openforis-whisp 0.1.0a8__tar.gz → 1.0.0a1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {openforis_whisp-0.1.0a8 → openforis_whisp-1.0.0a1}/PKG-INFO +45 -2
- {openforis_whisp-0.1.0a8 → openforis_whisp-1.0.0a1}/README.md +44 -1
- {openforis_whisp-0.1.0a8 → openforis_whisp-1.0.0a1}/pyproject.toml +1 -1
- {openforis_whisp-0.1.0a8 → openforis_whisp-1.0.0a1}/src/openforis_whisp/datasets.py +134 -4
- openforis_whisp-1.0.0a1/src/openforis_whisp/parameters/lookup_gee_datasets.csv +172 -0
- openforis_whisp-1.0.0a1/src/openforis_whisp/risk.py +624 -0
- openforis_whisp-0.1.0a8/src/openforis_whisp/parameters/lookup_gee_datasets.csv +0 -155
- openforis_whisp-0.1.0a8/src/openforis_whisp/risk.py +0 -329
- {openforis_whisp-0.1.0a8 → openforis_whisp-1.0.0a1}/LICENSE +0 -0
- {openforis_whisp-0.1.0a8 → openforis_whisp-1.0.0a1}/src/openforis_whisp/__init__.py +0 -0
- {openforis_whisp-0.1.0a8 → openforis_whisp-1.0.0a1}/src/openforis_whisp/data_conversion.py +0 -0
- {openforis_whisp-0.1.0a8 → openforis_whisp-1.0.0a1}/src/openforis_whisp/logger.py +0 -0
- {openforis_whisp-0.1.0a8 → openforis_whisp-1.0.0a1}/src/openforis_whisp/parameters/__init__.py +0 -0
- {openforis_whisp-0.1.0a8 → openforis_whisp-1.0.0a1}/src/openforis_whisp/parameters/config_runtime.py +0 -0
- {openforis_whisp-0.1.0a8 → openforis_whisp-1.0.0a1}/src/openforis_whisp/parameters/lookup_context_and_metadata.csv +0 -0
- {openforis_whisp-0.1.0a8 → openforis_whisp-1.0.0a1}/src/openforis_whisp/pd_schemas.py +0 -0
- {openforis_whisp-0.1.0a8 → openforis_whisp-1.0.0a1}/src/openforis_whisp/reformat.py +0 -0
- {openforis_whisp-0.1.0a8 → openforis_whisp-1.0.0a1}/src/openforis_whisp/stats.py +0 -0
- {openforis_whisp-0.1.0a8 → openforis_whisp-1.0.0a1}/src/openforis_whisp/utils.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.3
|
|
2
2
|
Name: openforis-whisp
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 1.0.0a1
|
|
4
4
|
Summary: Whisp (What is in that plot) is an open-source solution which helps to produce relevant forest monitoring information and support compliance with deforestation-related regulations.
|
|
5
5
|
License: MIT
|
|
6
6
|
Keywords: whisp,geospatial,data-processing
|
|
@@ -107,6 +107,34 @@ However, under the same circumstances but with <u>no</u> disturbances reported a
|
|
|
107
107
|
*The Whisp algorithm visualized:*
|
|
108
108
|

|
|
109
109
|
|
|
110
|
+
## Whisp datasets for timber <a name="whisp_datasets_timber"></a>
|
|
111
|
+
***Whisp*** implements the convergence of evidence approach by providing a transparent and public processing flow using datasets covering the following categories:
|
|
112
|
+
1) Tree and forest cover (at the end of 2020);
|
|
113
|
+
2) Commodities (i.e., crop plantations and other agricultural uses at the end of 2020);
|
|
114
|
+
3) Disturbances **before 2020** (i.e., degradation or deforestation until 2020-12-31);
|
|
115
|
+
4) Disturbances **after 2020** (i.e., degradation or deforestation from 2021-01-01 onward).
|
|
116
|
+
5) Primary forests in 2020;
|
|
117
|
+
6) Naturally regenerating forests in 2020;
|
|
118
|
+
7) Planted and plantation forests in 2020;
|
|
119
|
+
8) Planted and plantation forests in 2023;
|
|
120
|
+
9) Treecover in 2023;
|
|
121
|
+
10) Commodities or croplands in 2023.
|
|
122
|
+
11) Logging concessions;
|
|
123
|
+
|
|
124
|
+
There are multiple datasets for each category. Find the full current [list of datasets used in Whisp here](https://github.com/forestdatapartnership/whisp/blob/main/layers_description.md).
|
|
125
|
+
Whisp checks the plots provided by the user by running zonal statistics on them to answer the following questions:
|
|
126
|
+
|
|
127
|
+
1) Was there tree cover in 2020?
|
|
128
|
+
2) Were there commodity plantations or other agricultural uses in 2020?
|
|
129
|
+
3) Were there disturbances until 2020-12-31?
|
|
130
|
+
4) Were there disturbances after 2020-12-31 / starting 2021-01-01?
|
|
131
|
+
5) Were there primary forests in 2020?
