opengradient 0.2.8__tar.gz → 0.3.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {opengradient-0.2.8/src/opengradient.egg-info → opengradient-0.3.0}/PKG-INFO +27 -16
- {opengradient-0.2.8 → opengradient-0.3.0}/README.md +25 -14
- {opengradient-0.2.8 → opengradient-0.3.0}/pyproject.toml +2 -2
- {opengradient-0.2.8 → opengradient-0.3.0}/src/opengradient/__init__.py +22 -9
- opengradient-0.3.0/src/opengradient/abi/llm.abi +1 -0
- opengradient-0.3.0/src/opengradient/account.py +37 -0
- opengradient-0.3.0/src/opengradient/cli.py +390 -0
- {opengradient-0.2.8 → opengradient-0.3.0}/src/opengradient/client.py +51 -6
- {opengradient-0.2.8 → opengradient-0.3.0}/src/opengradient/defaults.py +2 -2
- {opengradient-0.2.8 → opengradient-0.3.0/src/opengradient.egg-info}/PKG-INFO +27 -16
- {opengradient-0.2.8 → opengradient-0.3.0}/src/opengradient.egg-info/SOURCES.txt +2 -3
- opengradient-0.2.8/src/opengradient/cli.py +0 -195
- opengradient-0.2.8/tests/test_api.py +0 -110
- opengradient-0.2.8/tests/test_exceptions.py +0 -25
- opengradient-0.2.8/tests/test_integration.py +0 -20
- {opengradient-0.2.8 → opengradient-0.3.0}/LICENSE +0 -0
- {opengradient-0.2.8 → opengradient-0.3.0}/setup.cfg +0 -0
- {opengradient-0.2.8 → opengradient-0.3.0}/src/opengradient/abi/inference.abi +0 -0
- {opengradient-0.2.8 → opengradient-0.3.0}/src/opengradient/exceptions.py +0 -0
- {opengradient-0.2.8 → opengradient-0.3.0}/src/opengradient/types.py +0 -0
- {opengradient-0.2.8 → opengradient-0.3.0}/src/opengradient/utils.py +0 -0
- {opengradient-0.2.8 → opengradient-0.3.0}/src/opengradient.egg-info/dependency_links.txt +0 -0
- {opengradient-0.2.8 → opengradient-0.3.0}/src/opengradient.egg-info/entry_points.txt +0 -0
- {opengradient-0.2.8 → opengradient-0.3.0}/src/opengradient.egg-info/requires.txt +0 -0
- {opengradient-0.2.8 → opengradient-0.3.0}/src/opengradient.egg-info/top_level.txt +0 -0
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: opengradient
|
|
3
|
-
Version: 0.
|
|
4
|
-
Summary:
|
|
3
|
+
Version: 0.3.0
|
|
4
|
+
Summary: Python SDK for OpenGradient decentralized model management & inference services
|
|
5
5
|
Author-email: OpenGradient <oliver@opengradient.ai>
|
|
6
6
|
License: MIT License
|
|
7
7
|
|
|
@@ -135,9 +135,9 @@ Requires-Dist: websockets==13.1
|
|
|
135
135
|
Requires-Dist: xattr==1.1.0
|
|
136
136
|
Requires-Dist: yarl==1.13.1
|
|
137
137
|
|
|
138
|
-
# OpenGradient
|
|
138
|
+
# OpenGradient SDK
|
|
139
139
|
|
|
140
|
-
Python SDK for OpenGradient inference services.
|
|
140
|
+
Python SDK for OpenGradient decentralized model management & inference services.
|
|
141
141
|
|
|
142
142
|
## Installation
|
|
143
143
|
```python
|
|
@@ -147,41 +147,47 @@ pip install opengradient
|
|
|
147
147
|
## Quick Start
|
|
148
148
|
```python
|
|
149
149
|
import opengradient as og
|
|
150
|
-
og.init(
|
|
150
|
+
og.init(email="<email>", password="<password>")
|
|
151
151
|
```
|
|
152
152
|
|
|
153
|
-
###
|
|
153
|
+
### Create a Model
|
|
154
154
|
```python
|
|
155
|
-
og.
|
|
155
|
+
og.create_model(model_name="<model_name>", model_desc="<model_description>")
|
|
156
156
|
```
|
|
157
157
|
|
|
158
|
-
### Create a Model
|
|
158
|
+
### Create a Model (with file upload)
|
|
159
159
|
```python
|
|
160
|
-
og.create_model(model_name="
|
|
160
|
+
og.create_model(model_name="<model_name>", model_desc="<model_description>", model_path="<model_path>")
|
|
161
161
|
```
|
|
162
162
|
|
|
163
163
|
### Create a Version of a Model
|
|
164
164
|
```python
|
|
165
|
-
og.create_version(model_name="
|
|
165
|
+
og.create_version(model_name="<model_name>", notes="<model_notes>")
|
|
166
166
|
```
|
|
167
167
|
|
|
168
168
|
### Upload Files to a Model
|
|
169
169
|
```python
|
|
170
|
-
og.upload(model_path="
|
|
170
|
+
og.upload(model_path="<model_path>", model_name="<model_name>", version="<version>")
|
|
171
171
|
```
|
|
172
172
|
|
|
173
|
-
###
|
|
173
|
+
### List Files of a Model Version
|
|
174
174
|
```python
|
|
175
|
-
|
|
176
|
-
inference_cid = og.infer(model_cid, model_inputs, inference_mode)
|
|
175
|
+
og.list_files(model_name="<model_name>", version="<version>")
|
|
177
176
|
```
|
|
178
177
|
|
|
178
|
+
### Run Inference
|
|
179
179
|
```python
|
|
180
|
-
og.
|
|
180
|
+
inference_mode = og.InferenceMode.VANILLA
|
|
181
|
+
og.infer(model_cid, model_inputs, inference_mode)
|
|
181
182
|
```
|
|
182
183
|
|
|
183
184
|
## Using the CLI
|
|
184
185
|
|
|
186
|
+
```bash
|
|
187
|
+
export OPENGRADIENT_EMAIL="<email>"
|
|
188
|
+
export OPENGRADIENT_PASSWORD="<password>"
|
|
189
|
+
```
|
|
190
|
+
|
|
185
191
|
#### Creating a Model
|
|
186
192
|
```bash
|
|
187
193
|
opengradient create_model "<model_name>" "<description>"
|
|
@@ -195,7 +201,12 @@ opengradient create_model "<model_name>" "<description>"
|
|
|
195
201
|
|
|
196
202
|
#### Upload a File
|
|
197
203
|
```bash
|
|
198
|
-
opengradient upload "
|
|
204
|
+
opengradient upload "<model_path>" "<model_name>" "<version>"
|
|
205
|
+
```
|
|
206
|
+
|
|
207
|
+
#### List Files of a Model Version
|
|
208
|
+
```bash
|
|
209
|
+
opengradient list_files "<model_name>" "<version>"
|
|
199
210
|
```
|
|
200
211
|
|
|
201
212
|
#### CLI infer using string
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
# OpenGradient
|
|
1
|
+
# OpenGradient SDK
|
|
2
2
|
|
|
3
|
-
Python SDK for OpenGradient inference services.
|
|
3
|
+
Python SDK for OpenGradient decentralized model management & inference services.
|
|
4
4
|
|
|
5
5
|
## Installation
|
|
6
6
|
```python
|
|
@@ -10,41 +10,47 @@ pip install opengradient
|
|
|
10
10
|
## Quick Start
|
|
11
11
|
```python
|
|
12
12
|
import opengradient as og
|
|
13
|
-
og.init(
|
|
13
|
+
og.init(email="<email>", password="<password>")
|
|
14
14
|
```
|
|
15
15
|
|
|
16
|
-
###
|
|
16
|
+
### Create a Model
|
|
17
17
|
```python
|
|
18
|
-
og.
|
|
18
|
+
og.create_model(model_name="<model_name>", model_desc="<model_description>")
|
|
19
19
|
```
|
|
20
20
|
|
|
21
|
-
### Create a Model
|
|
21
|
+
### Create a Model (with file upload)
|
|
22
22
|
```python
|
|
23
|
-
og.create_model(model_name="
|
|
23
|
+
og.create_model(model_name="<model_name>", model_desc="<model_description>", model_path="<model_path>")
|
|
24
24
|
```
|
|
25
25
|
|
|
26
26
|
### Create a Version of a Model
|
|
27
27
|
```python
|
|
28
|
-
og.create_version(model_name="
|
|
28
|
+
og.create_version(model_name="<model_name>", notes="<model_notes>")
|
|
29
29
|
```
|
|
30
30
|
|
|
31
31
|
### Upload Files to a Model
|
|
32
32
|
```python
|
|
33
|
-
og.upload(model_path="
|
|
33
|
+
og.upload(model_path="<model_path>", model_name="<model_name>", version="<version>")
|
|
34
34
|
```
|
|
35
35
|
|
|
36
|
-
###
|
|
36
|
+
### List Files of a Model Version
|
|
37
37
|
```python
|
|
38
|
-
|
|
39
|
-
inference_cid = og.infer(model_cid, model_inputs, inference_mode)
|
|
38
|
+
og.list_files(model_name="<model_name>", version="<version>")
|
|
40
39
|
```
|
|
41
40
|
|
|
41
|
+
### Run Inference
|
|
42
42
|
```python
|
|
43
|
-
og.
