oodeel 0.2.0__tar.gz → 0.3.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of oodeel might be problematic. Click here for more details.
- {oodeel-0.2.0 → oodeel-0.3.0}/PKG-INFO +144 -18
- {oodeel-0.2.0 → oodeel-0.3.0}/README.md +27 -15
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/__init__.py +1 -1
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/datasets/__init__.py +2 -1
- oodeel-0.3.0/oodeel/datasets/data_handler.py +304 -0
- oodeel-0.2.0/oodeel/datasets/data_handler.py → oodeel-0.3.0/oodeel/datasets/deprecated/DEPRECATED_data_handler.py +6 -6
- oodeel-0.2.0/oodeel/datasets/ooddataset.py → oodeel-0.3.0/oodeel/datasets/deprecated/DEPRECATED_ooddataset.py +14 -13
- oodeel-0.2.0/oodeel/datasets/tf_data_handler.py → oodeel-0.3.0/oodeel/datasets/deprecated/DEPRECATED_tf_data_handler.py +7 -7
- oodeel-0.2.0/oodeel/datasets/torch_data_handler.py → oodeel-0.3.0/oodeel/datasets/deprecated/DEPRECATED_torch_data_handler.py +12 -9
- oodeel-0.3.0/oodeel/datasets/deprecated/__init__.py +31 -0
- oodeel-0.3.0/oodeel/datasets/tf_data_handler.py +609 -0
- oodeel-0.3.0/oodeel/datasets/torch_data_handler.py +694 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/eval/metrics.py +7 -2
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/extractor/feature_extractor.py +11 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/extractor/keras_feature_extractor.py +51 -1
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/extractor/torch_feature_extractor.py +103 -21
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/methods/__init__.py +16 -1
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/methods/base.py +72 -15
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/methods/dknn.py +20 -7
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/methods/energy.py +8 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/methods/entropy.py +8 -0
- oodeel-0.3.0/oodeel/methods/gen.py +118 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/methods/gram.py +15 -4
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/methods/mahalanobis.py +9 -7
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/methods/mls.py +8 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/methods/odin.py +8 -0
- oodeel-0.3.0/oodeel/methods/rmds.py +122 -0
- oodeel-0.3.0/oodeel/methods/she.py +197 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/methods/vim.py +1 -1
- oodeel-0.3.0/oodeel/preprocess/__init__.py +31 -0
- oodeel-0.3.0/oodeel/preprocess/tf_preprocess.py +95 -0
- oodeel-0.3.0/oodeel/preprocess/torch_preprocess.py +97 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/utils/operator.py +17 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/utils/tf_operator.py +15 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/utils/tf_training_tools.py +2 -2
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/utils/torch_operator.py +19 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel.egg-info/PKG-INFO +144 -18
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel.egg-info/SOURCES.txt +11 -1
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel.egg-info/requires.txt +22 -12
- {oodeel-0.2.0 → oodeel-0.3.0}/setup.cfg +21 -5
- {oodeel-0.2.0 → oodeel-0.3.0}/setup.py +8 -4
- {oodeel-0.2.0 → oodeel-0.3.0}/tests/tests_tensorflow/tf_methods_utils.py +2 -1
- {oodeel-0.2.0 → oodeel-0.3.0}/tests/tests_torch/torch_methods_utils.py +34 -27
- {oodeel-0.2.0 → oodeel-0.3.0}/LICENSE +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/eval/__init__.py +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/eval/plots/__init__.py +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/eval/plots/features.py +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/eval/plots/metrics.py +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/eval/plots/plotly.py +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/extractor/__init__.py +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/types/__init__.py +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/utils/__init__.py +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/utils/general_utils.py +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel/utils/torch_training_tools.py +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel.egg-info/dependency_links.txt +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/oodeel.egg-info/top_level.txt +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/tests/__init__.py +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/tests/tests_tensorflow/__init__.py +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/tests/tests_tensorflow/tools_tf.py +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/tests/tests_torch/__init__.py +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/tests/tests_torch/tools_torch.py +0 -0
- {oodeel-0.2.0 → oodeel-0.3.0}/tests/tools_operator.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: oodeel
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.3.0
|
|
4
4
|
Summary: Simple, compact, and hackable post-hoc deep OOD detection for alreadytrained tensorflow or pytorch image classifiers.
