openenergyid 0.1.20__tar.gz → 0.1.28__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of openenergyid might be problematic. Click here for more details.

Files changed (63) hide show
  1. openenergyid-0.1.28/PKG-INFO +41 -0
  2. {openenergyid-0.1.20 → openenergyid-0.1.28}/README.md +1 -1
  3. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/__init__.py +1 -1
  4. openenergyid-0.1.28/openenergyid/baseload/__init__.py +15 -0
  5. openenergyid-0.1.28/openenergyid/baseload/analysis.py +173 -0
  6. openenergyid-0.1.28/openenergyid/baseload/exceptions.py +9 -0
  7. openenergyid-0.1.28/openenergyid/baseload/models.py +31 -0
  8. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/models.py +46 -10
  9. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/mvlr/main.py +6 -2
  10. {openenergyid-0.1.20 → openenergyid-0.1.28}/pyproject.toml +33 -38
  11. openenergyid-0.1.20/.devcontainer/devcontainer.json +0 -39
  12. openenergyid-0.1.20/.devcontainer/post-install.sh +0 -24
  13. openenergyid-0.1.20/.github/workflows/python-publish.yml +0 -39
  14. openenergyid-0.1.20/.github/workflows/ruff.yml +0 -8
  15. openenergyid-0.1.20/.gitignore +0 -167
  16. openenergyid-0.1.20/.pre-commit-config.yaml +0 -24
  17. openenergyid-0.1.20/.vscode/settings.json +0 -3
  18. openenergyid-0.1.20/DEVELOPERS.md +0 -63
  19. openenergyid-0.1.20/PKG-INFO +0 -50
  20. openenergyid-0.1.20/data/capacity/capacity_output.json +0 -327
  21. openenergyid-0.1.20/data/capacity/power_sample.json +0 -3473
  22. openenergyid-0.1.20/data/da_prices_be.json +0 -291657
  23. openenergyid-0.1.20/data/dyntar/demo_dyntar_analysis.html +0 -8725
  24. openenergyid-0.1.20/data/dyntar/sample.json +0 -1
  25. openenergyid-0.1.20/data/dyntar/sample_output.json +0 -240540
  26. openenergyid-0.1.20/data/energiedelen/Optimaal_1.png +0 -0
  27. openenergyid-0.1.20/data/energiedelen/Optimaal_2.png +0 -0
  28. openenergyid-0.1.20/data/energiedelen/Relatief.png +0 -0
  29. openenergyid-0.1.20/data/energiedelen/Vast.png +0 -0
  30. openenergyid-0.1.20/data/energiedelen/sample_input.json +0 -1
  31. openenergyid-0.1.20/data/mvlr/sample_gas.json +0 -1869
  32. openenergyid-0.1.20/data/mvlr/sample_solar.json +0 -2586
  33. openenergyid-0.1.20/demo_capacity_analysis.ipynb +0 -472
  34. openenergyid-0.1.20/demo_dyntar_analysis.ipynb +0 -1243
  35. openenergyid-0.1.20/demo_energiedelen.ipynb +0 -1184
  36. openenergyid-0.1.20/demo_energyid_download.ipynb +0 -152
  37. openenergyid-0.1.20/demo_mvlr.ipynb +0 -118
  38. openenergyid-0.1.20/download_prices.ipynb +0 -110
  39. openenergyid-0.1.20/poetry.lock +0 -3508
  40. openenergyid-0.1.20/requirements-dev.txt +0 -123
  41. openenergyid-0.1.20/requirements.txt +0 -20
  42. openenergyid-0.1.20/tests/__init__.py +0 -0
  43. openenergyid-0.1.20/tests/data/mvlr/sample.dat +0 -2585
  44. openenergyid-0.1.20/tests/nb.py +0 -38
  45. {openenergyid-0.1.20 → openenergyid-0.1.28}/LICENSE +0 -0
  46. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/capacity/__init__.py +0 -0
  47. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/capacity/main.py +0 -0
