openlit 0.0.2__tar.gz → 1.0.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {openlit-0.0.2 → openlit-1.0.0}/PKG-INFO +69 -7
- {openlit-0.0.2 → openlit-1.0.0}/README.md +66 -5
- {openlit-0.0.2 → openlit-1.0.0}/pyproject.toml +3 -3
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/__helpers.py +1 -1
- {openlit-0.0.2 → openlit-1.0.0}/LICENSE +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/__init__.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/anthropic/__init__.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/anthropic/anthropic.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/anthropic/async_anthropic.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/chroma/__init__.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/chroma/chroma.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/cohere/__init__.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/cohere/cohere.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/langchain/__init__.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/langchain/langchain.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/mistral/__init__.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/mistral/async_mistral.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/mistral/mistral.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/openai/__init__.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/openai/async_azure_openai.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/openai/async_openai.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/openai/azure_openai.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/openai/openai.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/pinecone/__init__.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/pinecone/pinecone.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/transformers/__init__.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/instrumentation/transformers/transformers.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/otel/metrics.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/otel/tracing.py +0 -0
- {openlit-0.0.2 → openlit-1.0.0}/src/openlit/semcov/__init__.py +0 -0
@@ -1,8 +1,8 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: openlit
|
3
|
-
Version: 0.0
|
3
|
+
Version: 1.0.0
|
4
4
|
Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications, facilitating the integration of observability into your GenAI-driven projects
|
5
|
-
Home-page: https://github.com/
|
5
|
+
Home-page: https://github.com/openlit/openlit/tree/main/openlit/python
|
6
6
|
Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT
|
7
7
|
Author: OpenLIT
|
8
8
|
Requires-Python: >=3.7.1,<4.0.0
|
@@ -18,10 +18,25 @@ Requires-Dist: opentelemetry-instrumentation (>=0.45b0,<0.46)
|
|
18
18
|
Requires-Dist: opentelemetry-sdk (>=1.24.0,<2.0.0)
|
19
19
|
Requires-Dist: requests (>=2.26.0,<3.0.0)
|
20
20
|
Requires-Dist: tiktoken (>=0.1.1,<0.2.0)
|
21
|
-
Project-URL: Repository, https://github.com/
|
21
|
+
Project-URL: Repository, https://github.com/openlit/openlit/tree/main/openlit/python
|
22
22
|
Description-Content-Type: text/markdown
|
23
23
|
|
24
|
-
|
24
|
+
<div align="center">
|
25
|
+
<img src="https://github.com/openlit/.github/blob/main/profile/assets/wide-logo-no-bg.png?raw=true" alt="OpenLIT Logo" width="30%"><h1>
|
26
|
+
OpenTelemetry Auto-Instrumentation for GenAI & LLM Applications</h1>
|
27
|
+
|
28
|
+
**[Documentation](https://docs.openlit.io/) | [Quickstart](#-getting-started) | [Python SDK](https://github.com/openlit/openlit/tree/main/sdk/python)**
|
29
|
+
|
30
|
+
[](https://github.com/openlit/openlit)
|
31
|
+
[](https://github.com/openlit/openlit/blob/main/LICENSE)
|
32
|
+
[](https://pepy.tech/project/openlit)
|
33
|
+
[](https://github.com/openlit/openlit/pulse)
|
34
|
+
[](https://github.com/openlit/openlit/graphs/contributors)
|
35
|
+
|
36
|
+
[](https://join.slack.com/t/openlit/shared_invite/zt-2etnfttwg-TjP_7BZXfYg84oAukY8QRQ)
|
37
|
+
[](https://twitter.com/openlit_io)
|
38
|
+
|
39
|
+
</div>
|
25
40
|
|
26
41
|
OpenLIT Python SDK is an **OpenTelemetry-native** Auto instrumentation library for monitoring LLM Applications, facilitating the integration of observability into your GenAI-driven projects. Designed with simplicity and efficiency, OpenLIT offers the ability to embed observability into your GenAI-driven projects effortlessly using just **a single line of code**.