|
|
43
|
+
inference_mode = og.InferenceMode.VANILLA
|
|
44
|
+
og.infer(model_cid, model_inputs, inference_mode)
|
|
44
45
|
```
|
|
45
46
|
|
|
46
47
|
## Using the CLI
|
|
47
48
|
|
|
49
|
+
```bash
|
|
50
|
+
export OPENGRADIENT_EMAIL="<email>"
|
|
51
|
+
export OPENGRADIENT_PASSWORD="<password>"
|
|
52
|
+
```
|
|
53
|
+
|
|
48
54
|
#### Creating a Model
|
|
49
55
|
```bash
|
|
50
56
|
opengradient create_model "<model_name>" "<description>"
|
|
@@ -58,7 +64,12 @@ opengradient create_model "<model_name>" "<description>"
|
|
|
58
64
|
|
|
59
65
|
#### Upload a File
|
|
60
66
|
```bash
|
|
61
|
-
opengradient upload "
|
|
67
|
+
opengradient upload "<model_path>" "<model_name>" "<version>"
|
|
68
|
+
```
|
|
69
|
+
|
|
70
|
+
#### List Files of a Model Version
|
|
71
|
+
```bash
|
|
72
|
+
opengradient list_files "<model_name>" "<version>"
|
|
62
73
|
```
|
|
63
74
|
|
|
64
75
|
#### CLI infer using string
|
|
@@ -4,8 +4,8 @@ build-backend = "setuptools.build_meta"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "opengradient"
|
|
7
|
-
version = "0.
|
|
8
|
-
description = "
|
|
7
|
+
version = "0.3.0"
|
|
8
|
+
description = "Python SDK for OpenGradient decentralized model management & inference services"
|
|
9
9
|
authors = [{name = "OpenGradient", email = "oliver@opengradient.ai"}]
|
|
10
10
|
license = {file = "LICENSE"}
|
|
11
11
|
readme = "README.md"
|
|
@@ -1,16 +1,16 @@
|
|
|
1
1
|
from .client import Client
|
|
2
2
|
from .defaults import *
|
|
3
3
|
from .types import InferenceMode
|
|
4
|
-
|
|
5
|
-
__version__ = "0.
|
|
4
|
+
from typing import List, Dict
|
|
5
|
+
__version__ = "0.3.0"
|
|
6
6
|
|
|
7
7
|
_client = None
|
|
8
8
|
|
|
9
|
-
def init(
|
|
9
|
+
def init(email: str,
|
|
10
|
+
password: str,
|
|
11
|
+
private_key=DEFAULT_PRIVATE_KEY,
|
|
10
12
|
rpc_url=DEFAULT_RPC_URL,
|
|
11
|
-
contract_address=DEFAULT_INFERENCE_CONTRACT_ADDRESS
|
|
12
|
-
email=DEFAULT_HUB_EMAIL,
|
|
13
|
-
password=DEFAULT_HUB_PASSWORD):
|
|
13
|
+
contract_address=DEFAULT_INFERENCE_CONTRACT_ADDRESS):
|
|
14
14
|
global _client
|
|
15
15
|
_client = Client(private_key=private_key, rpc_url=rpc_url, contract_address=contract_address, email=email, password=password)
|
|
16
16
|
|
|
@@ -19,10 +19,18 @@ def upload(model_path, model_name, version):
|
|
|
19
19
|
raise RuntimeError("OpenGradient client not initialized. Call og.init() first.")
|
|
20
20
|
return _client.upload(model_path, model_name, version)
|
|
21
21
|
|
|
22
|
-
def create_model(model_name, model_desc):
|
|
22
|
+
def create_model(model_name: str, model_desc: str, model_path: str = None):
|
|
23
23
|
if _client is None:
|
|
24
24
|
raise RuntimeError("OpenGradient client not initialized. Call og.init() first.")
|
|
25
|
-
|
|
25
|
+
|
|
26
|
+
result = _client.create_model(model_name, model_desc)
|
|
27
|
+
|
|
28
|
+
if model_path:
|
|
29
|
+
version = "0.01"
|
|
30
|
+
upload_result = _client.upload(model_path, model_name, version)
|
|
31
|
+
result["upload"] = upload_result
|
|
32
|
+
|
|
33
|
+
return result
|
|
26
34
|
|
|
27
35
|
def create_version(model_name, notes=None, is_major=False):
|
|
28
36
|
if _client is None:
|
|
@@ -37,4 +45,9 @@ def infer(model_cid, inference_mode, model_input):
|
|
|
37
45
|
def login(email: str, password: str):
|
|
38
46
|
if _client is None:
|
|
39
47
|
raise RuntimeError("OpenGradient client not initialized. Call og.init() first.")
|
|
40
|
-
return _client.login(email, password)
|
|
48
|
+
return _client.login(email, password)
|
|
49
|
+
|
|
50
|
+
def list_files(model_name: str, version: str) -> List[Dict]:
|
|
51
|
+
if _client is None:
|
|
52
|
+
raise RuntimeError("OpenGradient client not initialized. Call og.init() first.")
|
|
53
|
+
return _client.list_files(model_name, version)
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
[{"anonymous":false,"inputs":[{"components":[{"components":[{"internalType":"string","name":"name","type":"string"},{"components":[{"internalType":"int128","name":"value","type":"int128"},{"internalType":"int128","name":"decimals","type":"int128"}],"internalType":"struct TensorLib.Number[]","name":"values","type":"tuple[]"},{"internalType":"uint32[]","name":"shape","type":"uint32[]"}],"internalType":"struct TensorLib.MultiDimensionalNumberTensor[]","name":"numbers","type":"tuple[]"},{"components":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string[]","name":"values","type":"string[]"}],"internalType":"struct TensorLib.StringTensor[]","name":"strings","type":"tuple[]"},{"internalType":"bool","name":"is_simulation_result","type":"bool"}],"indexed":false,"internalType":"struct ModelOutput","name":"output","type":"tuple"}],"name":"InferenceResult","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"string","name":"answer","type":"string"}],"indexed":false,"internalType":"struct LlmResponse","name":"response","type":"tuple"}],"name":"LLMResult","type":"event"},{"inputs":[{"internalType":"string","name":"modelId","type":"string"},{"internalType":"enum ModelInferenceMode","name":"inferenceMode","type":"uint8"},{"components":[{"components":[{"internalType":"string","name":"name","type":"string"},{"components":[{"internalType":"int128","name":"value","type":"int128"},{"internalType":"int128","name":"decimals","type":"int128"}],"internalType":"struct TensorLib.Number[]","name":"values","type":"tuple[]"},{"internalType":"uint32[]","name":"shape","type":"uint32[]"}],"internalType":"struct TensorLib.MultiDimensionalNumberTensor[]","name":"numbers","type":"tuple[]"},{"components":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string[]","name":"values","type":"string[]"}],"internalType":"struct TensorLib.StringTensor[]","name":"strings","type":"tuple[]"}],"internalType":"struct ModelInput","name":"modelInput","type":"tuple"}],"name":"run","outputs":[{"components":[{"components":[{"internalType":"string","name":"name","type":"string"},{"components":[{"internalType":"int128","name":"value","type":"int128"},{"internalType":"int128","name":"decimals","type":"int128"}],"internalType":"struct TensorLib.Number[]","name":"values","type":"tuple[]"},{"internalType":"uint32[]","name":"shape","type":"uint32[]"}],"internalType":"struct TensorLib.MultiDimensionalNumberTensor[]","name":"numbers","type":"tuple[]"},{"components":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string[]","name":"values","type":"string[]"}],"internalType":"struct TensorLib.StringTensor[]","name":"strings","type":"tuple[]"},{"internalType":"bool","name":"is_simulation_result","type":"bool"}],"internalType":"struct ModelOutput","name":"","type":"tuple"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum LlmInferenceMode","name":"mode","type":"uint8"},{"internalType":"string","name":"modelCID","type":"string"},{"internalType":"string","name":"prompt","type":"string"},{"internalType":"uint32","name":"max_tokens","type":"uint32"},{"internalType":"string[]","name":"stop_sequence","type":"string[]"},{"internalType":"uint32","name":"temperature","type":"uint32"}],"internalType":"struct LlmInferenceRequest","name":"request","type":"tuple"}],"name":"runLLM","outputs":[{"components":[{"internalType":"string","name":"answer","type":"string"}],"internalType":"struct LlmResponse","name":"","type":"tuple"}],"stateMutability":"nonpayable","type":"function"}]
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
from eth_account import Account
|
|
2
|
+
import secrets
|
|
3
|
+
from collections import namedtuple
|
|
4
|
+
import os
|
|
5
|
+
import hashlib