  48. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/capacity/models.py +0 -0
  49. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/const.py +0 -0
  50. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/dyntar/__init__.py +0 -0
  51. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/dyntar/const.py +0 -0
  52. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/dyntar/main.py +0 -0
  53. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/dyntar/models.py +0 -0
  54. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/energysharing/__init__.py +0 -0
  55. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/energysharing/const.py +0 -0
  56. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/energysharing/data_formatting.py +0 -0
  57. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/energysharing/main.py +0 -0
  58. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/energysharing/models.py +0 -0
  59. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/enums.py +0 -0
  60. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/mvlr/__init__.py +0 -0
  61. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/mvlr/helpers.py +0 -0
  62. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/mvlr/models.py +0 -0
  63. {openenergyid-0.1.20 → openenergyid-0.1.28}/openenergyid/mvlr/mvlr.py +0 -0
@@ -0,0 +1,41 @@
1
+ Metadata-Version: 2.3
2
+ Name: openenergyid
3
+ Version: 0.1.28
4
+ Summary: Open Source Python library for energy analytics and simulations
5
+ License: MIT
6
+ Keywords: energy,analytics,simulation
7
+ Author: Jan Pecinovsky
8
+ Author-email: jan@energieid.be
9
+ Requires-Python: >=3.11,<4.0
10
+ Classifier: Development Status :: 3 - Alpha
11
+ Classifier: Intended Audience :: Developers
12
+ Classifier: Intended Audience :: Science/Research
13
+ Classifier: License :: OSI Approved :: MIT License
14
+ Classifier: Natural Language :: English
15
+ Classifier: Operating System :: OS Independent
16
+ Classifier: Programming Language :: Python :: 3
17
+ Classifier: Programming Language :: Python :: 3.11
18
+ Classifier: Programming Language :: Python :: 3.12
19
+ Classifier: Programming Language :: Python :: 3.13
20
+ Classifier: Topic :: Scientific/Engineering
21
+ Classifier: Topic :: Scientific/Engineering :: Mathematics
22
+ Classifier: Topic :: Scientific/Engineering :: Physics
23
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
24
+ Requires-Dist: numpy (>=2.0.0,<3.0.0)
25
+ Requires-Dist: pandas (>=2.2.2,<3.0.0)
26
+ Requires-Dist: pandera[polars] (>=0.22.1,<0.23.0)
27
+ Requires-Dist: patsy (>=0.5.6,<0.6.0)
28
+ Requires-Dist: polars (>=1.9.0,<2.0.0)
29
+ Requires-Dist: pydantic (>=2.8.2,<3.0.0)
30
+ Requires-Dist: statsmodels (>=0.14.2,<0.15.0)
31
+ Project-URL: Documentation, https://github.com/EnergieID/OpenEnergyID
32
+ Project-URL: Homepage, https://energyid.eu
33
+ Project-URL: Repository, https://github.com/EnergieID/OpenEnergyID
34
+ Description-Content-Type: text/markdown
35
+
36
+ # OpenEnergyID
37
+
38
+ Open Source Python library for energy data analytics and simulations
39
+
40
+ [*more info for developers*](DEVELOPERS.md)
41
+
@@ -2,4 +2,4 @@
2
2
 
