openfund-core 1.0.7__tar.gz → 1.0.8__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: openfund-core
3
- Version: 1.0.7
3
+ Version: 1.0.8
4
4
  Summary: Openfund-core.
5
5
  Requires-Python: >=3.9,<4.0
6
6
  Classifier: Programming Language :: Python :: 3
@@ -1,6 +1,6 @@
1
1
  [tool.poetry]
2
2
  name = "openfund-core"
3
- version = "1.0.7"
3
+ version = "1.0.8"
4
4
  description = "Openfund-core."
5
5
  authors = []
6
6
  readme = "README.md"
@@ -47,12 +47,12 @@ class SMCFVG(SMCStruct):
47
47
  # 使用向量化操作替代apply,提高性能
48
48
  if side == self.BUY_SIDE:
49
49
  condition = df[self.HIGH_COL].shift(1) < df[self.LOW_COL].shift(-1)
50
- side_value = "Bullish"
50
+ side_value = self.BULLISH_TREND
51
51
  price_top = df[self.LOW_COL].shift(-1)
52
52
  price_bot = df[self.HIGH_COL].shift(1)
53
53
  else:
54
54
  condition = df[self.LOW_COL].shift(1) > df[self.HIGH_COL].shift(-1)
55
- side_value = "Bearish"
55
+ side_value = self.BEARISH_TREND
56
56
  price_top = df[self.LOW_COL].shift(1)
57
57
  price_bot = df[self.HIGH_COL].shift(-1)
58
58
 
@@ -64,9 +64,9 @@ class SMCFVG(SMCStruct):
64
64
  df.loc[:, self.FVG_MID] = (df[self.FVG_TOP] + df[self.FVG_BOT]) / 2
65
65
 
66
66
  fvg_df = df[
67
- df[self.FVG_SIDE] == "Bullish"
67
+ df[self.FVG_SIDE] == self.BULLISH_TREND
68
68
  if side == self.BUY_SIDE
69
- else df[self.FVG_SIDE] == "Bearish"
69
+ else df[self.FVG_SIDE] == self.BEARISH_TREND
70
70
  ]
71
71
  fvg_df = fvg_df.copy()
72
72
  if check_balanced:
@@ -1,9 +1,6 @@
1
1
  import logging
2
- from re import S
3
- import pandas as pd
4
2
  from core.smc.SMCStruct import SMCStruct
5
- from pandas.core.strings.accessor import F
6
- from pandas.io.parquet import catch_warnings
3
+
7
4
 
8
5
  class SMCLiquidity(SMCStruct):
9
6
  EQUAL_HIGH_COL = "equal_high"
@@ -34,7 +34,7 @@ class SMCOrderBlock(SMCStruct):
34
34
  symbol (_type_): _description_
35
35
  data (pd.DataFrame): _description_
36
36
  side (_type_): _description_ 如果是None, 则返回所有OB boxes(包括bullish和bearish)
37
- pivot_index (int): _description_ 开始的位置
37
+ start_index (int): _description_ 开始的位置
38
38
  is_valid (bool): _description_ 找到有效的OB,没有被crossed
39
39
  if_combine (bool): _description_ 是否合并OB
40
40
  Returns:
@@ -63,8 +63,8 @@ class SMCOrderBlock(SMCStruct):
63
63
  else any(df.loc[row.name + 1 :, self.HIGH_COL] >= row[self.OB_HIGH_COL]),
64
64
  axis=1,
65
65
  )
66
-
67
- ob_df = ob_df[~ob_df[self.OB_WAS_CROSSED]]
66
+ if is_valid :
67
+ ob_df = ob_df[~ob_df[self.OB_WAS_CROSSED]]
68
68
 
69
69
  if if_combine:
70
70
  # 合并OB
@@ -238,7 +238,7 @@ class SMCOrderBlock(SMCStruct):
238
238
  # df.at[i, self.OB_START_TS_COL] = df.loc[index, self.TIMESTAMP_COL]
239
239
  df.at[index, self.OB_ATR] = atr
240
240
 
241
- def get_lastest_OB(self, data, trend, start_index=-1):
241
+ def get_latest_OB(self, data, trend, start_index=-1):
242
242
  """
243
243
  获取最新的Order Block
244
244
 
@@ -15,16 +15,15 @@ class SMCPDArray(SMCFVG,SMCOrderBlock):
15
15
  self.logger = logging.getLogger(__name__)
16
16
 