|
|
132
|
+
6) Were there naturally regenerating forests in 2020?
|
|
133
|
+
7) Were there planted and plantation forests in 2020?
|
|
134
|
+
8) Were there planted and plantation forests in 2023?
|
|
135
|
+
9) Was there treecover in 2023?
|
|
136
|
+
10) Were there commodity plantations or other agricultural uses in 2023?
|
|
137
|
+
11) Were there logging concessions?
|
|
110
138
|
|
|
111
139
|
# Run Whisp python package from a notebook
|
|
112
140
|
|
|
@@ -142,7 +170,22 @@ More info on Whisp can be found in [here](https://openknowledge.fao.org/items/e9
|
|
|
142
170
|
|
|
143
171
|
|
|
144
172
|
## How to add data layers to Whisp
|
|
145
|
-
There are two main approaches:
|
|
173
|
+
There are two main approaches:
|
|
174
|
+
1) Request that a layer be incorporated into the core Whisp inputs, or
|
|
175
|
+
|
|
176
|
+
2) Add your own data directly to complement the core datasets.
|
|
177
|
+
|
|
178
|
+
Currently the latter approach is under revision since moving to implementation in a python package. In the meantime please contact us through the issues page if this is functionality is useful to you.
|
|
179
|
+
|
|
180
|
+
Requesting a layer addition:
|
|
181
|
+
If you think a particular dataset has wide applicability for Whisp users, you can request it be added to the main Whisp repository by logging as an issue in Github [here] (https://github.com/forestdatapartnership/whisp/issues/). Before submitting a request, consider the following:
|
|
182
|
+
|
|
183
|
+
- Is the resolution high enough for plot-level analysis? (e.g., 30m or 10m resolution)
|
|
184
|
+
|
|
185
|
+
- Is there an indication of data quality? (e.g., accuracy assessment detailed in a scientific publication)
|
|
186
|
+
|
|
187
|
+
- Is there relevant metadata available?
|
|
188
|
+
|
|
146
189
|
|
|
147
190
|
## Contributing to the Whisp code base
|
|
148
191
|
Contributions to the Whisp code in GitHub are welcome. They can be made by forking the repository making and pushing the required changes, then making a pull request to the Whisp repository. After briefly reviewing the request, we can make a branch for which to make a new pull request to. After final checks we can then incorporate the code in main. If in doubt get in contact first or log as an issue [here](https://github.com/forestdatapartnership/whisp/issues/).
|
|
@@ -69,6 +69,34 @@ However, under the same circumstances but with <u>no</u> disturbances reported a
|
|
|
69
69
|
*The Whisp algorithm visualized:*
|
|
70
70
|

|
|
71
71
|
|
|
72
|
+
## Whisp datasets for timber <a name="whisp_datasets_timber"></a>
|
|
73
|
+
***Whisp*** implements the convergence of evidence approach by providing a transparent and public processing flow using datasets covering the following categories:
|
|
74
|
+
1) Tree and forest cover (at the end of 2020);
|
|
75
|
+
2) Commodities (i.e., crop plantations and other agricultural uses at the end of 2020);
|
|
76
|
+
3) Disturbances **before 2020** (i.e., degradation or deforestation until 2020-12-31);
|
|
77
|
+
4) Disturbances **after 2020** (i.e., degradation or deforestation from 2021-01-01 onward).
|
|
78
|
+
5) Primary forests in 2020;
|
|
79
|
+
6) Naturally regenerating forests in 2020;
|
|
80
|
+
7) Planted and plantation forests in 2020;
|
|
81
|
+
8) Planted and plantation forests in 2023;
|
|
82
|
+
9) Treecover in 2023;
|
|
83
|
+
10) Commodities or croplands in 2023.
|
|
84
|
+
11) Logging concessions;
|
|
85
|
+
|
|
86
|
+
There are multiple datasets for each category. Find the full current [list of datasets used in Whisp here](https://github.com/forestdatapartnership/whisp/blob/main/layers_description.md).
|
|
87
|
+
Whisp checks the plots provided by the user by running zonal statistics on them to answer the following questions:
|
|
88
|
+
|
|
89
|
+
1) Was there tree cover in 2020?
|
|
90
|
+
2) Were there commodity plantations or other agricultural uses in 2020?
|
|
91
|
+
3) Were there disturbances until 2020-12-31?
|
|
92
|
+
4) Were there disturbances after 2020-12-31 / starting 2021-01-01?
|
|
93
|
+
5) Were there primary forests in 2020?
|
|
94
|
+
6) Were there naturally regenerating forests in 2020?
|
|
95
|
+
7) Were there planted and plantation forests in 2020?
|
|
96
|
+
8) Were there planted and plantation forests in 2023?
|
|
97
|
+
9) Was there treecover in 2023?
|
|
98
|
+
10) Were there commodity plantations or other agricultural uses in 2023?
|
|
99
|
+
11) Were there logging concessions?