|
|
5
5
|
Author: DEEL Core Team
|
|
6
6
|
Author-email: paul.novello@irt-saintexupery.com
|
|
@@ -11,13 +11,127 @@ Classifier: Programming Language :: Python :: 3.8
|
|
|
11
11
|
Classifier: Programming Language :: Python :: 3.9
|
|
12
12
|
Classifier: Programming Language :: Python :: 3.10
|
|
13
13
|
Description-Content-Type: text/markdown
|
|
14
|
+
License-File: LICENSE
|
|
15
|
+
Requires-Dist: faiss_cpu
|
|
16
|
+
Requires-Dist: numpy
|
|
17
|
+
Requires-Dist: scikit_learn
|
|
18
|
+
Requires-Dist: scipy
|
|
19
|
+
Requires-Dist: setuptools
|
|
20
|
+
Requires-Dist: matplotlib
|
|
21
|
+
Requires-Dist: pandas
|
|
22
|
+
Requires-Dist: seaborn
|
|
23
|
+
Requires-Dist: plotly
|
|
24
|
+
Requires-Dist: tqdm
|
|
14
25
|
Provides-Extra: dev
|
|
26
|
+
Requires-Dist: mypy; extra == "dev"
|
|
27
|
+
Requires-Dist: ipywidgets; extra == "dev"
|
|
28
|
+
Requires-Dist: mkdocs-jupyter; extra == "dev"
|
|
29
|
+
Requires-Dist: mkdocstrings-python; extra == "dev"
|
|
30
|
+
Requires-Dist: flake8; extra == "dev"
|
|
31
|
+
Requires-Dist: setuptools; extra == "dev"
|
|
32
|
+
Requires-Dist: pre-commit; extra == "dev"
|
|
33
|
+
Requires-Dist: tox; extra == "dev"
|
|
34
|
+
Requires-Dist: black; extra == "dev"
|
|
35
|
+
Requires-Dist: ruff; extra == "dev"
|
|
36
|
+
Requires-Dist: ipython; extra == "dev"
|
|
37
|
+
Requires-Dist: ipykernel; extra == "dev"
|
|
38
|
+
Requires-Dist: pytest; extra == "dev"
|
|
39
|
+
Requires-Dist: pylint; extra == "dev"
|
|
40
|
+
Requires-Dist: mypy; extra == "dev"
|
|
41
|
+
Requires-Dist: mkdocs; extra == "dev"
|
|
42
|
+
Requires-Dist: mkdocs-material; extra == "dev"
|
|
43
|
+
Requires-Dist: mkdocstrings; extra == "dev"
|
|
44
|
+
Requires-Dist: mknotebooks; extra == "dev"
|
|
45
|
+
Requires-Dist: mike; extra == "dev"
|
|
46
|
+
Requires-Dist: bump2version; extra == "dev"
|
|
47
|
+
Requires-Dist: docsig; extra == "dev"
|
|
48
|
+
Requires-Dist: no_implicit_optional; extra == "dev"
|
|
49
|
+
Requires-Dist: numpy==1.26.4; extra == "dev"
|
|
50
|
+
Requires-Dist: tensorflow==2.11.0; extra == "dev"
|
|
51
|
+
Requires-Dist: tensorflow_datasets; extra == "dev"
|
|
52
|
+
Requires-Dist: tensorflow_probability==0.19.0; extra == "dev"
|
|
53
|
+
Requires-Dist: timm; extra == "dev"
|
|
54
|
+
Requires-Dist: torch==1.13.1; extra == "dev"
|
|
55
|
+
Requires-Dist: torchvision==0.14.1; extra == "dev"
|
|
15
56
|
Provides-Extra: tensorflow-dev
|
|
57
|
+
Requires-Dist: mypy; extra == "tensorflow-dev"
|
|
58
|
+
Requires-Dist: ipywidgets; extra == "tensorflow-dev"
|
|
59
|
+
Requires-Dist: mkdocs-jupyter; extra == "tensorflow-dev"
|
|
60
|
+
Requires-Dist: mkdocstrings-python; extra == "tensorflow-dev"
|
|
61
|
+
Requires-Dist: flake8; extra == "tensorflow-dev"
|
|
62
|
+
Requires-Dist: setuptools; extra == "tensorflow-dev"
|
|
63
|
+
Requires-Dist: pre-commit; extra == "tensorflow-dev"
|
|
64
|
+