|
|
6
|
+
|
|
7
|
+
EthAccount = namedtuple('EthAccount', ['address', 'private_key'])
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def generate_eth_account() -> EthAccount:
|
|
11
|
+
user_seed = _get_user_random_seed()
|
|
12
|
+
private_key = _generate_secure_private_key(user_seed)
|
|
13
|
+
|
|
14
|
+
# derive account
|
|
15
|
+
account = Account.from_key(private_key)
|
|
16
|
+
|
|
17
|
+
# get the public key (address)
|
|
18
|
+
public_key = account.address
|
|
19
|
+
|
|
20
|
+
return EthAccount(address=public_key, private_key=private_key)
|
|
21
|
+
|
|
22
|
+
def _get_user_random_seed():
|
|
23
|
+
print("Please type a random string of characters (the longer and more random, the better):")
|
|
24
|
+
print("> ", end="") # Add a '>' prompt on a new line
|
|
25
|
+
return input().encode()
|
|
26
|
+
|
|
27
|
+
def _generate_secure_private_key(user_input):
|
|
28
|
+
# Combine multiple sources of entropy
|
|
29
|
+
system_random = secrets.token_bytes(32)
|
|
30
|
+
os_urandom = os.urandom(32)
|
|
31
|
+
timestamp = str(secrets.randbits(256)).encode()
|
|
32
|
+
|
|
33
|
+
# Add user input to the entropy sources
|
|
34
|
+
combined = system_random + os_urandom + timestamp + user_input
|
|
35
|
+
|
|
36
|
+
# Hash the combined entropy
|
|
37
|
+
return hashlib.sha256(combined).hexdigest()
|
|
@@ -0,0 +1,390 @@
|
|
|
1
|
+
import click
|
|
2
|
+
import opengradient
|
|
3
|
+
import json
|
|
4
|
+
import ast
|
|
5
|
+
from pathlib import Path
|
|
6
|
+
import logging
|
|
7
|
+
from pprint import pformat
|
|
8
|
+
import webbrowser
|
|
9
|
+
import sys
|
|
10
|
+
|
|
11
|
+
from .client import Client
|
|
12
|
+
from .defaults import *
|
|
13
|
+
from .types import InferenceMode
|
|
14
|
+
from .account import EthAccount, generate_eth_account
|
|
15
|
+
|
|
16
|
+
OG_CONFIG_FILE = Path.home() / '.opengradient_config.json'
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def load_og_config():
|
|
20
|
+
if OG_CONFIG_FILE.exists():
|
|
21
|
+
with OG_CONFIG_FILE.open('r') as f:
|
|
22
|
+
return json.load(f)
|
|
23
|
+
return {}
|
|
24
|
+
|
|
25
|
+
def save_og_config(ctx):
|
|
26
|
+
with OG_CONFIG_FILE.open('w') as f:
|
|
27
|
+
json.dump(ctx.obj, f)
|
|
28
|
+
|
|
29
|
+
# Convert string to dictionary click parameter typing
|
|
30
|
+
class DictParamType(click.ParamType):
|
|
31
|
+
name = "dictionary"
|
|
32
|
+
|
|
33
|
+
def convert(self, value, param, ctx):
|
|
34
|
+
if isinstance(value, dict):
|
|
35
|
+
return value
|
|
36
|
+
try:
|
|
37
|
+
# First, try to parse as JSON
|
|
38
|
+
return json.loads(value)
|
|
39
|
+
except json.JSONDecodeError:
|
|
40
|
+
# If JSON parsing fails, try to evaluate as a Python literal
|
|
41
|
+
try:
|
|
42
|
+
# ast.literal_eval is safer than eval as it only parses Python literals
|
|
43
|
+
result = ast.literal_eval(value)
|
|
44
|
+
if not isinstance(result, dict):
|
|
45
|
+
self.fail(f"'{value}' is not a valid dictionary", param, ctx)
|
|
46
|
+
return result
|
|
47
|
+
except (ValueError, SyntaxError):
|
|
48
|
+
self.fail(f"'{value}' is not a valid dictionary", param, ctx)
|
|
49
|
+
|
|
50
|
+
Dict = DictParamType()
|
|
51
|
+
|
|
52
|
+
# Support inference modes
|
|
53
|
+
InferenceModes = {
|
|
54
|
+
"VANILLA": InferenceMode.VANILLA,
|
|
55
|
+
"ZKML": InferenceMode.ZKML,
|
|
56
|
+
"TEE": InferenceMode.TEE,
|
|
57
|
+
}
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def initialize_config(ctx):
|
|
61
|
+
"""Interactively initialize OpenGradient config"""
|
|
62
|
+
if ctx.obj: # Check if config data already exists
|
|
63
|
+
click.echo("A config already exists. Please run 'opengradient config clear' first if you want to reinitialize.")
|
|
64
|
+
click.echo("You can view your current config with 'opengradient config show'.")
|
|
65
|
+
|
|
66
|
+
click.echo("Initializing OpenGradient config...")
|
|
67
|
+
click.secho(f"Config will be stored in: {OG_CONFIG_FILE}", fg='cyan')
|
|
68
|
+
|
|
69
|
+
# Check if user has an existing account
|
|
70
|
+
has_account = click.confirm("Do you already have an OpenGradient account?", default=True)
|
|
71
|
+
|
|
72
|
+
if not has_account:
|
|
73
|
+
eth_account = create_account_impl()
|
|
74
|
+
if eth_account is None:
|
|
75
|
+
click.echo("Account creation cancelled. Config initialization aborted.")
|
|
76
|
+
return
|
|
77
|
+
ctx.obj['private_key'] = eth_account.private_key
|
|
78
|
+
else:
|
|
79
|
+
ctx.obj['private_key'] = click.prompt("Enter your OpenGradient private key", type=str)
|
|
80
|
+
|
|
81
|
+
# Make email and password optional
|
|
82
|
+
email = click.prompt("Enter your OpenGradient Hub email address (optional, press Enter to skip)",
|
|
83
|
+
type=str, default='', show_default=False)
|
|
84
|
+
ctx.obj['email'] = email if email else None
|
|
85
|
+
password = click.prompt("Enter your OpenGradient Hub password (optional, press Enter to skip)",
|
|
86
|
+
type=str, hide_input=True, default='', show_default=False)
|
|
87
|
+
ctx.obj['password'] = password if password else None
|
|
88
|
+
|
|
89
|
+
ctx.obj['rpc_url'] = DEFAULT_RPC_URL
|
|
90
|
+
ctx.obj['contract_address'] = DEFAULT_INFERENCE_CONTRACT_ADDRESS
|
|
91
|
+
|
|
92
|
+
save_og_config(ctx)
|
|
93
|
+
click.echo("Config has been saved.")
|
|
94
|
+
click.secho("You can run 'opengradient config show' to see configs.", fg='green')
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
@click.group()
|
|
98
|
+
@click.pass_context
|
|
99
|
+
def cli(ctx):
|
|
100
|
+
"""CLI for OpenGradient SDK. Visit https://docs.opengradient.ai/developers/python_sdk/ for more documentation."""
|
|
101
|
+
# Load existing config
|
|
102
|
+
ctx.obj = load_og_config()
|
|
103
|
+
|
|
104
|
+
no_client_commands = ['config', 'create-account', 'version']
|
|
105
|
+
|
|
106
|
+
# Only create client if this is not a config management command
|
|
107
|
+
if ctx.invoked_subcommand in no_client_commands:
|
|
108
|
+
return
|
|
109
|
+
|
|
110
|
+
if all(key in ctx.obj for key in ['private_key', 'rpc_url', 'contract_address']):
|
|
111
|
+
try:
|
|
112
|
+
ctx.obj['client'] = Client(private_key=ctx.obj['private_key'],
|
|
113
|
+
rpc_url=ctx.obj['rpc_url'],
|
|
114
|
+
contract_address=ctx.obj['contract_address'],
|
|
115
|
+
email=ctx.obj.get('email'),
|
|
116
|
+
password=ctx.obj.get('password'))
|
|
117
|
+
except Exception as e:
|
|
118
|
+
click.echo(f"Failed to create OpenGradient client: {str(e)}")
|
|
119
|
+
ctx.exit(1)
|
|
120
|
+
else:
|
|
121
|
+
click.echo("Insufficient information to create client. Some commands may not be available.")
|
|
122
|
+
click.echo("Please run 'opengradient config clear' and/or 'opengradient config init' and to reinitialize your configs.")
|
|
123
|
+
ctx.exit(1)
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
@cli.group()
|
|
127
|
+
def config():
|
|
128
|
+
"""Manage your OpenGradient configuration (credentials etc)"""
|
|
129
|
+
pass
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
@config.command()
|
|
133
|
+
@click.pass_context
|
|
134
|
+
def init(ctx):
|
|
135
|
+
"""Initialize or reinitialize the OpenGradient config"""
|
|
136
|
+
initialize_config(ctx)
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
@config.command()
|
|
140
|
+
@click.pass_context
|
|
141
|
+
def show(ctx):
|
|
142
|
+
"""Display current config information"""
|
|
143
|
+
click.secho(f"Config file location: {OG_CONFIG_FILE}", fg='cyan')
|
|
144
|
+
|
|
145
|
+
if not ctx.obj:
|
|
146
|
+
click.echo("Config is empty. Run 'opengradient config init' to initialize it.")
