs = kwargs
|
67
|
+
|
68
|
+
def __enter__(self):
|
69
|
+
self.__wrapped__.__enter__()
|
70
|
+
return self
|
71
|
+
|
72
|
+
def __exit__(self, exc_type, exc_value, traceback):
|
73
|
+
self.__wrapped__.__exit__(exc_type, exc_value, traceback)
|
74
|
+
|
75
|
+
def __iter__(self):
|
76
|
+
return self
|
77
|
+
|
78
|
+
def __getattr__(self, name):
|
79
|
+
"""Delegate attribute access to the wrapped object."""
|
80
|
+
return getattr(self.__wrapped__, name)
|
81
|
+
|
82
|
+
def __next__(self):
|
83
|
+
try:
|
84
|
+
chunk = self.__wrapped__.__next__()
|
85
|
+
chunked = response_as_dict(chunk)
|
86
|
+
# Collect message IDs and aggregated response from events
|
87
|
+
if (len(chunked.get('choices')) > 0 and ('delta' in chunked.get('choices')[0] and
|
88
|
+
'content' in chunked.get('choices')[0].get('delta'))):
|
89
|
+
|
90
|
+
content = chunked.get('choices')[0].get('delta').get('content')
|
91
|
+
if content:
|
92
|
+
self._llmresponse += content
|
93
|
+
self._response_id = chunked.get('id')
|
94
|
+
return chunk
|
95
|
+
except StopIteration:
|
96
|
+
# Handling exception ensure observability without disrupting operation
|
97
|
+
try:
|
98
|
+
# Format 'messages' into a single string
|
99
|
+
message_prompt = self._kwargs.get("messages", "")
|
100
|
+
formatted_messages = []
|
101
|
+
for message in message_prompt:
|
102
|
+
role = message["role"]
|
103
|
+
content = message["content"]
|
104
|
+
|
105
|
+
if isinstance(content, list):
|
106
|
+
content_str = ", ".join(
|
107
|
+
# pylint: disable=line-too-long
|
108
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
109
|
+
if "type" in item else f'text: {item["text"]}'
|
110
|
+
for item in content
|
111
|
+
)
|
112
|
+
formatted_messages.append(f"{role}: {content_str}")
|
113
|
+
else:
|
114
|
+
formatted_messages.append(f"{role}: {content}")
|
115
|
+
prompt = "\n".join(formatted_messages)
|
116
|
+
|
117
|
+
# Calculate tokens using input prompt and aggregated response
|
118
|
+
prompt_tokens = openai_tokens(prompt,
|
119
|
+
self._kwargs.get("model", "gpt-3.5-turbo"))
|
120
|
+
completion_tokens = openai_tokens(self._llmresponse,
|
121
|
+
self._kwargs.get("model", "gpt-3.5-turbo"))
|
122
|
+
|
123
|
+
# Calculate cost of the operation
|
124
|
+
cost = get_chat_model_cost(self._kwargs.get("model", "gpt-3.5-turbo"),
|
125
|
+
pricing_info, prompt_tokens,
|
126
|
+
completion_tokens)
|
127
|
+
|
128
|
+
# Set Span attributes
|
129
|
+
self._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
130
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
131
|
+
SemanticConvetion.GEN_AI_SYSTEM_OPENAI)
|
132
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
133
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
134
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
135
|
+
gen_ai_endpoint)
|
136
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
137
|
+
self._response_id)
|
138
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
139
|
+
environment)
|
140
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
141
|
+
application_name)
|
142
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
143
|
+
self._kwargs.get("model", "gpt-3.5-turbo"))
|
144
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
145
|
+
self._kwargs.get("user", ""))
|
146
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
147
|
+
self._kwargs.get("top_p", 1.0))
|
148
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
149
|
+
self._kwargs.get("max_tokens", -1))
|
150
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
151
|
+
self._kwargs.get("temperature", 1.0))
|
152
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
153
|
+
self._kwargs.get("presence_penalty", 0.0))
|
154
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
155
|
+
self._kwargs.get("frequency_penalty", 0.0))
|
156
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
157
|
+
self._kwargs.get("seed", ""))
|
158
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
159
|
+
True)
|
160
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
161
|
+
prompt_tokens)
|
162
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
163
|
+
completion_tokens)
|
164
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
165
|
+
prompt_tokens + completion_tokens)
|
166
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
167
|
+
cost)
|
168
|
+
if trace_content:
|
169