3
3
  Open Source Python library for energy data analytics and simulations
4
4
 
5
- [*more info for developers*](DEVELOPERS.md)
5
+ [*more info for developers*](DEVELOPERS.md)
@@ -1,6 +1,6 @@
1
1
  """Open Energy ID Python SDK."""
2
2
 
3
- __version__ = "0.1.20"
3
+ __version__ = "0.1.28"
4
4
 
5
5
  from .enums import Granularity
6
6
  from .models import TimeDataFrame, TimeSeries
@@ -0,0 +1,15 @@
1
+ """Baseload analysis package for power consumption data."""
2
+
3
+ from .models import PowerReadingSchema, PowerSeriesSchema, BaseloadResultSchema
4
+ from .analysis import BaseloadAnalyzer
5
+ from .exceptions import InsufficientDataError, InvalidDataError
6
+
7
+ __version__ = "0.1.0"
8
+ __all__ = [
9
+ "BaseloadAnalyzer",
10
+ "InsufficientDataError",
11
+ "InvalidDataError",
12
+ "PowerReadingSchema",
13
+ "PowerSeriesSchema",
14
+ "BaseloadResultSchema",
15
+ ]
@@ -0,0 +1,173 @@
1
+ """Baseload Power Consumption Analysis Module
2
+
3
+ This module provides tools for analyzing electrical power consumption patterns to identify
4
+ and quantify baseload - the continuous background power usage in electrical systems.
5
+ It uses sophisticated time-series analysis to detect consistent minimum power draws
6
+ that represent always-on devices and systems.
7
+ """
8
+
9
+ import polars as pl
10
+
11
+
12
+ class BaseloadAnalyzer:
13
+ """Analyzes power consumption data to determine baseload characteristics.
14
+
15
+ The BaseloadAnalyzer helps identify the minimum continuous power consumption in
16
+ an electrical system by analyzing regular energy readings. It uses a statistical
17
+ approach to determine baseload, which represents power used by devices that run
18
+ continuously (like refrigerators, standby electronics, or network equipment).
19
+
20
+ The analyzer works by:
21
+ 1. Converting 15-minute energy readings to instantaneous power values
22
+ 2. Analyzing daily patterns to identify consistent minimum usage
23
+ 3. Aggregating results into configurable time periods
24
+
25
+ Parameters
26
+ ----------
27
+ quantile : float, default=0.05
28
+ Defines what portion of lowest daily readings to consider as baseload.
29
+ The default 0.05 (5%) corresponds to roughly 72 minutes of lowest
30
+ consumption per day, which helps filter out brief power dips while
31
+ capturing true baseload patterns.
32
+
33
+ timezone : str
34
+ Timezone for analysis. All timestamps will be converted to this timezone
35
+ to ensure correct daily boundaries and consistent reporting periods.
36
+
37
+ Example Usage
38
+ ------------
39
+ >>> analyzer = BaseloadAnalyzer(quantile=0.05)
40
+ >>> power_data = analyzer.prepare_power_seriespolars(energy_readings)
41
+ >>> hourly_analysis = analyzer.analyze(power_data, "1h")
42
+ >>> monthly_analysis = analyzer.analyze(power_data, "1mo")
43
+ """
44
+
45
+ def __init__(self, timezone: str, quantile: float = 0.05):
46
+ self.quantile = quantile
47
+ self.timezone = timezone
48
+
49
+ def prepare_power_seriespolars(self, energy_lf: pl.LazyFrame) -> pl.LazyFrame:
50
+ """Converts energy readings into a power consumption time series.
51
+
52
+ Transforms 15-minute energy readings (kilowatt-hours) into instantaneous
53
+ power readings (watts) while handling timezone conversion.
54
+
55
+ Parameters
56
+ ----------
57
+ energy_lf : pl.LazyFrame
58
+ Input energy data with columns:
59
+ - timestamp: Datetime with timezone (e.g. "2023-01-01T00:00:00+01:00")
60
+ - total: Energy readings in kilowatt-hours (kWh)
61
+
62
+ Returns
63
+ -------
64
+ pl.LazyFrame
65
+ Power series with columns:
66
+ - timestamp: Timezone-adjusted timestamps
67
+ - power: Power readings in watts
68
+
69
+ Notes
70
+ -----
71
+ The conversion from kWh/15min to watts uses the formula:
72
+ watts = kWh * 4000
73
+ where:
74
+ - Multiply by 4 to convert from 15-minute to hourly rate
75
+ - Multiply by 1000 to convert from kilowatts to watts
76
+ """
77
+ return (
78
+ energy_lf.with_columns(
79
+ [
80
+ # Convert timezone
81
+ pl.col("timestamp")
82
+ .dt.replace_time_zone("UTC")
83
+ .dt.convert_time_zone(self.timezone)
84
+ .alias("timestamp"),
85
+ # Convert to watts and clip negative values
86
+ (pl.col("total") * 4000).clip(0).alias("power"),
87
+ ]
88
+ )
89
+ .drop("total")
90
+ .sort("timestamp")
91
+ )
92
+
93
+ def analyze(self, power_lf: pl.LazyFrame, reporting_granularity: str = "1h") -> pl.LazyFrame:
94
+ """Analyze power consumption data to calculate baseload and total energy metrics.
95
+
96
+ Takes power readings (in watts) with 15-minute intervals and calculates:
97
+ - Daily baseload power using a percentile threshold
98
+ - Energy consumption from baseload vs total consumption
99
+ - Average power metrics
100
+
101
+ The analysis happens in three steps:
102
+ 1. Calculate the daily baseload power level using the configured percentile
103
+ 2. Join this daily baseload with the original power readings
104
+ 3. Aggregate the combined data into the requested reporting periods
105
+
106
+ Parameters
107
+ ----------
108
+ power_lf : pl.LazyFrame
109
+ Power consumption data with columns:
110
+ - timestamp: Datetime in configured timezone
111
+ - power: Power readings in watts
112
+
113
+ reporting_granularity : str, default="1h"
114
+ Time period for aggregating results. Must be a valid Polars interval string
115
+ like "1h", "1d", "1mo" etc.
116
+
117
+ Returns
118
+ -------
119
+ pl.LazyFrame
120
+ Analysis results with metrics per reporting period:
121
+ - timestamp: Start of reporting period
122
+ - consumption_due_to_baseload_in_kilowatthour: Baseload energy
123
+ - total_consumption_in_kilowatthour: Total energy
124
+ - consumption_not_due_to_baseload_in_kilowatthour: Non-baseload energy
125
+ - average_daily_baseload_in_watt: Average baseload power level
126
+ - average_power_in_watt: Average total power
127
+ - baseload_ratio: Fraction of energy from baseload
128
+ """
129
+ # Step 1: Calculate the daily baseload level
130
+ # Group power readings by day and find the threshold power level that represents baseload
131
+ daily_baseload = power_lf.group_by_dynamic("timestamp", every="1d").agg(
132
+ pl.col("power").quantile(self.quantile).alias("daily_baseload")
133
+ )
134
+
135
+ # Step 2 & 3: Join baseload data and aggregate metrics
136
+ return (
137
+ # Join the daily baseload level with original power readings
138
+ # Using asof join since baseload changes daily but readings are every 15min
139
+ power_lf.join_asof(daily_baseload, on="timestamp")
140
+ # Group into requested reporting periods
141
+ .group_by_dynamic("timestamp", every=reporting_granularity)
142
+ .agg(
143
+ [
144
+ # Energy calculations:
145
+ # Each 15min power reading (watts) represents 0.25 hours
146
+ # Convert to kWh: watts * 0.25h * (1kW/1000W)
147
+ (pl.col("daily_baseload").sum() * 0.25 / 1000).alias(
148
+ "consumption_due_to_baseload_in_kilowatthour"
149
+ ),
150
+ (pl.col("power").sum() * 0.25 / 1000).alias(
151
+ "total_consumption_in_kilowatthour"
152
+ ),
153
+ # Average power levels during the period
154
+ pl.col("daily_baseload").mean().alias("average_daily_baseload_in_watt"),
155
+ pl.col("power").mean().alias("average_power_in_watt"),
156
+ ]
157
+ )
158
+ # Calculate derived metrics
159
+ .with_columns(
160
+ [
161
+ # Energy consumed above baseload level
162
+ (
163
+ pl.col("total_consumption_in_kilowatthour")
164
+ - pl.col("consumption_due_to_baseload_in_kilowatthour")
165
+ ).alias("consumption_not_due_to_baseload_in_kilowatthour"),
166
+ # What fraction of total energy was from baseload
167
+ (
168
+ pl.col("consumption_due_to_baseload_in_kilowatthour")
169
+ / pl.col("total_consumption_in_kilowatthour")
170
+ ).alias("baseload_ratio"),
171
+ ]
172
+ )
173
+ )
@@ -0,0 +1,9 @@
1
+ """Custom exceptions for baseload analysis."""
2
+
3
+
4
+ class InsufficientDataError(Exception):
5
+ """Raised when input data doesn't meet minimum requirements."""
6
+
7
+
8
+ class InvalidDataError(Exception):
9
+ """Raised when input data is invalid or corrupt."""
@@ -0,0 +1,31 @@
1
+ import pandera.polars as pa
2
+ from pandera.engines.polars_engine import DateTime
3
+
4
+
5
+ class PowerReadingSchema(pa.DataFrameModel):
6
+ """Validates input energy readings"""
7
+
8
+ timestamp: DateTime = pa.Field()
9
+ total: float = pa.Field(ge=0)
10
+
11
+ class Config:
12
+ coerce = True
13
+
14
+
15
+ class PowerSeriesSchema(pa.DataFrameModel):
16
+ """Validates converted power series"""
17
+
18
+ timestamp: DateTime = pa.Field()
19
+ power: float = pa.Field(ge=0)
20
+
21
+
22
+ class BaseloadResultSchema(pa.DataFrameModel):
23
+ """Validates analysis results"""
24
+
25
+ timestamp: DateTime = pa.Field()
26
+ consumption_due_to_baseload_in_kilowatthour: float = pa.Field(ge=0)
27
+ total_consumption_in_kilowatthour: float = pa.Field(ge=0)
28
+ average_daily_baseload_in_watt: float = pa.Field(ge=0)
29
+ average_power_in_watt: float = pa.Field(ge=0)
30
+ consumption_not_due_to_baseload_in_kilowatthour: float
31
+ baseload_ratio: float = pa.Field(ge=0, le=2)
@@ -7,6 +7,7 @@ from typing import Self
7
7
 