|
|
147
|
+
return
|
|
148
|
+
|
|
149
|
+
click.echo("Current config:")
|
|
150
|
+
for key, value in ctx.obj.items():
|
|
151
|
+
if key != 'client': # Don't display the client object
|
|
152
|
+
if key == 'password' and value is not None:
|
|
153
|
+
click.echo(f"{key}: {'*' * len(value)}") # Mask the password
|
|
154
|
+
elif value is None:
|
|
155
|
+
click.echo(f"{key}: Not set")
|
|
156
|
+
else:
|
|
157
|
+
click.echo(f"{key}: {value}")
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
@config.command()
|
|
161
|
+
@click.pass_context
|
|
162
|
+
def clear(ctx):
|
|
163
|
+
"""Clear all saved configs"""
|
|
164
|
+
if not ctx.obj:
|
|
165
|
+
click.echo("No configs to clear.")
|
|
166
|
+
return
|
|
167
|
+
|
|
168
|
+
if click.confirm("Are you sure you want to clear all configs? This action cannot be undone.", abort=True):
|
|
169
|
+
ctx.obj.clear()
|
|
170
|
+
save_og_config(ctx)
|
|
171
|
+
click.echo("Configs cleared.")
|
|
172
|
+
else:
|
|
173
|
+
click.echo("Config clear cancelled.")
|
|
174
|
+
|
|
175
|
+
|
|
176
|
+
@cli.command()
|
|
177
|
+
@click.option('--repo', '-r', '--name', 'repo_name', required=True, help='Name of the new model repository')
|
|
178
|
+
@click.option('--description', '-d', required=True, help='Description of the model')
|
|
179
|
+
@click.pass_obj
|
|
180
|
+
def create_model_repo(obj, repo_name: str, description: str):
|
|
181
|
+
"""
|
|
182
|
+
Create a new model repository.
|
|
183
|
+
|
|
184
|
+
This command creates a new model repository with the specified name and description.
|
|
185
|
+
The repository name should be unique within your account.
|
|
186
|
+
|
|
187
|
+
Example usage:
|
|
188
|
+
|
|
189
|
+
\b
|
|
190
|
+
opengradient create-model-repo --name "my_new_model" --description "A new model for XYZ task"
|
|
191
|
+
opengradient create-model-repo -n "my_new_model" -d "A new model for XYZ task"
|
|
192
|
+
"""
|
|
193
|
+
client: Client = obj['client']
|
|
194
|
+
|
|
195
|
+
try:
|
|
196
|
+
result = client.create_model(repo_name, description)
|
|
197
|
+
click.echo(f"Model repository created successfully: {result}")
|
|
198
|
+
except Exception as e:
|
|
199
|
+
click.echo(f"Error creating model: {str(e)}")
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
@cli.command()
|
|
203
|
+
@click.option('--repo', '-r', 'repo_name', required=True, help='Name of the existing model repository')
|
|
204
|
+
@click.option('--notes', '-n', help='Version notes (optional)')
|
|
205
|
+
@click.option('--major', '-m', is_flag=True, default=False, help='Flag to indicate a major version update')
|
|
206
|
+
@click.pass_obj
|
|
207
|
+
def create_version(obj, repo_name: str, notes: str, major: bool):
|
|
208
|
+
"""Create a new version in an existing model repository.
|
|
209
|
+
|
|
210
|
+
This command creates a new version for the specified model repository.
|
|
211
|
+
You can optionally provide version notes and indicate if it's a major version update.
|
|
212
|
+
|
|
213
|
+
Example usage:
|
|
214
|
+
|
|
215
|
+
\b
|
|
216
|
+
opengradient create-version --repo my_model_repo --notes "Added new feature X" --major
|
|
217
|
+
opengradient create-version -r my_model_repo -n "Bug fixes"
|
|
218
|
+
"""
|
|
219
|
+
client: Client = obj['client']
|
|
220
|
+
|
|
221
|
+
try:
|
|
222
|
+
result = client.create_version(repo_name, notes, major)
|
|
223
|
+
click.echo(f"New version created successfully: {result}")
|
|
224
|
+
except Exception as e:
|
|
225
|
+
click.echo(f"Error creating version: {str(e)}")
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
@cli.command()
|
|
229
|
+
@click.argument('file_path', type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, path_type=Path),
|
|
230
|
+
metavar='FILE_PATH')
|
|
231
|
+
@click.option('--repo', '-r', 'repo_name', required=True, help='Name of the model repository')
|
|
232
|
+
@click.option('--version', '-v', required=True, help='Version of the model (e.g., "0.01")')
|
|
233
|
+
@click.pass_obj
|
|
234
|
+
def upload_file(obj, file_path: Path, repo_name: str, version: str):
|
|
235
|
+
"""
|
|
236
|
+
Upload a file to an existing model repository and version.
|
|
237
|
+
|
|
238
|
+
FILE_PATH: Path to the file you want to upload (e.g., model.onnx)
|
|
239
|
+
|
|
240
|
+
Example usage:
|
|
241
|
+
|
|
242
|
+
\b
|
|
243
|
+
opengradient upload-file path/to/model.onnx --repo my_model_repo --version 0.01
|
|
244
|
+
opengradient upload-file path/to/model.onnx -r my_model_repo -v 0.01
|
|
245
|
+
"""
|
|
246
|
+
client: Client = obj['client']
|
|
247
|
+
|
|
248
|
+
try:
|
|
249
|
+
result = client.upload(file_path, repo_name, version)
|
|
250
|
+
click.echo(f"File uploaded successfully: {result}")
|
|
251
|
+
except Exception as e:
|
|
252
|
+
click.echo(f"Error uploading model: {str(e)}")
|
|
253
|
+
|
|
254
|
+
|
|
255
|
+
@cli.command()
|
|
256
|
+
@click.option('--model', '-m', 'model_cid', required=True, help='CID of the model to run inference on')
|
|
257
|
+
@click.option('--mode', 'inference_mode', type=click.Choice(InferenceModes.keys()), default="VANILLA",
|
|
258
|
+
help='Inference mode (default: VANILLA)')
|
|
259
|
+
@click.option('--input', '-d', 'input_data', type=Dict, help='Input data for inference as a JSON string')
|
|
260
|
+
@click.option('--input-file', '-f',
|
|
261
|
+
type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, path_type=Path),
|
|
262
|
+
help="JSON file containing input data for inference")
|
|
263
|
+
@click.pass_context
|
|
264
|
+
def infer(ctx, model_cid: str, inference_mode: str, input_data, input_file: Path):
|
|
265
|
+
"""
|
|
266
|
+
Run inference on a model.
|
|
267
|
+
|
|
268
|
+
This command runs inference on the specified model using the provided input data.
|
|
269
|
+
You must provide either --input or --input-file, but not both.
|
|
270
|
+
|
|
271
|
+
Example usage:
|
|
272
|
+
|
|
273
|
+
\b
|
|
274
|
+
opengradient infer --model Qm... --mode VANILLA --input '{"key": "value"}'
|
|
275
|
+
opengradient infer -m Qm... -i ZKML -f input_data.json
|
|
276
|
+
"""
|
|
277
|
+
client: Client = ctx.obj['client']
|
|
278
|
+
|
|
279
|
+
try:
|
|
280
|
+
if not input_data and not input_file:
|
|
281
|
+
click.echo("Must specify either input_data or input_file")
|
|
282
|
+
ctx.exit(1)
|
|
283
|
+
return
|
|
284
|
+
|
|
285
|
+
if input_data and input_file:
|
|
286
|
+
click.echo("Cannot have both input_data and input_file")
|
|
287
|
+
ctx.exit(1)
|
|
288
|
+
return
|
|
289
|
+
|
|
290
|
+
if input_data:
|
|
291
|
+
model_input = input_data
|
|
292
|
+
|
|
293
|
+
if input_file:
|
|
294
|
+
with input_file.open('r') as file:
|
|
295
|
+
model_input = json.load(file)
|
|
296
|
+
|
|
297
|
+
# Parse input data from string to dict
|
|
298
|
+
click.echo(f"Running {inference_mode} inference for model \"{model_cid}\"\n")
|
|
299
|
+
tx_hash, model_output = client.infer(model_cid=model_cid, inference_mode=InferenceModes[inference_mode], model_input=model_input)
|
|
300
|
+
|
|
301
|
+
click.secho("Success!", fg="green")
|
|
302
|
+
click.echo(f"Transaction hash: {tx_hash}")
|
|
303
|
+
click.echo(f"Inference result:\n{pformat(model_output, indent=2, width=120)}")
|
|
304
|
+
except json.JSONDecodeError as e:
|
|
305
|
+
click.echo(f"Error decoding JSON: {e}", err=True)
|
|
306
|
+
click.echo(f"Error occurred on line {e.lineno}, column {e.colno}", err=True)
|
|
307
|
+
except Exception as e:
|
|
308
|
+
click.echo(f"Error running inference: {str(e)}")
|
|
309
|
+
|
|
310
|
+
|
|
311
|
+
@cli.command()
|
|
312
|
+
def create_account():
|
|
313
|
+
"""Create a new test account for OpenGradient inference and model management"""
|
|
314
|
+
create_account_impl()
|
|
315
|
+
|
|
316
|
+
|
|
317
|
+
def create_account_impl() -> EthAccount:
|
|
318
|
+
click.echo("\n" + "=" * 50)
|
|
319
|
+
click.echo("OpenGradient Account Creation Wizard".center(50))
|
|
320
|
+
click.echo("=" * 50 + "\n")
|
|
321
|
+
|
|
322
|
+
click.echo("\n" + "-" * 50)
|
|
323
|
+
click.echo("Step 1: Create Account on OpenGradient Hub")
|
|
324
|
+
click.echo("-" * 50)
|
|
325
|
+
|
|
326
|
+
click.echo(f"Please create an account on the OpenGradient Hub")
|
|
327
|
+
webbrowser.open(DEFAULT_HUB_SIGNUP_URL, new=2)
|
|
328
|
+
click.confirm("Have you successfully created your account on the OpenGradient Hub?", abort=True)
|
|
329
|
+
|
|
330
|
+
click.echo("\n" + "-" * 50)
|
|
331
|
+
click.echo("Step 2: Generate Ethereum Account")
|
|
332
|
+
click.echo("-" * 50)
|
|
333
|
+
eth_account = generate_eth_account()
|
|
334
|
+
click.echo(f"Generated OpenGradient chain account with address: {eth_account.address}")
|
|
335
|
+
|
|
336
|
+
click.echo("\n" + "-" * 50)
|
|
337
|
+
click.echo("Step 3: Fund Your Account")
|
|
338
|
+
click.echo("-" * 50)
|
|
339
|
+
click.echo(f"Please fund your account clicking 'Request' on the Faucet website")
|
|
340
|
+
webbrowser.open(DEFAULT_OG_FAUCET_URL + eth_account.address, new=2)
|
|
341
|
+
click.confirm("Have you successfully funded your account using the Faucet?", abort=True)
|
|
342
|
+
|
|
343
|
+
click.echo("\n" + "=" * 50)
|
|
344
|
+
click.echo("Account Creation Complete!".center(50))
|
|
345
|
+
click.echo("=" * 50)
|
|
346
|
+
click.echo("\nYour OpenGradient account has been successfully created and funded.")