|
+
self._span.add_event(
|
170
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
171
|
+
attributes={
|
172
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
173
|
+
},
|
174
|
+
)
|
175
|
+
self._span.add_event(
|
176
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
177
|
+
attributes={
|
178
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: self._llmresponse,
|
179
|
+
},
|
180
|
+
)
|
181
|
+
|
182
|
+
self._span.set_status(Status(StatusCode.OK))
|
183
|
+
|
184
|
+
if disable_metrics is False:
|
185
|
+
attributes = {
|
186
|
+
TELEMETRY_SDK_NAME:
|
187
|
+
"openlit",
|
188
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
189
|
+
application_name,
|
190
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
191
|
+
SemanticConvetion.GEN_AI_SYSTEM_OPENAI,
|
192
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
193
|
+
environment,
|
194
|
+
SemanticConvetion.GEN_AI_TYPE:
|
195
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
196
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
197
|
+
self._kwargs.get("model", "gpt-3.5-turbo")
|
198
|
+
}
|
199
|
+
|
200
|
+
metrics["genai_requests"].add(1, attributes)
|
201
|
+
metrics["genai_total_tokens"].add(
|
202
|
+
prompt_tokens + completion_tokens, attributes
|
203
|
+
)
|
204
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
205
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
206
|
+
metrics["genai_cost"].record(cost, attributes)
|
207
|
+
|
208
|
+
except Exception as e:
|
209
|
+
handle_exception(self._span, e)
|
210
|
+
logger.error("Error in trace creation: %s", e)
|
211
|
+
finally:
|
212
|
+
self._span.end()
|
213
|
+
raise
|
214
|
+
|
34
215
|
def wrapper(wrapped, instance, args, kwargs):
|
35
216
|
"""
|
36
217
|
Wraps the 'chat.completions' API call to add telemetry.
|
37
|
-
|
218
|
+
|
38
219
|
This collects metrics such as execution time, cost, and token usage, and handles errors
|
39
220
|
gracefully, adding details to the trace for observability.
|
40
221
|
|
@@ -54,141 +235,10 @@ def chat_completions(gen_ai_endpoint, version, environment, application_name,
|
|
54
235
|
# pylint: disable=no-else-return
|
55
236
|
if streaming:
|
56
237
|
# Special handling for streaming response to accommodate the nature of data flow
|
57
|
-
|
58
|
-
|
59
|
-
# Placeholder for aggregating streaming response
|
60
|
-
llmresponse = ""
|
61
|
-
|
62
|
-
|
63
|
-
# Loop through streaming events capturing relevant details
|
64
|
-
for chunk in wrapped(*args, **kwargs):
|
65
|
-
# Collect message IDs and aggregated response from events
|
66
|
-
if len(chunk.choices) > 0:
|
67
|
-
# pylint: disable=line-too-long
|
68
|
-
if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
|
69
|
-
content = chunk.choices[0].delta.content
|
70
|
-
if content:
|
71
|
-
llmresponse += content
|
72
|
-
yield chunk
|
73
|
-
response_id = chunk.id
|
74
|
-
|
75
|
-
# Handling exception ensure observability without disrupting operation
|
76
|
-
try:
|
77
|
-
# Format 'messages' into a single string
|
78
|
-
message_prompt = kwargs.get("messages", "")
|
79
|
-
formatted_messages = []
|
80
|
-
for message in message_prompt:
|
81
|
-
role = message["role"]
|
82
|
-
content = message["content"]
|
83
|
-
|
84
|
-
if isinstance(content, list):
|
85
|
-
content_str = ", ".join(
|
86
|
-
# pylint: disable=line-too-long
|
87
|
-
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
88
|
-
if "type" in item else f'text: {item["text"]}'
|
89
|
-
for item in content
|
90
|
-
)
|
91
|
-
formatted_messages.append(f"{role}: {content_str}")
|
92
|
-
else:
|
93
|
-
formatted_messages.append(f"{role}: {content}")
|
94
|
-
prompt = "\n".join(formatted_messages)
|
95
|
-
|
96
|
-
# Calculate tokens using input prompt and aggregated response
|
97
|
-
prompt_tokens = openai_tokens(prompt,
|
98
|
-
kwargs.get("model", "gpt-3.5-turbo"))
|
99
|
-
completion_tokens = openai_tokens(llmresponse,
|
100
|
-
kwargs.get("model", "gpt-3.5-turbo"))
|
101
|
-
|
102
|
-
# Calculate cost of the operation
|
103
|
-
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
104
|
-
pricing_info, prompt_tokens,
|
105
|
-
completion_tokens)
|
106
|
-
|
107
|
-
# Set Span attributes
|
108
|
-
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
109
|
-
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
110
|
-
SemanticConvetion.GEN_AI_SYSTEM_OPENAI)
|
111
|