8
8
  import pandas as pd
9
9
  from pydantic import BaseModel
10
+ import polars as pl
10
11
 
11
12
 
12
13
  class TimeSeriesBase(BaseModel):
@@ -75,10 +76,14 @@ class TimeSeries(TimeSeriesBase):
75
76
  Create a TimeSeries object from a Pandas Series.
76
77
  to_pandas(self, timezone: str = "UTC") -> pd.Series:
77
78
  Convert the TimeSeries object to a Pandas Series.
79
+ from_polars(cls, data: pl.DataFrame | pl.LazyFrame) -> Self:
80
+ Create a TimeSeries object from Polars data.
81
+ to_polars(self, timezone: str = "UTC") -> pl.LazyFrame:
82
+ Convert the TimeSeries object to a Polars LazyFrame.
78
83
  """
79
84
 
80
85
  name: str | None = None
81
- data: list[float]
86
+ data: list[float | None]
82
87
 
83
88
  @classmethod
84
89
  def from_pandas(cls, data: pd.Series) -> Self:
@@ -91,19 +96,50 @@ class TimeSeries(TimeSeriesBase):
91
96
  series.index = pd.to_datetime(series.index, utc=True)
92
97
  return series.tz_convert(timezone)
93
98
 
99
+ @classmethod
100
+ def from_polars(cls, data: pl.DataFrame | pl.LazyFrame) -> Self:
101
+ """Create from Polars data."""
102
+ # Always work with DataFrame
103
+ df = data.collect() if isinstance(data, pl.LazyFrame) else data
104
+
105
+ if len(df.columns) != 2:
106
+ raise ValueError("Must contain exactly two columns: timestamp and value")
107
+
108
+ value_col = [col for col in df.columns if col != "timestamp"][0]
109
+ return cls(
110
+ name=value_col,
111
+ data=df[value_col].cast(pl.Float64).to_list(), # Ensure float type
112
+ index=df["timestamp"].cast(pl.Datetime).dt.convert_time_zone("UTC").to_list(),
113
+ )
114
+
115
+ def to_polars(self, timezone: str = "UTC") -> pl.LazyFrame:
116
+ """Convert to Polars LazyFrame."""
117
+ # Always return LazyFrame as specified in return type
118
+ df = pl.DataFrame(
119
+ {
120
+ "timestamp": pl.Series(self.index, dtype=pl.Datetime).dt.convert_time_zone(
121
+ timezone
122
+ ),
123
+ "total" if self.name is None else self.name: pl.Series(self.data, dtype=pl.Float64),
124
+ }
125
+ )
126
+ return df.lazy()
127
+
94
128
 