|
|
347
|
+
click.secho(f"Address: {eth_account.address}", fg='green')
|
|
348
|
+
click.secho(f"Private Key: {eth_account.private_key}", fg='green')
|
|
349
|
+
click.secho("\nPlease save this information for your records.\n", fg='cyan')
|
|
350
|
+
|
|
351
|
+
return eth_account
|
|
352
|
+
|
|
353
|
+
|
|
354
|
+
@cli.command()
|
|
355
|
+
def version():
|
|
356
|
+
"""Return version of OpenGradient CLI"""
|
|
357
|
+
click.echo(f"OpenGradient CLI version: {opengradient.__version__}")
|
|
358
|
+
|
|
359
|
+
|
|
360
|
+
@cli.command()
|
|
361
|
+
@click.option('--repo', '-r', 'repo_name', required=True, help='Name of the model repository')
|
|
362
|
+
@click.option('--version', '-v', required=True, help='Version of the model (e.g., "0.01")')
|
|
363
|
+
@click.pass_obj
|
|
364
|
+
def list_files(client: Client, repo_name: str, version: str):
|
|
365
|
+
"""
|
|
366
|
+
List files for a specific version of a model repository.
|
|
367
|
+
|
|
368
|
+
This command lists all files associated with the specified model repository and version.
|
|
369
|
+
|
|
370
|
+
Example usage:
|
|
371
|
+
|
|
372
|
+
\b
|
|
373
|
+
opengradient list-files --repo my_model_repo --version 0.01
|
|
374
|
+
opengradient list-files -r my_model_repo -v 0.01
|
|
375
|
+
"""
|
|
376
|
+
try:
|
|
377
|
+
files = client.list_files(repo_name, version)
|
|
378
|
+
if files:
|
|
379
|
+
click.echo(f"Files for {repo_name} version {version}:")
|
|
380
|
+
for file in files:
|
|
381
|
+
click.echo(f" - {file['name']} (Size: {file['size']} bytes)")
|
|
382
|
+
else:
|
|
383
|
+
click.echo(f"No files found for {repo_name} version {version}")
|
|
384
|
+
except Exception as e:
|
|
385
|
+
click.echo(f"Error listing files: {str(e)}")
|
|
386
|
+
|
|
387
|
+
|
|
388
|
+
if __name__ == '__main__':
|
|
389
|
+
logging.getLogger().setLevel(logging.WARN)
|
|
390
|
+
cli()
|
|
@@ -11,8 +11,6 @@ from typing import Dict, Tuple, Union, List
|
|
|
11
11
|
from web3.exceptions import ContractLogicError
|
|
12
12
|
import firebase
|
|
13
13
|
|
|
14
|
-
logging.basicConfig(level=logging.INFO)
|
|
15
|
-
|
|
16
14
|
class Client:
|
|
17
15
|
FIREBASE_CONFIG = {
|
|
18
16
|
"apiKey": "AIzaSyDUVckVtfl-hiteBzPopy1pDD8Uvfncs7w",
|
|
@@ -23,7 +21,7 @@ class Client:
|
|
|
23
21
|
"databaseURL": ""
|
|
24
22
|
}
|
|
25
23
|
|
|
26
|
-
def __init__(self, private_key: str, rpc_url: str, contract_address: str, email: str
|
|
24
|
+
def __init__(self, private_key: str, rpc_url: str, contract_address: str, email: str, password: str):
|
|
27
25
|
"""
|
|
28
26
|
Initialize the Client with private key, RPC URL, and contract address.
|
|
29
27
|
|
|
@@ -43,6 +41,8 @@ class Client:
|
|
|
43
41
|
self.firebase_app = firebase.initialize_app(self.FIREBASE_CONFIG)
|
|
44
42
|
self.auth = self.firebase_app.auth()
|
|
45
43
|
self.user = None
|
|
44
|
+
self.email = email
|
|
45
|
+
self.password = password
|
|
46
46
|
|
|
47
47
|
logging.debug("Initialized client with parameters:\n"
|
|
48
48
|
"private key: %s\n"
|
|
@@ -55,7 +55,8 @@ class Client:
|
|
|
55
55
|
inference_abi = json.load(abi_file)
|
|
56
56
|
self.abi = inference_abi
|
|
57
57
|
|
|
58
|
-
|
|
58
|
+
if email is not None:
|
|
59
|
+
self.login(email, password)
|
|
59
60
|
|
|
60
61
|
def _initialize_web3(self):
|
|
61
62
|
"""
|
|
@@ -279,7 +280,6 @@ class Client:
|
|
|
279
280
|
logging.error(f"Request exception during upload: {str(e)}")
|
|
280
281
|
if hasattr(e, 'response') and e.response is not None:
|
|
281
282
|
logging.error(f"Response status code: {e.response.status_code}")
|
|
282
|
-
logging.error(f"Response headers: {e.response.headers}")
|
|
283
283
|
logging.error(f"Response content: {e.response.text[:1000]}...") # Log first 1000 characters
|
|
284
284
|
raise OpenGradientError(f"Upload failed due to request exception: {str(e)}",
|
|
285
285
|
status_code=e.response.status_code if hasattr(e, 'response') else None)
|
|
@@ -408,4 +408,49 @@ class Client:
|
|
|
408
408
|
return self.user
|
|
409
409
|
except Exception as e:
|
|
410
410
|
logging.error(f"Authentication failed: {str(e)}")
|
|
411
|
-
raise
|
|
411
|
+
raise
|
|
412
|
+
|
|
413
|
+
def list_files(self, model_name: str, version: str) -> List[Dict]:
|
|
414
|
+
"""
|
|
415
|
+
List files for a specific version of a model.
|
|
416
|
+
|
|
417
|
+
Args:
|
|
418
|
+
model_name (str): The unique identifier for the model.
|
|
419
|
+
version (str): The version identifier for the model.
|
|
420
|
+
|
|
421
|
+
Returns:
|
|
422
|
+
List[Dict]: A list of dictionaries containing file information.
|
|
423
|
+
|
|
424
|
+
Raises:
|
|
425
|
+
OpenGradientError: If the file listing fails.