Requires-Dist: tox; extra == "tensorflow-dev"
|
|
65
|
+
Requires-Dist: black; extra == "tensorflow-dev"
|
|
66
|
+
Requires-Dist: ruff; extra == "tensorflow-dev"
|
|
67
|
+
Requires-Dist: ipython; extra == "tensorflow-dev"
|
|
68
|
+
Requires-Dist: ipykernel; extra == "tensorflow-dev"
|
|
69
|
+
Requires-Dist: pytest; extra == "tensorflow-dev"
|
|
70
|
+
Requires-Dist: pylint; extra == "tensorflow-dev"
|
|
71
|
+
Requires-Dist: mypy; extra == "tensorflow-dev"
|
|
72
|
+
Requires-Dist: mkdocs; extra == "tensorflow-dev"
|
|
73
|
+
Requires-Dist: mkdocs-material; extra == "tensorflow-dev"
|
|
74
|
+
Requires-Dist: mkdocstrings; extra == "tensorflow-dev"
|
|
75
|
+
Requires-Dist: mknotebooks; extra == "tensorflow-dev"
|
|
76
|
+
Requires-Dist: mike; extra == "tensorflow-dev"
|
|
77
|
+
Requires-Dist: bump2version; extra == "tensorflow-dev"
|
|
78
|
+
Requires-Dist: docsig; extra == "tensorflow-dev"
|
|
79
|
+
Requires-Dist: no_implicit_optional; extra == "tensorflow-dev"
|
|
80
|
+
Requires-Dist: numpy==1.26.4; extra == "tensorflow-dev"
|
|
81
|
+
Requires-Dist: tensorflow==2.11.0; extra == "tensorflow-dev"
|
|
82
|
+
Requires-Dist: tensorflow_datasets; extra == "tensorflow-dev"
|
|
83
|
+
Requires-Dist: tensorflow_probability==0.19.0; extra == "tensorflow-dev"
|
|
16
84
|
Provides-Extra: torch-dev
|
|
85
|
+
Requires-Dist: mypy; extra == "torch-dev"
|
|
86
|
+
Requires-Dist: ipywidgets; extra == "torch-dev"
|
|
87
|
+
Requires-Dist: mkdocs-jupyter; extra == "torch-dev"
|
|
88
|
+
Requires-Dist: mkdocstrings-python; extra == "torch-dev"
|
|
89
|
+
Requires-Dist: flake8; extra == "torch-dev"
|
|
90
|
+
Requires-Dist: setuptools; extra == "torch-dev"
|
|
91
|
+
Requires-Dist: pre-commit; extra == "torch-dev"
|
|
92
|
+
Requires-Dist: tox; extra == "torch-dev"
|
|
93
|
+
Requires-Dist: black; extra == "torch-dev"
|
|
94
|
+
Requires-Dist: ruff; extra == "torch-dev"
|
|
95
|
+
Requires-Dist: ipython; extra == "torch-dev"
|
|
96
|
+
Requires-Dist: ipykernel; extra == "torch-dev"
|
|
97
|
+
Requires-Dist: pytest; extra == "torch-dev"
|
|
98
|
+
Requires-Dist: pylint; extra == "torch-dev"
|
|
99
|
+
Requires-Dist: mypy; extra == "torch-dev"
|
|
100
|
+
Requires-Dist: mkdocs; extra == "torch-dev"
|
|
101
|
+
Requires-Dist: mkdocs-material; extra == "torch-dev"
|
|
102
|
+
Requires-Dist: mkdocstrings; extra == "torch-dev"
|
|
103
|
+
Requires-Dist: mknotebooks; extra == "torch-dev"
|
|
104
|
+
Requires-Dist: mike; extra == "torch-dev"
|
|
105
|
+
Requires-Dist: bump2version; extra == "torch-dev"
|
|
106
|
+
Requires-Dist: docsig; extra == "torch-dev"
|
|
107
|
+
Requires-Dist: no_implicit_optional; extra == "torch-dev"
|
|
108
|
+
Requires-Dist: numpy==1.26.4; extra == "torch-dev"
|
|
109
|
+
Requires-Dist: timm; extra == "torch-dev"
|
|
110
|
+
Requires-Dist: torch==1.13.1; extra == "torch-dev"
|
|
111
|
+