|
|
72
100
|
|
|
73
101
|
# Run Whisp python package from a notebook
|
|
74
102
|
|
|
@@ -104,7 +132,22 @@ More info on Whisp can be found in [here](https://openknowledge.fao.org/items/e9
|
|
|
104
132
|
|
|
105
133
|
|
|
106
134
|
## How to add data layers to Whisp
|
|
107
|
-
There are two main approaches:
|
|
135
|
+
There are two main approaches:
|
|
136
|
+
1) Request that a layer be incorporated into the core Whisp inputs, or
|
|
137
|
+
|
|
138
|
+
2) Add your own data directly to complement the core datasets.
|
|
139
|
+
|
|
140
|
+
Currently the latter approach is under revision since moving to implementation in a python package. In the meantime please contact us through the issues page if this is functionality is useful to you.
|
|
141
|
+
|
|
142
|
+
Requesting a layer addition:
|
|
143
|
+
If you think a particular dataset has wide applicability for Whisp users, you can request it be added to the main Whisp repository by logging as an issue in Github [here] (https://github.com/forestdatapartnership/whisp/issues/). Before submitting a request, consider the following:
|
|
144
|
+
|
|
145
|
+
- Is the resolution high enough for plot-level analysis? (e.g., 30m or 10m resolution)
|
|
146
|
+
|
|
147
|
+
- Is there an indication of data quality? (e.g., accuracy assessment detailed in a scientific publication)
|
|
148
|
+
|
|
149
|
+
- Is there relevant metadata available?
|
|
150
|
+
|
|
108
151
|
|
|
109
152
|
## Contributing to the Whisp code base
|
|
110
153
|
Contributions to the Whisp code in GitHub are welcome. They can be made by forking the repository making and pushing the required changes, then making a pull request to the Whisp repository. After briefly reviewing the request, we can make a branch for which to make a new pull request to. After final checks we can then incorporate the code in main. If in doubt get in contact first or log as an issue [here](https://github.com/forestdatapartnership/whisp/issues/).
|
|
@@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
|
|
|
4
4
|
|
|
5
5
|
[tool.poetry]
|
|
6
6
|
name = "openforis-whisp"
|
|
7
|
-
version = "0.
|
|
7
|
+
version = "1.0.0a1"
|
|
8
8
|
description = "Whisp (What is in that plot) is an open-source solution which helps to produce relevant forest monitoring information and support compliance with deforestation-related regulations."
|
|
9
9
|
repository = "https://github.com/forestdatapartnership/whisp"
|
|
10
10
|
authors = ["Andy Arnell <and.arnell@fao.org>"]
|
|
@@ -100,9 +100,53 @@ def fdap_forest_prep():
|
|
|
100
100
|
fdap_forest = fdap_forest_raw.gt(0.75)
|
|
101
101
|
return fdap_forest.rename("Forest_FDaP")
|
|
102
102
|
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
103
|
+
#########################primary forest
|
|
104
|
+
# EUFO JRC Global forest type - primary
|
|
105
|
+
def gft_primary_prep():
|
|
106
|
+
gft_raw = ee.ImageCollection("JRC/GFC2020_subtypes/V0").mosaic()
|
|
107
|
+
gft_primary = gft_raw.eq(10)
|
|
108
|
+
return gft_primary.rename("GFT_primary")
|
|
109
|
+
|
|
110
|
+
# Intact Forest Landscape 2020
|
|
111
|
+
def IFL_2020_prep():
|
|
112
|
+
IFL_2020 = ee.Image('users/potapovpeter/IFL_2020')
|
|
113
|
+
return IFL_2020.rename("IFL_2020")
|
|
114
|
+
|
|
115
|
+
# European Primary Forest Dataset
|
|
116
|
+
def EPFD_prep():
|
|
117
|
+
EPFD=ee.FeatureCollection("HU_BERLIN/EPFD/V2/polygons")
|
|
118
|
+
EPFD_binary = ee.Image().paint(EPFD,1)
|
|
119
|
+
return EPFD_binary.rename('European_Primary_Forest')
|
|
120
|
+
|
|
121
|
+
# EUFO JRC Global forest type - naturally regenerating planted/plantation forests
|
|
122
|
+
def gft_nat_reg_prep():
|
|
123
|
+
gft_raw = ee.ImageCollection("JRC/GFC2020_subtypes/V0").mosaic()
|
|
124
|
+
gft_nat_reg = gft_raw.eq(1)
|
|
125
|
+
return gft_nat_reg.rename("GFT_naturally_regenerating")
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
#########################planted and plantation forests
|
|
129
|
+
|
|
130
|
+
# EUFO JRC Global forest type - planted/plantation forests
|
|
131
|
+
def gft_plantation_prep():