|
27
42
|
|
@@ -63,10 +78,20 @@ This project adheres to the [Semantic Conventions](https://github.com/open-telem
|
|
63
78
|
pip install openlit
|
64
79
|
```
|
65
80
|
|
66
|
-
##
|
81
|
+
## 🚀 Getting Started
|
82
|
+
|
83
|
+
## Step 1: Install OpenLIT SDK
|
84
|
+
|
85
|
+
```bash
|
86
|
+
pip install openlit
|
87
|
+
```
|
88
|
+
|
89
|
+
### Step 2: Instrument your Application
|
90
|
+
Integrating the OpenLIT into LLM applications is straightforward. Start monitoring for your LLM Application with just **one line of code**:
|
67
91
|
|
68
92
|
```python
|
69
93
|
import openlit
|
94
|
+
|
70
95
|
openlit.init()
|
71
96
|
```
|
72
97
|
|
@@ -74,6 +99,42 @@ By default, OpenLIT directs traces and metrics straight to your console. To forw
|
|
74
99
|
|
75
100
|
To send telemetry to OpenTelemetry backends requiring authentication, set the `otlp_headers` parameter with its desired value. Alternatively, you can configure the endpoint by setting the `OTEL_EXPORTER_OTLP_HEADERS` environment variable as recommended in the OpenTelemetry documentation.
|
76
101
|
|
102
|
+
#### Example
|
103
|
+
|
104
|
+
Here is how you can send telemetry from OpenLIT to Grafana Cloud
|
105
|
+
|
106
|
+
```python
|
107
|
+
openlit.init(
|
108
|
+
otlp_endpoint="https://otlp-gateway-prod-us-east-0.grafana.net/otlp",
|
109
|
+
otlp_headers="Authorization=Basic%20<base64 encoded Instance ID and API Token>"
|
110
|
+
)
|
111
|
+
```
|
112
|
+
|
113
|
+
Alternatively, You can also choose to set these values using `OTEL_EXPORTER_OTLP_ENDPOINT` and `OTEL_EXPORTER_OTLP_HEADERS` environment variables
|
114
|
+
|
115
|
+
```python
|
116
|
+
openlit.init()
|
117
|
+
```
|
118
|
+
|
119
|
+
```env
|
120
|
+
export OTEL_EXPORTER_OTLP_ENDPOINT = "https://otlp-gateway-prod-us-east-0.grafana.net/otlp"
|
121
|
+
export OTEL_EXPORTER_OTLP_HEADERS = "Authorization=Basic%20<base64 encoded Instance ID and API Token>"
|
122
|
+
```
|
123
|
+
|
124
|
+
### Step 3: Visualize and Optimize!
|
125
|
+
With the LLM Observability data now being collected and sent to your chosen OpenTelemetry backend, the next step is to visualize and analyze this data to glean insights into your application's performance, behavior, and identify areas of improvement. Here is how you would use the data in Grafana, follow these detailed instructions to explore your LLM application's Telemetry data.
|
126
|
+
|
127
|
+
- Select the **Explore** option from Grafana's sidebar.
|
128
|
+
- At the top, ensure the correct Tempo data source is selected from the dropdown menu.
|
129
|
+
- Use the **Query** field to specify any particular traces you are interested in, or leave it empty to browse through all the available traces.
|
130
|
+
- You can adjust the time range to focus on specific periods of interest.
|
131
|
+
- Hit **Run Query** to fetch your trace data. You'll see a visual representation of your traces along with detailed information on particular spans when clicked.
|
132
|
+
|
133
|
+
#### Next Steps
|
134
|
+
|
135
|
+
- **Create Dashboards:** Beyond just exploring traces, consider creating dashboards in Grafana to monitor key performance indicators (KPIs) and metrics over time. Dashboards can be customized with various panels to display graphs, logs, and single stats that are most relevant to your application's performance and usage patterns.
|
136
|
+
- **Set Alerts:** Grafana also allows you to set up alerts based on specific thresholds. This feature can be invaluable in proactively managing your application's health by notifying you of potential issues before they impact users.
|
137
|
+
- **Iterate and Optimize:** Use the insights gained from your observability data to make informed decisions on optimizing your LLM application. This might involve refining model parameters, adjusting scaling strategies, or identifying and resolving bottlenecks.
|
77
138
|
|
78
139
|
|
79
140
|
### Configuration
|
@@ -107,7 +168,8 @@ Your input helps us grow and improve, and we're here to support you every step o
|
|
107
168
|
|
108
169
|
Connect with the OpenLIT community and maintainers for support, discussions, and updates:
|
109
170
|
|
110
|
-
- 🌟 If you like it, Leave a star on our [GitHub](https://github.com/
|
171
|
+
- 🌟 If you like it, Leave a star on our [GitHub](https://github.com/openlit/openlit/)
|
111
172
|
- 🌍 Join our [Slack](https://join.slack.com/t/openlit/shared_invite/zt-2etnfttwg-TjP_7BZXfYg84oAukY8QRQ) Community for live interactions and questions.