-
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
112
|
-
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
113
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
114
|
-
gen_ai_endpoint)
|
115
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
116
|
-
response_id)
|
117
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
118
|
-
environment)
|
119
|
-
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
120
|
-
application_name)
|
121
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
122
|
-
kwargs.get("model", "gpt-3.5-turbo"))
|
123
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
124
|
-
kwargs.get("user", ""))
|
125
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
126
|
-
kwargs.get("top_p", 1.0))
|
127
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
128
|
-
kwargs.get("max_tokens", -1))
|
129
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
130
|
-
kwargs.get("temperature", 1.0))
|
131
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
132
|
-
kwargs.get("presence_penalty", 0.0))
|
133
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
134
|
-
kwargs.get("frequency_penalty", 0.0))
|
135
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
136
|
-
kwargs.get("seed", ""))
|
137
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
138
|
-
True)
|
139
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
140
|
-
prompt_tokens)
|
141
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
142
|
-
completion_tokens)
|
143
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
144
|
-
prompt_tokens + completion_tokens)
|
145
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
146
|
-
cost)
|
147
|
-
if trace_content:
|
148
|
-
span.add_event(
|
149
|
-
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
150
|
-
attributes={
|
151
|
-
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
152
|
-
},
|
153
|
-
)
|
154
|
-
span.add_event(
|
155
|
-
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
156
|
-
attributes={
|
157
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: llmresponse,
|
158
|
-
},
|
159
|
-
)
|
160
|
-
|
161
|
-
span.set_status(Status(StatusCode.OK))
|
162
|
-
|
163
|
-
if disable_metrics is False:
|
164
|
-
attributes = {
|
165
|
-
TELEMETRY_SDK_NAME:
|
166
|
-
"openlit",
|
167
|
-
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
168
|
-
application_name,
|
169
|
-
SemanticConvetion.GEN_AI_SYSTEM:
|
170
|
-
SemanticConvetion.GEN_AI_SYSTEM_OPENAI,
|
171
|
-
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
172
|
-
environment,
|
173
|
-
SemanticConvetion.GEN_AI_TYPE:
|
174
|
-
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
175
|
-
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
176
|
-
kwargs.get("model", "gpt-3.5-turbo")
|
177
|
-
}
|
178
|
-
|
179
|
-
metrics["genai_requests"].add(1, attributes)
|
180
|
-
metrics["genai_total_tokens"].add(
|
181
|
-
prompt_tokens + completion_tokens, attributes
|
182
|
-
)
|
183
|
-
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
184
|
-
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
185
|
-
metrics["genai_cost"].record(cost, attributes)
|
238
|
+
awaited_wrapped = wrapped(*args, **kwargs)
|
239
|
+
span = tracer.start_span(gen_ai_endpoint, kind=SpanKind.CLIENT)
|
186
240
|
|
187
|
-
|
188
|
-
handle_exception(span, e)
|
189
|
-
logger.error("Error in trace creation: %s", e)
|
190
|
-
|
191
|
-
return stream_generator()
|
241
|
+
return TracedSyncStream(awaited_wrapped, span, kwargs)
|
192
242
|
|
193
243
|
# Handling for non-streaming responses
|
194
244
|
else:
|
@@ -196,6 +246,8 @@ def chat_completions(gen_ai_endpoint, version, environment, application_name,
|
|
196
246
|
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
197
247
|
response = wrapped(*args, **kwargs)
|
198
248
|
|
249
|
+
response_dict = response_as_dict(response)
|
250
|
+
|
199
251
|
try:
|
200
252
|
# Format 'messages' into a single string
|
201
253
|
message_prompt = kwargs.get("messages", "")
|
@@ -225,7 +277,7 @@ def chat_completions(gen_ai_endpoint, version, environment, application_name,
|
|
225
277
|
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
226
278
|
gen_ai_endpoint)
|
227
279
|
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
228
|
-
|
280
|
+
response_dict.get("id"))
|
229
281
|
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
230