|
|
132
|
+
gft_raw = ee.ImageCollection("JRC/GFC2020_subtypes/V0").mosaic()
|
|
133
|
+
gft_plantation = gft_raw.eq(20)
|
|
134
|
+
return gft_plantation.rename("GFT_planted_plantation")
|
|
135
|
+
|
|
136
|
+
def IIASA_planted_prep():
|
|
137
|
+
iiasa = ee.Image('projects/sat-io/open-datasets/GFM/FML_v3-2');
|
|
138
|
+
iiasa_PL = iiasa.eq(31).Or(iiasa.eq(32))
|
|
139
|
+
return iiasa_PL.rename('IIASA_planted_plantation')
|
|
140
|
+
|
|
141
|
+
#########################TMF regrowth in 2023
|
|
142
|
+
def tmf_regrowth_prep():
|
|
143
|
+
# Load the TMF Degradation annual product
|
|
144
|
+
TMF_AC=ee.ImageCollection('projects/JRC/TMF/v1_2023/AnnualChanges').mosaic()
|
|
145
|
+
TMF_AC_2023=TMF_AC.select('Dec2023')
|
|
146
|
+
Regrowth_TMF = TMF_AC_2023.eq(4)
|
|
147
|
+
return Regrowth_TMF.rename('TMF_regrowth_2023')
|
|
148
|
+
|
|
149
|
+
############tree crops
|
|
106
150
|
|
|
107
151
|
# TMF_plant (plantations in 2020)
|
|
108
152
|
def jrc_tmf_plantation_prep():
|
|
@@ -165,6 +209,17 @@ def fdap_palm_prep():
|
|
|
165
209
|
)
|
|
166
210
|
return fdap_palm.rename("Oil_palm_FDaP")
|
|
167
211
|
|
|
212
|
+
def fdap_palm_2023_prep():
|
|
213
|
+
fdap_palm2020_model_raw = ee.ImageCollection("projects/forestdatapartnership/assets/palm/model_2024a")
|
|
214
|
+
fdap_palm = (
|
|
215
|
+
fdap_palm2020_model_raw
|
|
216
|
+
.filterDate('2023-01-01', '2023-12-31')
|
|
217
|
+
.mosaic()
|
|
218
|
+
.gt(0.83) # Threshold for Oil Palm
|
|
219
|
+
|
|
220
|
+
)
|
|
221
|
+
return fdap_palm.rename("Oil_palm_2023_FDaP")
|
|
222
|
+
|
|
168
223
|
|
|
169
224
|
# Rubber FDaP
|
|
170
225
|
def fdap_rubber_prep():
|
|
@@ -178,6 +233,16 @@ def fdap_rubber_prep():
|
|
|
178
233
|
)
|
|
179
234
|
return fdap_rubber.rename("Rubber_FDaP")
|
|
180
235
|
|
|
236
|
+
def fdap_rubber_2023_prep():
|
|
237
|
+
fdap_rubber2020_model_raw = ee.ImageCollection("projects/forestdatapartnership/assets/rubber/model_2024a")
|
|
238
|
+
fdap_rubber = (
|
|
239
|
+
fdap_rubber2020_model_raw
|
|
240
|
+
.filterDate('2023-01-01', '2023-12-31')
|
|
241
|
+
.mosaic()
|
|
242
|
+
.gt(0.93) # Threshold for Rubber
|
|
243
|
+
|
|
244
|
+
)
|
|
245
|
+
return fdap_rubber.rename("Rubber_2023_FDaP")
|
|
181
246
|
|
|
182
247
|
# Cocoa FDaP
|
|
183
248
|
def fdap_cocoa_prep():
|
|
@@ -191,6 +256,16 @@ def fdap_cocoa_prep():
|
|
|
191
256
|
)
|
|
192
257
|
return fdap_cocoa.rename("Cocoa_FDaP")
|
|
193
258
|
|
|
259
|
+
def fdap_cocoa_2023_prep():
|
|
260
|
+
fdap_cocoa2020_model_raw = ee.ImageCollection("projects/forestdatapartnership/assets/cocoa/model_2024a")
|
|
261
|
+
fdap_cocoa = (
|
|
262
|
+
fdap_cocoa2020_model_raw
|
|
263
|
+
.filterDate('2023-01-01', '2023-12-31')
|
|
264
|
+
.mosaic()
|
|
265
|
+
.gt(0.5) # Threshold for Cocoa
|
|
266
|
+
|
|
267
|
+
)
|
|
268
|
+
return fdap_cocoa.rename("Cocoa_2023_FDaP")
|
|
194
269
|
|
|
195
270
|
# Cocoa_bnetd
|
|
196
271
|
def civ_ocs2020_prep():
|
|
@@ -212,7 +287,41 @@ def rbge_rubber_prep():
|
|
|
212
287
|
.rename("Rubber_RBGE")
|
|
213
288
|
)
|
|
214
289
|
|
|
215
|
-
|
|
290
|
+
################## seasonal crops
|
|
291
|
+
|
|
292
|
+
#soy 2020 Brazil
|
|
293
|
+
def soy_song_2020_prep():
|
|
294
|
+
return ee.Image('projects/glad/soy_annual_SA/2020').unmask().rename("Soy_Song_2020")
|
|
295
|
+
##############2023
|
|
296
|
+
# ESRI 2023
|
|
297
|
+
# ESRI 2023 - Tree Cover
|
|
298
|
+
def esri_2023_TC_prep():
|
|
299
|
+
esri_lulc10_raw = ee.ImageCollection("projects/sat-io/open-datasets/landcover/ESRI_Global-LULC_10m_TS")
|
|
300
|
+
esri_lulc10_TC = esri_lulc10_raw.filterDate('2023-01-01', '2023-12-31').mosaic().eq(2)
|
|
301
|
+
return esri_lulc10_TC.rename('ESRI_2023_TC')
|
|
302
|
+
|
|
303
|
+
# ESRI 2023 - Crop
|
|
304
|
+
def esri_2023_crop_prep():
|
|
305
|
+
esri_lulc10_raw = ee.ImageCollection("projects/sat-io/open-datasets/landcover/ESRI_Global-LULC_10m_TS")
|
|
306
|
+
esri_lulc10_crop = esri_lulc10_raw.filterDate('2023-01-01', '2023-12-31').mosaic().eq(5)
|
|
307
|
+
return esri_lulc10_crop.rename('ESRI_2023_crop')