|
112
|
-
- 🐞 Report bugs on our [GitHub Issues](https://github.com/
|
173
|
+
- 🐞 Report bugs on our [GitHub Issues](https://github.com/openlit/openlit/issues) to help us improve OpenLIT.
|
113
174
|
- 𝕏 Follow us on [X](https://twitter.com/openlit) for the latest updates and news.
|
175
|
+
|
@@ -1,4 +1,19 @@
|
|
1
|
-
|
1
|
+
<div align="center">
|
2
|
+
<img src="https://github.com/openlit/.github/blob/main/profile/assets/wide-logo-no-bg.png?raw=true" alt="OpenLIT Logo" width="30%"><h1>
|
3
|
+
OpenTelemetry Auto-Instrumentation for GenAI & LLM Applications</h1>
|
4
|
+
|
5
|
+
**[Documentation](https://docs.openlit.io/) | [Quickstart](#-getting-started) | [Python SDK](https://github.com/openlit/openlit/tree/main/sdk/python)**
|
6
|
+
|
7
|
+
[](https://github.com/openlit/openlit)
|
8
|
+
[](https://github.com/openlit/openlit/blob/main/LICENSE)
|
9
|
+
[](https://pepy.tech/project/openlit)
|
10
|
+
[](https://github.com/openlit/openlit/pulse)
|
11
|
+
[](https://github.com/openlit/openlit/graphs/contributors)
|
12
|
+
|
13
|
+
[](https://join.slack.com/t/openlit/shared_invite/zt-2etnfttwg-TjP_7BZXfYg84oAukY8QRQ)
|
14
|
+
[](https://twitter.com/openlit_io)
|
15
|
+
|
16
|
+
</div>
|
2
17
|
|
3
18
|
OpenLIT Python SDK is an **OpenTelemetry-native** Auto instrumentation library for monitoring LLM Applications, facilitating the integration of observability into your GenAI-driven projects. Designed with simplicity and efficiency, OpenLIT offers the ability to embed observability into your GenAI-driven projects effortlessly using just **a single line of code**.
|
4
19
|
|
@@ -40,10 +55,20 @@ This project adheres to the [Semantic Conventions](https://github.com/open-telem
|
|
40
55
|
pip install openlit
|
41
56
|
```
|
42
57
|
|
43
|
-
##
|
58
|
+
## 🚀 Getting Started
|
59
|
+
|
60
|
+
## Step 1: Install OpenLIT SDK
|
61
|
+
|
62
|
+
```bash
|
63
|
+
pip install openlit
|
64
|
+
```
|
65
|
+
|
66
|
+
### Step 2: Instrument your Application
|
67
|
+
Integrating the OpenLIT into LLM applications is straightforward. Start monitoring for your LLM Application with just **one line of code**:
|
44
68
|
|
45
69
|
```python
|
46
70
|
import openlit
|
71
|
+
|
47
72
|
openlit.init()
|
48
73
|
```
|
49
74
|
|
@@ -51,6 +76,42 @@ By default, OpenLIT directs traces and metrics straight to your console. To forw
|
|
51
76
|
|
52
77
|
To send telemetry to OpenTelemetry backends requiring authentication, set the `otlp_headers` parameter with its desired value. Alternatively, you can configure the endpoint by setting the `OTEL_EXPORTER_OTLP_HEADERS` environment variable as recommended in the OpenTelemetry documentation.
|
53
78
|
|
79
|
+
#### Example
|
80
|
+
|
81
|
+
Here is how you can send telemetry from OpenLIT to Grafana Cloud
|
82
|
+
|
83
|
+
```python
|
84
|
+
openlit.init(
|
85
|
+
otlp_endpoint="https://otlp-gateway-prod-us-east-0.grafana.net/otlp",
|
86
|
+
otlp_headers="Authorization=Basic%20<base64 encoded Instance ID and API Token>"
|
87
|
+
)
|
88
|
+
```
|
89
|
+
|
90
|
+
Alternatively, You can also choose to set these values using `OTEL_EXPORTER_OTLP_ENDPOINT` and `OTEL_EXPORTER_OTLP_HEADERS` environment variables
|
91
|
+
|
92
|
+
```python
|
93
|
+
openlit.init()
|
94
|
+
```
|
95
|
+
|
96
|
+
```env
|
97
|
+
export OTEL_EXPORTER_OTLP_ENDPOINT = "https://otlp-gateway-prod-us-east-0.grafana.net/otlp"
|
98
|
+
export OTEL_EXPORTER_OTLP_HEADERS = "Authorization=Basic%20<base64 encoded Instance ID and API Token>"
|
99
|
+
```
|
100
|
+
|
101
|
+
### Step 3: Visualize and Optimize!
|
102
|
+
With the LLM Observability data now being collected and sent to your chosen OpenTelemetry backend, the next step is to visualize and analyze this data to glean insights into your application's performance, behavior, and identify areas of improvement. Here is how you would use the data in Grafana, follow these detailed instructions to explore your LLM application's Telemetry data.