95
129
  class TimeDataFrame(TimeSeriesBase):
96
130
  """Time series data with multiple columns."""
97
131
 
98
132
  columns: list[str]
99
- data: list[list[float]]
133
+ data: list[list[float | None]]
100
134
 
101
135
  @classmethod
102
136
  def from_pandas(cls, data: pd.DataFrame) -> Self:
103
137
  """Create from a Pandas DataFrame."""
104
- return cls(
105
- columns=data.columns.tolist(), data=data.values.tolist(), index=data.index.tolist()
106
- )
138
+ # Cast values to float | None
139
+ values = [
140
+ [float(x) if pd.notnull(x) else None for x in row] for row in data.values.tolist()
141
+ ]
142
+ return cls(columns=data.columns.tolist(), data=values, index=data.index.tolist())
107
143
 
108
144
  def to_pandas(self, timezone: str = "UTC") -> pd.DataFrame:
109
145
  """Convert to a Pandas DataFrame."""
@@ -114,15 +150,15 @@ class TimeDataFrame(TimeSeriesBase):
114
150
  @classmethod
115
151
  def from_timeseries(cls, data: list[TimeSeries]) -> Self:
116
152
  """Create from a list of TimeSeries objects."""
117
- return cls.model_construct(
118
- columns=[series.name for series in data],
119
- data=[series.data for series in data],
153
+ return cls(
154
+ columns=[series.name or "" for series in data], # Handle None names
155
+ data=[series.data for series in data], # Pass list of value lists
120
156
  index=data[0].index,
121
157
  )
122
158
 
123
159
  def to_timeseries(self) -> list[TimeSeries]:
124
160
  """Convert to a list of TimeSeries objects."""
125
161
  return [
126
- TimeSeries(name=column, data=column_data, index=self.index)
127
- for column, column_data in zip(self.columns, self.data)
162
+ TimeSeries(name=col, data=[row[i] for row in self.data], index=self.index)
163
+ for i, col in enumerate(self.columns)
128
164
  ]
@@ -9,6 +9,7 @@ def find_best_mvlr(
9
9
  data: MultiVariableRegressionInput,
10
10
  ) -> MultiVariableRegressionResult:
11
11
  """Cycle through multiple granularities and return the best model."""
12
+ best_rsquared = 0
12
13
  for granularity in data.granularities:
13
14
  frame = data.data_frame()
14
15
  frame = resample_input_data(data=frame, granularity=granularity)
@@ -17,7 +18,7 @@ def find_best_mvlr(
17
18
  y=data.dependent_variable,
18
19
  granularity=granularity,
19
20
  allow_negative_predictions=data.allow_negative_predictions,
20
- single_use_exog_prefixes=data.single_use_exog_prefixes,
21
+ single_use_exog_prefixes=data.single_use_exog_prefixes or [],
21
22
  exogs__disallow_negative_coefficient=data.get_disallowed_negative_coefficients(),
22
23
  )
23
24
  mvlr.do_analysis()
@@ -27,4 +28,7 @@ def find_best_mvlr(
27
28
  max_pvalues=data.validation_parameters.pvalues,
28
29
  ):
29
30
  return MultiVariableRegressionResult.from_mvlr(mvlr)
30
- raise ValueError("No valid model found.")
31
+ best_rsquared = max(best_rsquared, mvlr.fit.rsquared_adj)
32
+ raise ValueError(
33
+ f"No valid model found. Best R²: {best_rsquared:.3f} (need ≥{data.validation_parameters.rsquared})"
34
+ )
@@ -1,18 +1,21 @@
1
1
  [build-system]
2
- requires = ["hatchling"]
3
- build-backend = "hatchling.build"
2
+ requires = ["poetry-core>=1.0.0"]
3
+ build-backend = "poetry.core.masonry.api"
4
4
 