|
|
308
|
+
|
|
309
|
+
# GLC_FCS30D 2022
|
|
310
|
+
|
|
311
|
+
# GLC_FCS30D Tree Cover
|
|
312
|
+
# forest classes + swamp + mangrove / what to do with shrubland?
|
|
313
|
+
def GLC_FCS30D_TC_2022_prep():
|
|
314
|
+
GLC_FCS30D = ee.ImageCollection("projects/sat-io/open-datasets/GLC-FCS30D/annual").mosaic().select(22)
|
|
315
|
+
GLC_FCS30D_TC = (GLC_FCS30D.gte(51)).And(GLC_FCS30D.lte(92)).Or(GLC_FCS30D.eq(181)).Or(GLC_FCS30D.eq(185))
|
|
316
|
+
return GLC_FCS30D_TC.rename('GLC_FCS30D_TC_2022')
|
|
317
|
+
|
|
318
|
+
# GLC_FCS30D crop
|
|
319
|
+
# 10 Rainfed cropland; 11 Herbaceous cover; 12 Tree or shrub cover (Orchard); 20 Irrigated cropland
|
|
320
|
+
def GLC_FCS30D_crop_2022_prep():
|
|
321
|
+
GLC_FCS30D = ee.ImageCollection("projects/sat-io/open-datasets/GLC-FCS30D/annual").mosaic().select(22)
|
|
322
|
+
GLC_FCS30D_crop = GLC_FCS30D.gte(10).And(GLC_FCS30D.lte(20))
|
|
323
|
+
return GLC_FCS30D_crop.rename('GLC_FCS30D_crop_2022')
|
|
324
|
+
|
|
216
325
|
#### disturbances by year
|
|
217
326
|
|
|
218
327
|
# RADD_year_2019 to RADD_year_< current year >
|
|
@@ -605,6 +714,27 @@ def esa_fire_before_2020_prep():
|
|
|
605
714
|
.rename("ESA_fire_before_2020")
|
|
606
715
|
)
|
|
607
716
|
|
|
717
|
+
#########################logging concessions
|
|
718
|
+
#http://data.globalforestwatch.org/datasets?q=logging&sort_by=relevance
|
|
719
|
+
def logging_concessions_prep():
|
|
720
|
+
RCA=ee.FeatureCollection('projects/ee-whisp/assets/logging/RCA_Permis_dExploitation_et_dAmenagement')
|
|
721
|
+
RCA_binary = ee.Image().paint(RCA,1)
|
|
722
|
+
CMR=ee.FeatureCollection('projects/ee-whisp/assets/logging/Cameroon_Forest_Management_Units')
|
|
723
|
+
CMR_binary = ee.Image().paint(CMR,1)
|
|
724
|
+
Eq_G=ee.FeatureCollection('projects/ee-whisp/assets/logging/Equatorial_Guinea_logging_concessions')
|
|
725
|
+
Eq_G_binary = ee.Image().paint(Eq_G,1)
|
|
726
|
+
DRC=ee.FeatureCollection('projects/ee-whisp/assets/logging/DRC_Forest_concession_agreements')
|
|
727
|
+
DRC_binary = ee.Image().paint(DRC,1)
|
|
728
|
+
Liberia=ee.FeatureCollection('projects/ee-whisp/assets/logging/Liberia_Forest_Management_Contracts')
|
|
729
|
+
Liberia_binary = ee.Image().paint(Liberia,1)
|
|
730
|
+
RoC=ee.FeatureCollection('projects/ee-whisp/assets/logging/Republic_of_the_Congo_logging_concessions')
|
|
731
|
+
Roc_binary = ee.Image().paint(RoC,1)
|
|
732
|
+
Sarawak=ee.FeatureCollection('projects/ee-whisp/assets/logging/Sarawak_logging_concessions')
|
|
733
|
+
Sarawak_binary = ee.Image().paint(Sarawak,1)
|
|
734
|
+
logging_concessions_binary=ee.ImageCollection([RCA_binary, CMR_binary, Eq_G_binary,DRC_binary,Liberia_binary,Roc_binary,Sarawak_binary]).mosaic()
|
|
735
|
+
|
|
736
|
+
return logging_concessions_binary.rename('GFW_logging')
|
|
737
|
+
|
|
608
738
|
|
|
609
739
|
# ###Combining datasets
|
|
610
740
|
|
|
@@ -0,0 +1,172 @@
|
|
|
1
|
+
name,order,theme,theme_timber,use_for_risk,use_for_risk_timber,exclude_from_output,col_type,is_nullable,is_required,corresponding_variable
|
|
2
|
+
EUFO_2020,10,treecover,naturally_reg_2020,1,1,0,float32,1,0,jrc_gfc_2020_prep
|
|
3
|
+
GLAD_Primary,20,treecover,primary,1,1,0,float32,1,0,glad_pht_prep
|
|
4
|
+
TMF_undist,30,treecover,primary,1,1,0,float32,1,0,jrc_tmf_undisturbed_prep
|
|
5
|
+
JAXA_FNF_2020,40,treecover,,1,0,0,float32,1,0,jaxa_forest_prep
|
|
6
|
+
GFC_TC_2020,50,treecover,naturally_reg_2020,1,1,0,float32,1,0,glad_gfc_10pc_prep
|
|
7
|
+
Forest_FDaP,60,treecover,naturally_reg_2020,1,1,0,float32,1,0,glad_gfc_10pc_prep
|
|
8
|
+
ESA_TC_2020,70,treecover,naturally_reg_2020,1,1,0,float32,1,0,esa_worldcover_trees_prep
|
|
9
|
+
TMF_plant,80,commodities,,1,1,0,float32,1,0,jrc_tmf_plantation_prep
|
|
10
|
+
Oil_palm_Descals,90,commodities,,1,1,0,float32,1,0,creaf_descals_palm_prep
|
|
11
|
+
Oil_palm_FDaP,100,commodities,,1,1,0,float32,1,0,fdap_palm_prep
|
|
12
|
+
Cocoa_FDaP,110,commodities,,1,1,0,float32,1,0,fdap_cocoa
|
|
13
|
+
Cocoa_ETH,120,commodities,,1,1,0,float32,1,0,eth_kalischek_cocoa_prep
|
|
14
|
+
Cocoa_bnetd,130,commodities,,1,1,0,float32,1,0,civ_ocs2020_prep
|
|
15
|
+
Rubber_FDaP,140,commodities,,1,1,0,float32,1,0,fdap_rubber_prep
|
|
16
|
+
Rubber_RBGE,150,commodities,,1,1,0,float32,1,0,rbge_rubber_prep
|
|
17
|
+
Soy_Song_2020,155,commodities,,1,1,0,float32,1,0,soy_song_2020_prep
|
|
18
|
+