|
|
426
|
+
"""
|
|
427
|
+
if not self.user:
|
|
428
|
+
raise ValueError("User not authenticated")
|
|
429
|
+
|
|
430
|
+
url = f"https://api.opengradient.ai/api/v0/models/{model_name}/versions/{version}/files"
|
|
431
|
+
headers = {
|
|
432
|
+
'Authorization': f'Bearer {self.user["idToken"]}'
|
|
433
|
+
}
|
|
434
|
+
|
|
435
|
+
logging.debug(f"List Files URL: {url}")
|
|
436
|
+
logging.debug(f"Headers: {headers}")
|
|
437
|
+
|
|
438
|
+
try:
|
|
439
|
+
response = requests.get(url, headers=headers)
|
|
440
|
+
response.raise_for_status()
|
|
441
|
+
|
|
442
|
+
json_response = response.json()
|
|
443
|
+
logging.info(f"File listing successful. Number of files: {len(json_response)}")
|
|
444
|
+
|
|
445
|
+
return json_response
|
|
446
|
+
|
|
447
|
+
except requests.RequestException as e:
|
|
448
|
+
logging.error(f"File listing failed: {str(e)}")
|
|
449
|
+
if hasattr(e, 'response') and e.response is not None:
|
|
450
|
+
logging.error(f"Response status code: {e.response.status_code}")
|
|
451
|
+
logging.error(f"Response content: {e.response.text[:1000]}...") # Log first 1000 characters
|
|
452
|
+
raise OpenGradientError(f"File listing failed: {str(e)}",
|
|
453
|
+
status_code=e.response.status_code if hasattr(e, 'response') else None)
|
|
454
|
+
except Exception as e:
|
|
455
|
+
logging.error(f"Unexpected error during file listing: {str(e)}", exc_info=True)
|
|
456
|
+
raise OpenGradientError(f"Unexpected error during file listing: {str(e)}")
|
|
@@ -2,6 +2,6 @@
|
|
|
2
2
|
# Default variables
|
|
3
3
|
DEFAULT_PRIVATE_KEY="cd09980ef6e280afc3900d2d6801f9e9c5d858a5deaeeab74a65643f5ff1a4c1"
|
|
4
4
|
DEFAULT_RPC_URL="http://18.218.115.248:8545"
|
|
5
|
+
DEFAULT_OG_FAUCET_URL="http://18.218.115.248:8080/?address="
|
|
6
|
+
DEFAULT_HUB_SIGNUP_URL="https://hub.opengradient.ai/signup"
|
|
5
7
|
DEFAULT_INFERENCE_CONTRACT_ADDRESS="0x75D0266DAb643417e9FFD828A1A31C1E039a966c"
|
|
6
|
-
DEFAULT_HUB_EMAIL="test@test.com"
|
|
7
|
-
DEFAULT_HUB_PASSWORD="Test-123"
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: opengradient
|
|
3
|
-
Version: 0.
|
|
4
|
-
Summary:
|
|
3
|
+
Version: 0.3.0
|
|
4
|
+
Summary: Python SDK for OpenGradient decentralized model management & inference services
|
|
5
5
|
Author-email: OpenGradient <oliver@opengradient.ai>
|
|
6
6
|
License: MIT License
|
|
7
7
|
|
|
@@ -135,9 +135,9 @@ Requires-Dist: websockets==13.1
|
|
|
135
135
|
Requires-Dist: xattr==1.1.0
|
|
136
136
|
Requires-Dist: yarl==1.13.1
|
|
137
137
|
|
|
138
|
-
# OpenGradient
|
|
138
|
+
# OpenGradient SDK
|
|
139
139
|
|
|
140
|
-
Python SDK for OpenGradient inference services.
|
|
140
|
+
Python SDK for OpenGradient decentralized model management & inference services.
|
|
141
141
|
|
|
142
142
|
## Installation
|
|
143
143
|
```python
|
|
@@ -147,41 +147,47 @@ pip install opengradient
|
|
|
147
147
|
## Quick Start
|
|
148
148
|
```python
|
|
149
149
|
import opengradient as og
|
|
150
|
-
og.init(
|
|
150
|
+
og.init(email="<email>", password="<password>")
|
|
151
151
|
```
|
|
152
152
|
|
|
153
|
-
###
|
|
153
|
+
### Create a Model
|
|
154
154
|
```python
|
|
155
|
-
og.
|
|
155
|
+
og.create_model(model_name="<model_name>", model_desc="<model_description>")
|
|
156
156
|
```
|
|
157
157
|
|
|
158
|
-
### Create a Model
|
|
158
|
+
### Create a Model (with file upload)
|
|
159
159
|
```python
|
|
160
|
-
og.create_model(model_name="
|
|
160
|
+
og.create_model(model_name="<model_name>", model_desc="<model_description>", model_path="<model_path>")
|
|
161
161
|
```
|
|
162
162
|
|
|
163
163
|
### Create a Version of a Model
|
|
164
164
|
```python
|
|
165
|
-
og.create_version(model_name="
|
|
165
|
+
og.create_version(model_name="<model_name>", notes="<model_notes>")
|
|
166
166
|
```
|
|
167
167
|
|
|
168
168
|
### Upload Files to a Model
|
|
169
169
|
```python
|
|
170
|
-
og.upload(model_path="
|
|
170
|
+
og.upload(model_path="<model_path>", model_name="<model_name>", version="<version>")
|
|
171
171
|
```
|
|
172
172
|
|
|
173
|
-
###
|
|
173
|
+
### List Files of a Model Version
|
|
174
174
|
```python
|
|
175
|
-
|
|
176
|
-
inference_cid = og.infer(model_cid, model_inputs, inference_mode)
|
|
175
|
+
og.list_files(model_name="<model_name>", version="<version>")
|
|
177
176
|
```
|
|
178
177
|
|
|
178
|
+
### Run Inference
|
|
179
179
|
```python
|
|
180
|
-
og.
|
|
180
|
+
inference_mode = og.InferenceMode.VANILLA
|
|
181
|
+
og.infer(model_cid, model_inputs, inference_mode)
|
|
181
182
|
```
|
|
182
183
|
|
|
183
184
|
## Using the CLI
|
|
184
185
|
|
|
186
|
+
```bash
|
|
187
|
+
export OPENGRADIENT_EMAIL="<email>"
|
|
188
|
+
export OPENGRADIENT_PASSWORD="<password>"
|
|
189
|
+
```
|
|
190
|
+
|
|
185
191
|
#### Creating a Model
|
|
186
192
|
```bash
|
|
187
193
|
opengradient create_model "<model_name>" "<description>"
|
|
@@ -195,7 +201,12 @@ opengradient create_model "<model_name>" "<description>"
|
|
|
195
201
|
|
|
196
202
|
#### Upload a File
|
|
197
203
|
```bash
|
|
198
|
-
opengradient upload "
|
|
204
|
+
opengradient upload "<model_path>" "<model_name>" "<version>"
|
|
205
|
+
```
|
|
206
|
+
|
|
207
|
+
#### List Files of a Model Version
|
|
208
|
+
```bash
|
|
209
|
+
opengradient list_files "<model_name>" "<version>"
|
|
199
210
|
```
|
|
200
211
|
|
|
201
212
|
#### CLI infer using string
|
|
@@ -2,6 +2,7 @@ LICENSE
|
|
|
2
2
|
README.md
|
|
3
3
|
pyproject.toml
|
|
4
4
|
src/opengradient/__init__.py
|
|
5
|
+
src/opengradient/account.py
|
|
5
6
|
src/opengradient/cli.py
|
|
6
7
|
src/opengradient/client.py
|
|
7
8
|
src/opengradient/defaults.py
|
|
@@ -15,6 +16,4 @@ src/opengradient.egg-info/entry_points.txt
|
|
|
15
16
|
src/opengradient.egg-info/requires.txt
|
|
16
17
|
src/opengradient.egg-info/top_level.txt
|
|
17
18
|
src/opengradient/abi/inference.abi
|
|
18
|
-
|
|
19
|
-
tests/test_exceptions.py
|
|
20
|
-
tests/test_integration.py
|
|
19
|
+
src/opengradient/abi/llm.abi
|
|
@@ -1,195 +0,0 @@
|
|
|
1
|
-
import click
|
|
2
|
-
import os
|
|
3
|
-
import opengradient
|
|
4
|
-
import json
|
|
5
|
-
import ast
|
|
6
|
-
from pathlib import Path
|
|
7
|
-
from .client import Client
|
|
8
|
-
from .defaults import *
|
|
9
|
-
from .types import InferenceMode, ModelInput
|
|
10
|
-
|
|
11
|
-
# Environment variable names
|
|
12
|
-
PRIVATE_KEY_ENV = 'OPENGRADIENT_PRIVATE_KEY'
|
|
13
|
-
RPC_URL_ENV = 'OPENGRADIENT_RPC_URL'
|
|
14
|
-
CONTRACT_ADDRESS_ENV = 'OPENGRADIENT_CONTRACT_ADDRESS'
|
|
15
|
-
EMAIL_ENV = 'OPENGRADIENT_EMAIL'
|
|
16
|
-
PASSWORD_ENV = 'OPENGRADIENT_PASSWORD'
|
|
17
|
-
|
|
18
|
-
# Convert string to dictionary click parameter typing
|
|
19
|
-
class DictParamType(click.ParamType):
|
|
20
|
-
name = "dictionary"
|
|
21
|
-
|
|
22
|
-
def convert(self, value, param, ctx):
|
|
23
|
-
if isinstance(value, dict):
|
|
24
|
-
return value