5
- [project]
6
- dynamic = ["version"]
5
+ [tool.poetry]
7
6
  name = "openenergyid"
7
+ version = "0.1.28"
8
+ description = "Open Source Python library for energy analytics and simulations"
8
9
  authors = [
9
- { name = "Jan Pecinovsky", email = "jan@energieid.be" },
10
- { name = "Max Helskens", email = "max@energieid.be" },
10
+ "Jan Pecinovsky <jan@energieid.be>",
11
+ "Max Helskens <max@energieid.be>",
12
+ "Oscar Swyns <oscar@energieid.be>"
11
13
  ]
12
- maintainers = [{ name = "Jan Pecinovsky", email = "jan@energieid.be" }]
13
- description = "Open Source Python library for energy analytics and simulations"
14
14
  readme = "README.md"
15
- license = { file = "LICENSE" }
15
+ license = "MIT"
16
+ homepage = "https://energyid.eu"
17
+ repository = "https://github.com/EnergieID/OpenEnergyID"
18
+ documentation = "https://github.com/EnergieID/OpenEnergyID"
16
19
  keywords = ["energy", "analytics", "simulation"]
17
20
  classifiers = [
18
21
  "Development Status :: 3 - Alpha",
@@ -25,37 +28,18 @@ classifiers = [
25
28
  "Topic :: Scientific/Engineering",
26
29
  "Topic :: Scientific/Engineering :: Mathematics",
27
30
  "Topic :: Scientific/Engineering :: Physics",
28
- "Topic :: Software Development :: Libraries :: Python Modules",
31
+ "Topic :: Software Development :: Libraries :: Python Modules"
29
32
  ]
30
33
 
31
- [project.urls]
32
- Homepage = "https://energyid.eu"
33
- Repository = "https://github.com/EnergieID/OpenEnergyID"
34
- "Bugs Tracker" = "https://github.com/EnergieID/OpenEnergyID/issues"
35
-
36
- [tool.hatch.version]
37
- path = "openenergyid/__init__.py"
38
-
39
- [tool.ruff]
40
- line-length = 100
41
-
42
- [tool.poetry]
43
- name = "openenergyid"
44
- version = "0.1.20" # You'll need to set this manually or use a different method for dynamic versioning
45
- description = "Open Source Python library for energy analytics and simulations"
46
- authors = [
47
- "Jan Pecinovsky <jan@energieid.be>",
48
- "Max Helskens <max@energieid.be>",
49
- "Oscar Swyns <oscar@energieid.be>",
50
- ]
51
- dependencies.python = "^3.10"
52
- dependencies.polars = "^1.9.0"
53
- dependencies.pandera = "^0.20.3"
54
- dependencies.numpy = "^2.0.0"
55
- dependencies.patsy = "^0.5.6"
56
- dependencies.statsmodels = "^0.14.2"
57
- dependencies.pydantic = "^2.8.2"
58
- dependencies.pandas = "^2.2.2"
34
+ [tool.poetry.dependencies]
35
+ python = "^3.11"
36
+ polars = "^1.9.0"
37
+ numpy = "^2.0.0"
38
+ patsy = "^0.5.6"
39
+ statsmodels = "^0.14.2"
40
+ pydantic = "^2.8.2"
41
+ pandas = "^2.2.2"
42
+ pandera = {extras = ["polars"], version = "^0.22.1"}
59
43
 