WDPA,160,ancilliary,,0,0,1,bool,1,0,wcmc_wdpa_protection_prep
|
|
19
|
+
KBA,170,ancilliary,,0,0,1,bool,1,0,birdlife_kbas_biodiversity_prep
|
|
20
|
+
TMF_def_2000,180,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
21
|
+
TMF_def_2001,190,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
22
|
+
TMF_def_2002,200,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
23
|
+
TMF_def_2003,210,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
24
|
+
TMF_def_2004,220,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
25
|
+
TMF_def_2005,230,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
26
|
+
TMF_def_2006,240,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
27
|
+
TMF_def_2007,250,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
28
|
+
TMF_def_2008,260,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
29
|
+
TMF_def_2009,270,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
30
|
+
TMF_def_2010,280,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
31
|
+
TMF_def_2011,290,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
32
|
+
TMF_def_2012,300,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
33
|
+
TMF_def_2013,310,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
34
|
+
TMF_def_2014,320,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
35
|
+
TMF_def_2015,330,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
36
|
+
TMF_def_2016,340,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
37
|
+
TMF_def_2017,350,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
38
|
+
TMF_def_2018,360,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
39
|
+
TMF_def_2019,370,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
40
|
+
TMF_def_2020,380,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
41
|
+
TMF_def_2021,390,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
42
|
+
TMF_def_2022,400,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
43
|
+
TMF_def_2023,410,disturbance_before,,0,0,0,float32,1,0,tmf_def_per_year_prep
|
|
44
|
+
TMF_deg_2000,420,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
45
|
+
TMF_deg_2001,430,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
46
|
+
TMF_deg_2002,440,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
47
|
+
TMF_deg_2003,450,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
48
|
+
TMF_deg_2004,460,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
49
|
+
TMF_deg_2005,470,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
50
|
+
TMF_deg_2006,480,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
51
|
+
TMF_deg_2007,490,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
52
|
+
TMF_deg_2008,500,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
53
|
+
TMF_deg_2009,510,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
54
|
+
TMF_deg_2010,520,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
55
|
+
TMF_deg_2011,530,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
56
|
+
TMF_deg_2012,540,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
57
|
+
TMF_deg_2013,550,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
58
|
+
TMF_deg_2014,560,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
59
|
+
TMF_deg_2015,570,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
60
|
+
TMF_deg_2016,580,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
61
|
+
TMF_deg_2017,590,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
62
|
+
TMF_deg_2018,600,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
63
|
+
TMF_deg_2019,610,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
64
|
+
TMF_deg_2020,620,disturbance_before,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
65
|
+
TMF_deg_2021,630,disturbance_after,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
66
|
+
TMF_deg_2022,640,disturbance_after,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
67
|
+
TMF_deg_2023,650,disturbance_after,,0,0,0,float32,1,0,tmf_deg_per_year_prep
|
|
68
|
+
GFC_loss_year_2001,660,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
69
|
+
GFC_loss_year_2002,670,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
70
|
+
GFC_loss_year_2003,680,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
71
|
+
GFC_loss_year_2004,690,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
72
|
+
GFC_loss_year_2005,700,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