17
17
  def find_PDArrays(
18
- self, struct: pd.DataFrame, side, start_index=-1
18
+ self, struct: pd.DataFrame, side, start_index=-1, check_balanced=True,
19
19
  ) -> pd.DataFrame:
20
20
  """_summary_
21
21
  寻找PDArrays,包括Fair Value Gap (FVG)|Order Block (OB)|Breaker Block(BB)|Mitigation Block(BB)
22
22
  Args:
23
23
  data (pd.DataFrame): K线数据
24
24
  side (_type_): 交易方向 'buy'|'sell'
25
- threshold (_type_): 阈值价格,通常为溢价和折价区的CE
26
- check_balanced (bool): 是否检查FVG是否被平衡过,默认为True
27
25
  start_index (int): 开始查找索引的起点,默认为-1
26
+ check_balanced (bool): PD是否有效,默认为True。PD被crossed过,则是无效PD
28
27
 
29
28
  Returns:
30
29
  pd.DataFrame: _description_
@@ -37,11 +36,11 @@ class SMCPDArray(SMCFVG,SMCOrderBlock):
37
36
  else struct.copy().iloc[max(0, start_index - 1) :]
38
37
  )
39
38
 
40
- df_FVGs = self.find_FVGs(df, side)
39
+ df_FVGs = self.find_FVGs(df, side, check_balanced, start_index)
41
40
  # self.logger.info(f"fvgs:\n{df_FVGs[['timestamp', self.FVG_SIDE, self.FVG_TOP, self.FVG_BOT, self.FVG_WAS_BALANCED]]}")
42
41
 
43
42
 
44
- df_OBs = self.find_OBs(df, side)
43
+ df_OBs = self.find_OBs(df, side, start_index, is_valid=check_balanced)
45
44
  # self.logger.info("find_OBs:\n %s", df_OBs)
46
45
 
47
46
  # 使用更简洁的方式重命名和合并时间戳列
@@ -67,9 +66,44 @@ class SMCPDArray(SMCFVG,SMCOrderBlock):
67
66
  df_PDArrays.loc[:, self.PD_HIGH_COL] = df_PDArrays[[self.FVG_TOP, self.OB_HIGH_COL]].max(axis=1)
68
67
  df_PDArrays.loc[:, self.PD_LOW_COL] = df_PDArrays[[self.FVG_BOT, self.OB_LOW_COL]].min(axis=1)
69
68
  df_PDArrays.loc[:, self.PD_MID_COL] = (df_PDArrays[self.PD_HIGH_COL] + df_PDArrays[self.PD_LOW_COL]) / 2
70
-
71
-
72
-
69
+
73
70
 
74
71
  return df_PDArrays
75
72
 
73
+
74
+ def get_latest_PDArray(self, df_PDArrays: pd.DataFrame, side, start_index=-1, check_balanced=True, mask:str=None) -> dict:
75
+ """_summary_
76
+ 过滤PDArrays,只保留指定方向的PDArrays
77
+ Args:
78
+ df_PDArrays (pd.DataFrame): _description_
79
+ mask (str): _description_
80
+
81
+ Returns:
82
+ pd.DataFrame: _description_
83
+ """
84
+
85
+ # 检查数据中是否包含必要的列
86
+ df = df_PDArrays.copy()
87
+ check_columns = [self.STRUCT_COL]
88
+ try:
89
+ self.check_columns(df, check_columns)
90
+ except ValueError as e:
91
+ df = self.build_struct(df)
92
+
93
+ df = self.find_PDArrays(df, side, start_index, check_balanced)
94
+
95
+ if mask:
96
+ df = df[df[mask]]
97
+
98
+ if len(df) == 0:
99
+ self.logger.info("未找到PDArray.")
100
+ return None
101
+ else:
102
+ last_pd = df.iloc[-1]
103
+ return {
104
+ self.TIMESTAMP_COL: last_pd[self.TIMESTAMP_COL],
105
+ self.PD_TYPE_COL: last_pd[self.PD_TYPE_COL],
106
+ self.PD_HIGH_COL: last_pd[self.PD_HIGH_COL],
107
+ self.PD_LOW_COL: last_pd[self.PD_LOW_COL],
108
+ self.PD_MID_COL: last_pd[self.PD_MID_COL],
109
+ }
@@ -265,7 +265,7 @@ class SMCStruct(SMCBase):
265
265
  df.at[i, self.STRUCT_HIGH_INDEX_COL] = structure[self.HIGH_START_COL]
266
266
  df.at[i, self.STRUCT_LOW_INDEX_COL] = structure[self.LOW_START_COL]
267
267
 
268
- def get_last_struct(self, df):
268
+ def get_latest_struct(self, df):
269
269
  """
270
270
  获取最新的结构
271
271
  """
File without changes