|
|
25
|
-
try:
|
|
26
|
-
# First, try to parse as JSON
|
|
27
|
-
return json.loads(value)
|
|
28
|
-
except json.JSONDecodeError:
|
|
29
|
-
# If JSON parsing fails, try to evaluate as a Python literal
|
|
30
|
-
try:
|
|
31
|
-
# ast.literal_eval is safer than eval as it only parses Python literals
|
|
32
|
-
result = ast.literal_eval(value)
|
|
33
|
-
if not isinstance(result, dict):
|
|
34
|
-
self.fail(f"'{value}' is not a valid dictionary", param, ctx)
|
|
35
|
-
return result
|
|
36
|
-
except (ValueError, SyntaxError):
|
|
37
|
-
self.fail(f"'{value}' is not a valid dictionary", param, ctx)
|
|
38
|
-
|
|
39
|
-
Dict = DictParamType()
|
|
40
|
-
|
|
41
|
-
# Support inference modes
|
|
42
|
-
InferenceModes = {
|
|
43
|
-
"VANILLA": InferenceMode.VANILLA,
|
|
44
|
-
"ZKML": InferenceMode.ZKML,
|
|
45
|
-
"TEE": InferenceMode.TEE,
|
|
46
|
-
}
|
|
47
|
-
|
|
48
|
-
# TODO (Kyle): Once we're farther into development, we should remove the defaults for these options
|
|
49
|
-
@click.group()
|
|
50
|
-
@click.option('--private_key',
|
|
51
|
-
envvar=PRIVATE_KEY_ENV,
|
|
52
|
-
help='Your OpenGradient private key',
|
|
53
|
-
default=DEFAULT_PRIVATE_KEY)
|
|
54
|
-
@click.option('--rpc_url',
|
|
55
|
-
envvar=RPC_URL_ENV,
|
|
56
|
-
help='OpenGradient RPC URL address',
|
|
57
|
-
default=DEFAULT_RPC_URL)
|
|
58
|
-
@click.option('--contract_address',
|
|
59
|
-
envvar=CONTRACT_ADDRESS_ENV,
|
|
60
|
-
help='OpenGradient inference contract address',
|
|
61
|
-
default=DEFAULT_INFERENCE_CONTRACT_ADDRESS)
|
|
62
|
-
@click.option('--email',
|
|
63
|
-
envvar=EMAIL_ENV,
|
|
64
|
-
help='Your OpenGradient Hub email address -- not required for inference',
|
|
65
|
-
default=DEFAULT_HUB_EMAIL)
|
|
66
|
-
@click.option('--password',
|
|
67
|
-
envvar=PASSWORD_ENV,
|
|
68
|
-
help='Your OpenGradient Hub password -- not required for inference',
|
|
69
|
-
default=DEFAULT_HUB_PASSWORD)
|
|
70
|
-
@click.pass_context
|
|
71
|
-
def cli(ctx, private_key, rpc_url, contract_address, email, password):
|
|
72
|
-
"""CLI for OpenGradient SDK"""
|
|
73
|
-
if not private_key:
|
|
74
|
-
click.echo("Please provide a private key via flag or setting environment variable OPENGRADIENT_PRIVATE_KEY")
|
|
75
|
-
if not rpc_url:
|
|
76
|
-
click.echo("Please provide a RPC URL via flag or setting environment variable OPENGRADIENT_RPC_URL")
|
|
77
|
-
if not contract_address:
|
|
78
|
-
click.echo("Please provide a contract address via flag or setting environment variable OPENGRADIENT_CONTRACT_ADDRESS")
|
|
79
|
-
if not private_key or not rpc_url or not contract_address:
|
|
80
|
-
ctx.exit(1)
|
|
81
|
-
return
|
|
82
|
-
|
|
83
|
-
try:
|
|
84
|
-
ctx.obj = Client(private_key=private_key,
|
|
85
|
-
rpc_url=rpc_url,
|
|
86
|
-
contract_address=contract_address,
|
|
87
|
-
email=email,
|
|
88
|
-
password=password)
|
|
89
|
-
except Exception as e:
|
|
90
|
-
click.echo(f"Failed to create OpenGradient client: {str(e)}")
|
|
91
|
-
|
|
92
|
-
@cli.command()
|
|
93
|
-
@click.pass_context
|
|
94
|
-
def client_settings(ctx):
|
|
95
|
-
"""Display OpenGradient client settings"""
|
|
96
|
-
client = ctx.obj
|
|
97
|
-
if not client:
|
|
98
|
-
click.echo("Client not initialized")
|
|
99
|
-
ctx.exit(1)
|
|
100
|
-
|
|
101
|
-
click.echo("Settings for OpenGradient client:")
|
|
102
|
-
click.echo(f"\tPrivate key ({PRIVATE_KEY_ENV}): {client.private_key}")
|
|
103
|
-
click.echo(f"\tRPC URL ({RPC_URL_ENV}): {client.rpc_url}")
|
|
104
|
-
click.echo(f"\tContract address ({CONTRACT_ADDRESS_ENV}): {client.contract_address}")
|
|
105
|
-
if client.user:
|
|
106
|
-
click.echo(f"\tEmail ({EMAIL_ENV}): {client.user["email"]}")
|
|
107
|
-
else:
|
|
108
|
-
click.echo(f"\tEmail: not set")
|
|
109
|
-
|
|
110
|
-
@cli.command()
|
|
111
|
-
@click.argument('model_path', type=Path)
|
|
112
|
-
@click.argument('model_id', type=str)
|
|
113
|
-
@click.argument('version_id', type=str)
|
|
114
|
-
@click.pass_obj
|
|
115
|
-
def upload(client, model_path, model_id, version_id):
|
|
116
|
-
"""Upload a model"""
|
|
117
|
-
try:
|
|
118
|
-
result = client.upload(model_path, model_id, version_id)
|
|
119
|
-
click.echo(f"Model uploaded successfully: {result}")
|
|
120
|
-
except Exception as e:
|
|
121
|
-
click.echo(f"Error uploading model: {str(e)}")
|
|
122
|
-
|
|
123
|
-
@cli.command()
|
|
124
|
-
@click.argument('model_name', type=str)
|
|
125
|
-
@click.argument('model_desc', type=str)
|
|
126
|
-
@click.pass_obj
|
|
127
|
-
def create_model(client, model_name, model_desc):
|
|
128
|
-
"""Create a new model"""
|
|
129
|
-
try:
|
|
130
|
-
result = client.create_model(model_name, model_desc)
|
|
131
|
-
click.echo(f"Model created successfully: {result}")
|
|
132
|
-
except Exception as e:
|
|
133
|
-
click.echo(f"Error creating model: {str(e)}")
|
|
134
|
-
|
|
135
|
-
@cli.command()
|
|
136
|
-
@click.argument('model_id', type=str)
|
|
137
|
-
@click.option('--notes', type=str, default=None, help='Version notes')
|
|
138
|
-
@click.option('--is-major', default=False, is_flag=True, help='Is this a major version')
|
|
139
|
-
@click.pass_obj
|
|
140
|
-
def create_version(client, model_id, notes, is_major):
|
|
141
|
-
"""Create a new version of a model"""
|
|
142
|
-
try:
|
|
143
|
-
result = client.create_version(model_id, notes, is_major)
|
|
144
|
-
click.echo(f"Version created successfully: {result}")
|
|
145
|
-
except Exception as e:
|
|
146
|
-
click.echo(f"Error creating version: {str(e)}")
|
|
147
|
-
|
|
148
|
-
@cli.command()
|
|
149
|
-
@click.argument('model_cid', type=str)
|
|
150
|
-
@click.argument('inference_mode', type=click.Choice(InferenceModes.keys()), default="VANILLA")
|
|
151
|
-
@click.argument('input_data', type=Dict, required=False)
|
|
152
|
-
@click.option('--input_file',
|
|
153
|
-
type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, path_type=Path),
|
|
154
|
-
help="Optional file input for model inference -- must be JSON")
|
|
155
|
-
@click.pass_context
|
|
156
|
-
def infer(ctx, model_cid, inference_mode, input_data, input_file):
|
|
157
|
-
"""Run inference on a model"""
|
|
158
|
-
client = ctx.obj
|
|
159
|
-
try:
|
|
160
|
-
if not input_data and not input_file:
|
|
161
|
-
click.echo("Must specify either input_data or input_file")
|
|
162
|
-
ctx.exit(1)
|
|
163
|
-
return
|
|
164
|
-
|
|
165
|
-
if input_data and input_file:
|
|
166
|
-
click.echo("Cannot have both input_data and input_file")
|
|
167
|
-
ctx.exit(1)
|
|
168
|
-
return
|
|
169
|
-
|
|
170
|
-
if input_data:
|
|
171
|
-
model_input = input_data
|
|
172
|
-
|
|
173
|
-
if input_file:
|
|
174
|
-
with input_file.open('r') as file:
|
|
175
|
-
model_input = json.load(file)
|
|
176
|
-
|
|
177
|
-
# Parse input data from string to dict
|
|
178
|
-
click.echo(f"Running {inference_mode} inference for {model_cid}...")