73
|
+
GFC_loss_year_2006,710,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
74
|
+
GFC_loss_year_2007,720,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
75
|
+
GFC_loss_year_2008,730,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
76
|
+
GFC_loss_year_2009,740,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
77
|
+
GFC_loss_year_2010,750,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
78
|
+
GFC_loss_year_2011,760,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
79
|
+
GFC_loss_year_2012,770,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
80
|
+
GFC_loss_year_2013,780,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
81
|
+
GFC_loss_year_2014,790,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
82
|
+
GFC_loss_year_2015,800,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
83
|
+
GFC_loss_year_2016,810,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
84
|
+
GFC_loss_year_2017,820,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
85
|
+
GFC_loss_year_2018,830,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
86
|
+
GFC_loss_year_2019,840,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
87
|
+
GFC_loss_year_2020,850,disturbance_before,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
88
|
+
GFC_loss_year_2021,860,disturbance_after,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
89
|
+
GFC_loss_year_2022,870,disturbance_after,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
90
|
+
GFC_loss_year_2023,880,disturbance_after,,0,0,0,float32,1,0,glad_gfc_loss_per_year_prep
|
|
91
|
+
RADD_year_2019,890,disturbance_before,,0,0,0,float32,1,0,radd_year_prep
|
|
92
|
+
RADD_year_2020,900,disturbance_before,,0,0,0,float32,1,0,radd_year_prep
|
|
93
|
+
RADD_year_2021,910,disturbance_after,,0,0,0,float32,1,0,radd_year_prep
|
|
94
|
+
RADD_year_2022,920,disturbance_after,,0,0,0,float32,1,0,radd_year_prep
|
|
95
|
+
RADD_year_2023,930,disturbance_after,,0,0,0,float32,1,0,radd_year_prep
|
|
96
|
+
RADD_year_2024,940,disturbance_after,,0,0,0,float32,1,0,radd_year_prep
|
|
97
|
+
RADD_year_2025,941,disturbance_after,,0,0,0,float32,1,0,radd_year_prep
|
|
98
|
+
DIST_year_2024,945,disturbance_after,,0,0,1,float32,1,0,glad_dist_year_prep
|
|
99
|
+
DIST_year_2025,946,disturbance_after,,0,0,1,float32,1,0,glad_dist_year_prep
|
|
100
|
+
ESA_fire_2001,950,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
101
|
+
ESA_fire_2002,960,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
102
|
+
ESA_fire_2003,970,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
103
|
+
ESA_fire_2004,980,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
104
|
+
ESA_fire_2005,990,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
105
|
+
ESA_fire_2006,1000,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
106
|
+
ESA_fire_2007,1010,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
107
|
+
ESA_fire_2008,1020,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
108
|
+
ESA_fire_2009,1030,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
109
|
+
ESA_fire_2010,1040,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
110
|
+
ESA_fire_2011,1050,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
111
|
+
ESA_fire_2012,1060,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
112
|
+
ESA_fire_2013,1070,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
113
|
+
ESA_fire_2014,1080,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
114
|
+
ESA_fire_2015,1090,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
115
|
+
ESA_fire_2016,1100,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
116
|
+
ESA_fire_2017,1110,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
117
|
+
ESA_fire_2018,1120,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
118
|
+
ESA_fire_2019,1130,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
119
|
+
ESA_fire_2020,1140,disturbance_before,,0,0,0,float32,1,0,esa_fire_prep
|
|
120
|
+
MODIS_fire_2000,1150,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
121
|
+
MODIS_fire_2001,1160,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
122
|
+
MODIS_fire_2002,1170,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
123
|
+
MODIS_fire_2003,1180,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
124
|
+