|
103
|
+
|
104
|
+
- Select the **Explore** option from Grafana's sidebar.
|
105
|
+
- At the top, ensure the correct Tempo data source is selected from the dropdown menu.
|
106
|
+
- Use the **Query** field to specify any particular traces you are interested in, or leave it empty to browse through all the available traces.
|
107
|
+
- You can adjust the time range to focus on specific periods of interest.
|
108
|
+
- Hit **Run Query** to fetch your trace data. You'll see a visual representation of your traces along with detailed information on particular spans when clicked.
|
109
|
+
|
110
|
+
#### Next Steps
|
111
|
+
|
112
|
+
- **Create Dashboards:** Beyond just exploring traces, consider creating dashboards in Grafana to monitor key performance indicators (KPIs) and metrics over time. Dashboards can be customized with various panels to display graphs, logs, and single stats that are most relevant to your application's performance and usage patterns.
|
113
|
+
- **Set Alerts:** Grafana also allows you to set up alerts based on specific thresholds. This feature can be invaluable in proactively managing your application's health by notifying you of potential issues before they impact users.
|
114
|
+
- **Iterate and Optimize:** Use the insights gained from your observability data to make informed decisions on optimizing your LLM application. This might involve refining model parameters, adjusting scaling strategies, or identifying and resolving bottlenecks.
|
54
115
|
|
55
116
|
|
56
117
|
### Configuration
|
@@ -84,7 +145,7 @@ Your input helps us grow and improve, and we're here to support you every step o
|
|
84
145
|
|
85
146
|
Connect with the OpenLIT community and maintainers for support, discussions, and updates:
|
86
147
|
|
87
|
-
- 🌟 If you like it, Leave a star on our [GitHub](https://github.com/
|
148
|
+
- 🌟 If you like it, Leave a star on our [GitHub](https://github.com/openlit/openlit/)
|
88
149
|
- 🌍 Join our [Slack](https://join.slack.com/t/openlit/shared_invite/zt-2etnfttwg-TjP_7BZXfYg84oAukY8QRQ) Community for live interactions and questions.
|
89
|
-
- 🐞 Report bugs on our [GitHub Issues](https://github.com/
|
90
|
-
- 𝕏 Follow us on [X](https://twitter.com/openlit) for the latest updates and news.
|
150
|
+
- 🐞 Report bugs on our [GitHub Issues](https://github.com/openlit/openlit/issues) to help us improve OpenLIT.
|
151
|
+
- 𝕏 Follow us on [X](https://twitter.com/openlit) for the latest updates and news.
|
@@ -1,11 +1,11 @@
|
|
1
1
|
[tool.poetry]
|
2
2
|
name = "openlit"
|
3
|
-
version = "0.0
|
3
|
+
version = "1.0.0"
|
4
4
|
description = "OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications, facilitating the integration of observability into your GenAI-driven projects"
|
5
5
|
authors = ["OpenLIT"]
|
6
|
-
repository = "https://github.com/
|
6
|
+
repository = "https://github.com/openlit/openlit/tree/main/openlit/python"
|
7
7
|
readme = "README.md"
|
8
|
-
homepage = "https://github.com/
|
8
|
+
homepage = "https://github.com/openlit/openlit/tree/main/openlit/python"
|
9
9
|
keywords = ["OpenTelemetry", "otel", "otlp","llm", "tracing", "openai", "anthropic", "claude", "cohere", "llm monitoring", "observability", "monitoring", "gpt", "Generative AI", "chatGPT"]
|
10
10
|
|
11
11
|
[tool.poetry.dependencies]
|
@@ -124,7 +124,7 @@ def get_audio_model_cost(model, pricing_info, prompt):
|
|
124
124
|
|
125
125
|
def fetch_pricing_info():
|
126
126
|
"""Fetches pricing information from a specified URL."""
|
127
|
-
pricing_url = "https://raw.githubusercontent.com/
|
127
|
+
pricing_url = "https://raw.githubusercontent.com/openlit/openlit/main/assets/pricing.json"
|
128
128
|
try:
|
129
129
|
# Set a timeout of 10 seconds for both the connection and the read
|
130
130
|
response = requests.get(pricing_url, timeout=20)
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|