|
|
179
|
-
tx_hash, model_output = client.infer(model_cid=model_cid, inference_mode=InferenceModes[inference_mode], model_input=model_input)
|
|
180
|
-
click.secho("Success!", fg="green")
|
|
181
|
-
click.echo(f"\nTransaction Hash: \n{tx_hash}")
|
|
182
|
-
click.echo(f"\nInference result: \n{model_output}")
|
|
183
|
-
except json.JSONDecodeError as e:
|
|
184
|
-
click.echo(f"Error decoding JSON: {e}", err=True)
|
|
185
|
-
click.echo(f"Error occurred on line {e.lineno}, column {e.colno}", err=True)
|
|
186
|
-
except Exception as e:
|
|
187
|
-
click.echo(f"Error running inference: {str(e)}")
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
@cli.command()
|
|
191
|
-
def version():
|
|
192
|
-
click.echo(f"OpenGradient CLI version: {opengradient.__version__}")
|
|
193
|
-
|
|
194
|
-
if __name__ == '__main__':
|
|
195
|
-
cli()
|
|
@@ -1,110 +0,0 @@
|
|
|
1
|
-
import sys
|
|
2
|
-
import os
|
|
3
|
-
|
|
4
|
-
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
|
5
|
-
|
|
6
|
-
from src.client import Client
|
|
7
|
-
from src.exceptions import FileNotFoundError, UploadError, InferenceError, ResultRetrievalError, AuthenticationError, RateLimitError, InvalidInputError
|
|
8
|
-
|
|
9
|
-
import pytest
|
|
10
|
-
from unittest.mock import patch, Mock, mock_open
|
|
11
|
-
import requests
|
|
12
|
-
import time
|
|
13
|
-
|
|
14
|
-
@pytest.fixture
|
|
15
|
-
def client():
|
|
16
|
-
return Client(api_key="test_api_key")
|
|
17
|
-
|
|
18
|
-
def test_upload_success(client):
|
|
19
|
-
with patch('src.client.requests.request') as mock_request, \
|
|
20
|
-
patch('src.client.os.path.exists', return_value=True), \
|
|
21
|
-
patch('builtins.open', mock_open(read_data=b'fake_file_content')):
|
|
22
|
-
mock_response = Mock()
|
|
23
|
-
mock_response.json.return_value = {"model_cid": "test_cid"}
|
|
24
|
-
mock_response.raise_for_status.return_value = None
|
|
25
|
-
mock_request.return_value = mock_response
|
|
26
|
-
|
|
27
|
-
result = client.upload("test_model.onnx")
|
|
28
|
-
assert result == {"model_cid": "test_cid"}
|
|
29
|
-
|
|
30
|
-
def test_upload_file_not_found(client):
|
|
31
|
-
with pytest.raises(FileNotFoundError):
|
|
32
|
-
client.upload("non_existent_file.onnx")
|
|
33
|
-
|
|
34
|
-
def test_upload_authentication_error(client):
|
|
35
|
-
with patch('src.client.requests.request') as mock_request, \
|
|
36
|
-
patch('src.client.os.path.exists', return_value=True), \
|
|
37
|
-
patch('builtins.open', mock_open(read_data=b'fake_file_content')):
|
|
38
|
-
mock_response = Mock()
|
|
39
|
-
mock_response.raise_for_status.side_effect = requests.exceptions.HTTPError(response=Mock(status_code=401))
|
|
40
|
-
mock_request.return_value = mock_response
|
|
41
|
-
|
|
42
|
-
with pytest.raises(UploadError):
|
|
43
|
-
client.upload("test_model.onnx")
|
|
44
|
-
|
|
45
|
-
# def test_infer_success(client):
|
|
46
|
-
# with patch('src.client.requests.request') as mock_request:
|
|
47
|
-
# mock_response = Mock()
|
|
48
|
-
# mock_response.json.return_value = {"inference_cid": "test_inference_cid"}
|
|
49
|
-
# mock_response.raise_for_status.return_value = None
|
|
50
|
-
# mock_request.return_value = mock_response
|
|
51
|
-
|
|
52
|
-
# result = client.infer("test_model_cid", {"input": [1, 2, 3]})
|
|
53
|
-
# assert result == {"inference_cid": "test_inference_cid"}
|
|
54
|
-
|
|
55
|
-
# def test_get_results_not_ready(client):
|
|
56
|
-
# with patch('src.client.requests.request') as mock_request:
|
|
57
|
-
# mock_response = Mock()
|
|
58
|
-
# mock_response.json.return_value = {"status": "processing"}
|
|
59
|
-
# mock_response.raise_for_status.return_value = None
|
|
60
|
-
# mock_request.return_value = mock_response
|
|
61
|
-
|
|
62
|
-
# result, proof = client.get_results("test_inference_cid")
|
|
63
|
-
# assert result is None
|
|
64
|
-
# assert proof is None
|
|
65
|
-
|
|
66
|
-
# def test_get_results_success(client):
|
|
67
|
-
# with patch('src.client.requests.request') as mock_request:
|
|
68
|
-
# mock_response = Mock()
|
|
69
|
-
# mock_response.json.return_value = {"status": "completed", "data": "test_result", "proof": "test_proof"}
|
|
70
|
-
# mock_response.raise_for_status.return_value = None
|
|
71
|
-
# mock_request.return_value = mock_response
|
|
72
|
-
|
|
73
|
-
# result, proof = client.get_results("test_inference_cid")
|
|
74
|
-
# assert result == "test_result"
|
|
75
|
-
# assert proof == "test_proof"
|
|
76
|
-
|
|
77
|
-
# def test_get_results_failed(client):
|
|
78
|
-
# with patch('src.client.requests.request') as mock_request:
|
|
79
|
-
# mock_response = Mock()
|
|
80
|
-
# mock_response.json.return_value = {"status": "failed", "error": "Test error"}
|
|
81
|
-
# mock_response.raise_for_status.return_value = None
|
|
82
|
-
# mock_request.return_value = mock_response
|
|
83
|
-
|
|
84
|
-
# with pytest.raises(InferenceError, match="Inference failed: Test error"):
|
|
85
|
-
# client.get_results("test_inference_cid")
|
|
86
|
-
|
|
87
|
-
def test_infer_success(client):
|
|
88
|
-
with patch('src.client.requests.request') as mock_request:
|
|
89
|
-
mock_response = Mock()
|
|
90
|
-
mock_response.json.return_value = {"inference_cid": "test_inference_cid"}
|
|
91
|
-
mock_response.raise_for_status.return_value = None
|
|
92
|
-
mock_request.return_value = mock_response
|
|
93
|
-
|
|
94
|
-
result = client.infer("test_model_cid", {"input": [1, 2, 3]})
|
|
95
|
-
assert result == {"inference_cid": "test_inference_cid"}
|
|
96
|
-
|
|
97
|
-
mock_request.assert_called_once_with(
|
|
98
|
-
"POST",
|
|
99
|
-
"http://localhost:5002/infer",
|
|
100
|
-
json={
|
|
101
|
-
"model_cid": "test_model_cid",
|
|
102
|
-
"model_inputs": {"input": [1, 2, 3]},
|
|
103
|
-
"contract_address": "0x1234567890123456789012345678901234567890"
|
|
104
|
-
},
|
|
105
|
-
headers={"Authorization": "Bearer test_api_key"}
|
|
106
|
-
)
|
|
107
|
-
|
|
108
|
-
def test_infer_invalid_input(client):
|
|
109
|
-
with pytest.raises(InvalidInputError):
|
|
110
|
-
client.infer("test_model_cid", {"invalid_input": "value"})
|
|
@@ -1,25 +0,0 @@
|
|
|
1
|
-
import pytest
|
|
2
|
-
from src.exceptions import (
|
|
3
|
-
OpenGradientError, FileNotFoundError, UploadError, InferenceError,
|
|
4
|
-
ResultRetrievalError, AuthenticationError, RateLimitError, InvalidInputError,
|
|
5
|
-
ServerError, TimeoutError, NetworkError, UnsupportedModelError, InsufficientCreditsError
|
|
6
|
-
)
|
|
7
|
-
|
|
8
|
-
def test_open_gradient_error():
|
|
9
|
-
error = OpenGradientError("Test error", status_code=400)
|
|
10
|
-
assert str(error) == "Test error (Status code: 400)"
|
|
11
|
-
|
|
12
|
-
def test_file_not_found_error():
|
|
13
|
-
error = FileNotFoundError("test_file.onnx")
|
|
14
|
-
assert str(error) == "File not found: test_file.onnx"
|
|
15
|
-
|
|
16
|
-
def test_upload_error():
|
|
17
|
-
error = UploadError("Upload failed", file_path="test_file.onnx")
|
|
18
|
-
assert str(error) == "Upload failed (Status code: None)"
|
|
19
|
-
assert error.file_path == "test_file.onnx"
|
|
20
|
-
|
|
21
|
-
def test_insufficient_credits_error():
|
|
22
|
-
error = InsufficientCreditsError(required_credits=100, available_credits=50)
|
|
23
|
-
assert str(error) == "Insufficient credits (Status code: None) (Required: 100, Available: 50)"
|
|
24
|
-
|
|
25
|
-
# Add more tests for other exception classes
|
|
@@ -1,20 +0,0 @@
|
|
|
1
|
-
import pytest
|
|
2
|
-
from src.client import Client
|
|
3
|
-
import os
|
|
4
|
-
|
|
5
|
-
@pytest.mark.integration
|
|
6
|
-
def test_upload_integration():
|
|
7
|
-
client = Client(api_key="test_api_key", base_url="http://localhost:5002")
|
|
8
|
-
|
|
9
|
-
# Create a temporary test file
|
|
10
|
-
test_file_path = "test_model.onnx"
|
|
11
|
-
with open(test_file_path, "wb") as f:
|
|
12
|
-
f.write(b"fake model content")
|
|
13
|
-
|
|
14
|
-
try:
|
|
15
|
-
result = client.upload(test_file_path)
|
|
16
|
-
assert "model_cid" in result
|
|
17
|
-
print(f"Upload successful. Model CID: {result['model_cid']}")
|
|
18
|
-
finally:
|
|
19
|
-
# Clean up the test file
|
|
20
|
-
os.remove(test_file_path)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|