MODIS_fire_2004,1190,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
125
|
+
MODIS_fire_2005,1200,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
126
|
+
MODIS_fire_2006,1210,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
127
|
+
MODIS_fire_2007,1220,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
128
|
+
MODIS_fire_2008,1230,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
129
|
+
MODIS_fire_2009,1240,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
130
|
+
MODIS_fire_2010,1250,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
131
|
+
MODIS_fire_2011,1260,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
132
|
+
MODIS_fire_2012,1270,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
133
|
+
MODIS_fire_2013,1280,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
134
|
+
MODIS_fire_2014,1290,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
135
|
+
MODIS_fire_2015,1300,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
136
|
+
MODIS_fire_2016,1310,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
137
|
+
MODIS_fire_2017,1320,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
138
|
+
MODIS_fire_2018,1330,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
139
|
+
MODIS_fire_2019,1340,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
140
|
+
MODIS_fire_2020,1350,disturbance_before,,0,0,0,float32,1,0,modis_fire_prep
|
|
141
|
+
MODIS_fire_2021,1360,disturbance_after,,0,0,0,float32,1,0,modis_fire_prep
|
|
142
|
+
MODIS_fire_2022,1370,disturbance_after,,0,0,0,float32,1,0,modis_fire_prep
|
|
143
|
+
MODIS_fire_2023,1380,disturbance_after,,0,0,0,float32,1,0,modis_fire_prep
|
|
144
|
+
MODIS_fire_2024,1390,disturbance_after,,0,0,0,float32,1,0,modis_fire_prep
|
|
145
|
+
MODIS_fire_2025,1391,disturbance_after,,0,0,0,float32,1,0,modis_fire_prep
|
|
146
|
+
TMF_deg_before_2020,1400,disturbance_before,,1,1,0,float32,1,0,tmf_deg_before_2020_prep
|
|
147
|
+
TMF_def_before_2020,1410,disturbance_before,,1,1,0,float32,1,0,tmf_def_before_2020_prep
|
|
148
|
+
GFC_loss_before_2020,1420,disturbance_before,,1,1,0,float32,1,0,glad_gfc_loss_before_2020_prep
|
|
149
|
+
ESA_fire_before_2020,1430,disturbance_before,,1,1,0,float32,1,0,esa_fire_before_2020_prep
|
|
150
|
+
MODIS_fire_before_2020,1440,disturbance_before,,1,1,0,float32,1,0,modis_fire_before_2020_prep
|
|
151
|
+
RADD_before_2020,1450,disturbance_before,,1,1,0,float32,1,0,radd_before_2020_prep
|
|
152
|
+
TMF_deg_after_2020,1460,disturbance_after,,1,1,0,float32,1,0,tmf_deg_after_2020_prep
|
|
153
|
+
TMF_def_after_2020,1470,disturbance_after,,1,1,0,float32,1,0,tmf_def_after_2020_prep
|
|
154
|
+
GFC_loss_after_2020,1480,disturbance_after,,1,1,0,float32,1,0,glad_gfc_loss_after_2020_prep
|
|
155
|
+
MODIS_fire_after_2020,1490,disturbance_after,,1,1,0,float32,1,0,modis_fire_after_2020_prep
|
|
156
|
+
RADD_after_2020,1500,disturbance_after,,1,1,0,float32,1,0,RADD_after_2020_prep
|
|
157
|
+
DIST_after_2020,1600,disturbance_after,,1,1,0,float32,1,0,glad_dist_after_2020_prep
|
|
158
|
+
GFT_primary,1700,,primary,,1,0,float32,1,0,gft_primary_prep
|
|
159
|
+
IFL_2020,1710,,primary,,1,0,float32,1,0,IFL_2020_prep
|
|
160
|
+
European_Primary_Forest,1720,,primary,,1,0,float32,1,0,EPFD_prep
|
|
161
|
+
GFT_naturally_regenerating,1800,,naturally_reg_2020,,1,0,float32,1,0,gft_nat_reg_prep
|
|
162
|
+
GFT_planted_plantation,1900,,planted_plantation_2020,,1,0,float32,1,0,gft_plantation_prep
|
|
163
|
+
IIASA_planted_plantation,1910,,planted_plantation_2020,,1,0,float32,1,0,IIASA_planted_prep
|
|
164
|
+
TMF_regrowth_2023,2000,,treecover_post2020,,1,0,float32,1,0,tmf_regrowth_prep
|
|
165
|
+
ESRI_2023_TC,2010,,treecover_post2020,,1,0,float32,1,0,esri_2023_TC_prep
|
|
166
|
+
GLC_FCS30D_TC_2022,2020,,treecover_post2020,,1,0,float32,1,0,GLC_FCS30D_TC_2022_prep
|
|
167
|
+
Oil_palm_2023_FDaP,2100,,agri_post_2020,,1,0,float32,1,0,fdap_palm_2023_prep
|
|
168
|
+
Rubber_2023_FDaP,2110,,agri_post_2020,,1,0,float32,1,0,fdap_rubber_2023_prep
|
|
169
|
+
Cocoa_2023_FDaP,2120,,agri_post_2020,,1,0,float32,1,0,fdap_cocoa_2023_prep
|
|
170
|
+
ESRI_2023_crop,2130,,agri_post_2020,,1,0,float32,1,0,esri_2023_crop_prep
|
|
171
|
+
GLC_FCS30D_crop_2022,2140,,agri_post_2020,,1,0,float32,1,0,GLC_FCS30D_crop_2022_prep
|
|
172
|
+
GFW_logging,2200,,logging_concession,,1,0,float32,1,0,logging_concessions_prep
|