60
44
  [tool.poetry.group.dev.dependencies]
61
45
  altair = "^5.4.1"
@@ -68,3 +52,14 @@ entsoe-py = "^0.6.8"
68
52
  energyid = "^0.0.17"
69
53
  snakeviz = "^2.2.0"
70
54
  plotly = "^5.24.1"
55
+ vegafusion = {version = ">=1.5.0", extras = ["embed"]}
56
+ vl-convert-python = "^1.7.0"
57
+ pyarrow = "^19.0.0"
58
+ pyinstrument = "^5.0.0"
59
+ deptry = "^0.23.0"
60
+
61
+ [tool.poetry.requires-plugins]
62
+ poetry-plugin-export = ">=1.8"
63
+
64
+ [tool.ruff]
65
+ line-length = 100
@@ -1,39 +0,0 @@
1
- {
2
- "name": "Python 3",
3
- "image": "mcr.microsoft.com/devcontainers/python:1.1.9-3.11-bookworm",
4
- "features": {},
5
- "postCreateCommand": "zsh -l .devcontainer/post-install.sh",
6
- // "postStartCommand": "",
7
- "remoteUser": "root",
8
- "customizations": {
9
- "vscode": {
10
- "extensions": [
11
- "ms-toolsai.jupyter",
12
- "charliermarsh.ruff",
13
- "ms-python.pylint",
14
- "ms-python.vscode-pylance",
15
- "visualstudioexptteam.vscodeintellicode",
16
- "esbenp.prettier-vscode",
17
- "GitHub.vscode-pull-request-github",
18
- "mhutchie.git-graph"
19
- ],
20
- "settings": {
21
- "python.pythonPath": "/usr/local/bin/python",
22
- "python.testing.pytestArgs": ["--no-cov"],
23
- "editor.formatOnPaste": false,
24
- "editor.formatOnSave": true,
25
- "editor.formatOnType": true,
26
- "files.trimTrailingWhitespace": true,
27
- "terminal.integrated.profiles.linux": {
28
- "zsh": {
29
- "path": "/usr/bin/zsh"
30
- }
31
- },
32
- "terminal.integrated.defaultProfile.linux": "zsh",
33
- "[python]": {
34
- "editor.defaultFormatter": "charliermarsh.ruff"
35
- }
36
- }
37
- }
38
- }
39
- }
@@ -1,24 +0,0 @@
1
- #!/bin/zsh -l
2
- # Add the current directory to Git's safe directory list
3
- git config --global --add safe.directory /workspaces/OpenEnergyID
4
-
5
- # Install Python tools
6
- pipx install ruff poetry pre-commit
7
-
8
- # Install project dependencies using Poetry
9
- poetry install
10
-
11
- # Install pre-commit hooks
12
- pre-commit install
13
-
14
- # Install Node.js and Pure prompt
15
- # nvm install node
16
- # npm install --global pure-prompt
17
-
18
- # # Configure Zsh to use Pure prompt
19
- # "autoload -U promptinit; promptinit; prompt pure"
20
- # "echo "autoload -U promptinit; promptinit; prompt pure" >> ~/.zshrc"
21
-
22
- # # Uncomment the following line to install zsh-syntax-highlighting
23
- # # sudo apt-get install zsh-syntax-highlighting
24
- # # echo "source /usr/share/zsh-syntax-highlighting/zsh-syntax-highlighting.zsh" >> ${ZDOTDIR:-$HOME}/.zshrc
@@ -1,39 +0,0 @@
1
- # This workflow will upload a Python Package using Twine when a release is created
2
- # For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python#publishing-to-package-registries
3
-
4
- # This workflow uses actions that are not certified by GitHub.
5
- # They are provided by a third-party and are governed by
6
- # separate terms of service, privacy policy, and support
7
- # documentation.
8
-
9
- name: Upload Python Package
10
-
11
- on:
12
- release:
13
- types: [published]
14
-
15
- permissions:
16
- contents: read
17
-
18
- jobs:
19
- deploy:
20
- runs-on: ubuntu-latest
21
- permissions:
22
- id-token: write
23
- environment: release
24
-
25
- steps:
26
- - uses: actions/checkout@v3
27
- - name: Set up Python
28
- uses: actions/setup-python@v3
29
- with:
30
- python-version: '3.x'
31
- - name: Install dependencies
32
- run: |
33
- python -m pip install --upgrade pip
34
- pip install build
35
- - name: Build package
36
- run: python -m build
37
- - name: Publish package
38
- uses: pypa/gh-action-pypi-publish@release/v1
39
-
@@ -1,8 +0,0 @@
1
- name: Ruff
2
- on: [push, pull_request]
3
- jobs:
4
- ruff:
5
- runs-on: ubuntu-latest
6
- steps:
7
- - uses: actions/checkout@v3
8
- - uses: chartboost/ruff-action@v1