282
|
environment)
|
231
283
|
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
@@ -260,17 +312,17 @@ def chat_completions(gen_ai_endpoint, version, environment, application_name,
|
|
260
312
|
if "tools" not in kwargs:
|
261
313
|
# Calculate cost of the operation
|
262
314
|
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
263
|
-
pricing_info,
|
264
|
-
|
315
|
+
pricing_info, response_dict.get('usage', {}).get('prompt_tokens', None),
|
316
|
+
response_dict.get('usage', {}).get('completion_tokens', None))
|
265
317
|
|
266
318
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
267
|
-
|
319
|
+
response_dict.get('usage', {}).get('prompt_tokens', None))
|
268
320
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
269
|
-
|
321
|
+
response_dict.get('usage', {}).get('completion_tokens', None))
|
270
322
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
271
|
-
|
323
|
+
response_dict.get('usage', {}).get('total_tokens', None))
|
272
324
|
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
273
|
-
|
325
|
+
[response_dict.get('choices', [])[0].get('finish_reason', None)])
|
274
326
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
275
327
|
cost)
|
276
328
|
|
@@ -280,7 +332,7 @@ def chat_completions(gen_ai_endpoint, version, environment, application_name,
|
|
280
332
|
span.add_event(
|
281
333
|
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
282
334
|
attributes={
|
283
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION:
|
335
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response_dict.get('choices', [])[0].get("message").get("content"),
|
284
336
|
},
|
285
337
|
)
|
286
338
|
|
@@ -292,7 +344,7 @@ def chat_completions(gen_ai_endpoint, version, environment, application_name,
|
|
292
344
|
span.add_event(
|
293
345
|
name=attribute_name,
|
294
346
|
attributes={
|
295
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION:
|
347
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response_dict.get('choices')[i].get("message").get("content"),
|
296
348
|
},
|
297
349
|
)
|
298
350
|
i += 1
|
@@ -304,8 +356,8 @@ def chat_completions(gen_ai_endpoint, version, environment, application_name,
|
|
304
356
|
elif "tools" in kwargs:
|
305
357
|
# Calculate cost of the operation
|
306
358
|
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
307
|
-
pricing_info,
|
308
|
-
|
359
|
+
pricing_info, response_dict.get('usage').get('prompt_tokens'),
|
360
|
+
response_dict.get('usage').get('completion_tokens'))
|
309
361
|
span.add_event(
|
310
362
|
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
311
363
|
attributes={
|
@@ -313,11 +365,11 @@ def chat_completions(gen_ai_endpoint, version, environment, application_name,
|
|
313
365
|
},
|
314
366
|
)
|
315
367
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
316
|
-
|
368
|
+
response_dict.get('usage').get('prompt_tokens'))
|
317
369
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
318
|
-
|
370
|
+
response_dict.get('usage').get('completion_tokens'))
|
319
371
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
320
|
-
|
372
|
+
response_dict.get('usage').get('total_tokens'))
|
321
373
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
322
374
|
cost)
|
323
375
|
|
@@ -340,9 +392,9 @@ def chat_completions(gen_ai_endpoint, version, environment, application_name,
|
|
340
392
|
}
|
341
393
|
|
342
394
|
metrics["genai_requests"].add(1, attributes)
|
343
|
-
metrics["genai_total_tokens"].add(
|
344
|
-
metrics["genai_completion_tokens"].add(
|
345
|
-
metrics["genai_prompt_tokens"].add(
|
395
|
+
metrics["genai_total_tokens"].add(response_dict.get('usage').get('total_tokens'), attributes)
|
396
|
+
metrics["genai_completion_tokens"].add(response_dict.get('usage').get('completion_tokens'), attributes)
|
397
|
+
metrics["genai_prompt_tokens"].add(response_dict.get('usage').get('prompt_tokens'), attributes)
|
346
398
|
metrics["genai_cost"].record(cost, attributes)
|
347
399
|
|
348
400
|
# Return original response
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/azure_ai_inference/__init__.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/elevenlabs/async_elevenlabs.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{openlit-1.29.3 → openlit-1.29.4}/src/openlit/instrumentation/google_ai_studio/google_ai_studio.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|