Requires-Dist: torchvision==0.14.1; extra == "torch-dev"
|
|
17
112
|
Provides-Extra: tensorflow
|
|
113
|
+
Requires-Dist: tensorflow==2.11.0; extra == "tensorflow"
|
|
114
|
+
Requires-Dist: tensorflow_datasets; extra == "tensorflow"
|
|
115
|
+
Requires-Dist: tensorflow_probability==0.19.0; extra == "tensorflow"
|
|
18
116
|
Provides-Extra: torch
|
|
117
|
+
Requires-Dist: timm; extra == "torch"
|
|
118
|
+
Requires-Dist: torch==1.13.1; extra == "torch"
|
|
119
|
+
Requires-Dist: torchvision==0.14.1; extra == "torch"
|
|
19
120
|
Provides-Extra: docs
|
|
20
|
-
|
|
121
|
+
Requires-Dist: mkdocs; extra == "docs"
|
|
122
|
+
Requires-Dist: mkdocs-material; extra == "docs"
|
|
123
|
+
Requires-Dist: mkdocstrings; extra == "docs"
|
|
124
|
+
Requires-Dist: mknotebooks; extra == "docs"
|
|
125
|
+
Requires-Dist: ipython; extra == "docs"
|
|
126
|
+
Dynamic: author
|
|
127
|
+
Dynamic: author-email
|
|
128
|
+
Dynamic: classifier
|
|
129
|
+
Dynamic: description
|
|
130
|
+
Dynamic: description-content-type
|
|
131
|
+
Dynamic: license-file
|
|
132
|
+
Dynamic: provides-extra
|
|
133
|
+
Dynamic: requires-dist
|
|
134
|
+
Dynamic: summary
|
|
21
135
|
|
|
22
136
|
|
|
23
137
|
<!-- Banner section -->
|
|
@@ -33,29 +147,23 @@ License-File: LICENSE
|
|
|
33
147
|
<!-- Badge section -->
|
|
34
148
|
<div align="center">
|
|
35
149
|
<a href="#">
|
|
36
|
-
<img src="https://img.shields.io/badge/python-3.8%2B-blue">
|
|
37
|
-
</a>
|
|
150
|
+
<img src="https://img.shields.io/badge/python-3.8%2B-blue"></a>
|
|
38
151
|
<a href="https://github.com/deel-ai/oodeel/actions/workflows/python-linters.yml">
|
|
39
|
-
<img alt="Flake8" src="https://github.com/deel-ai/oodeel/actions/workflows/python-linters.yml/badge.svg">
|
|
40
|
-
</a>
|
|
152
|
+
<img alt="Flake8" src="https://github.com/deel-ai/oodeel/actions/workflows/python-linters.yml/badge.svg"></a>
|
|
41
153
|
<a href="https://github.com/deel-ai/oodeel/actions/workflows/python-tests-tf.yml">
|
|
42
|
-
<img alt="Tests tf" src="https://github.com/deel-ai/oodeel/actions/workflows/python-tests-tf.yml/badge.svg">
|
|
43
|
-
</a>
|
|
154
|
+
<img alt="Tests tf" src="https://github.com/deel-ai/oodeel/actions/workflows/python-tests-tf.yml/badge.svg"></a>
|
|
44
155
|
<a href="https://github.com/deel-ai/oodeel/actions/workflows/python-tests-torch.yml">
|
|
45
|
-
<img alt="Tests torch" src="https://github.com/deel-ai/oodeel/actions/workflows/python-tests-torch.yml/badge.svg">
|
|
46
|
-
</a>
|
|
156
|
+
<img alt="Tests torch" src="https://github.com/deel-ai/oodeel/actions/workflows/python-tests-torch.yml/badge.svg"></a>
|
|
47
157
|
<a href="https://github.com/deel-ai/oodeel/actions/workflows/python-coverage-shield.yml">
|
|
48
|
-
<img alt="Coverage" src="https://github.com/deel-ai/oodeel/raw/gh-shields/coverage.svg">
|
|
49
|
-
</a>
|
|
158
|
+
<img alt="Coverage" src="https://github.com/deel-ai/oodeel/raw/gh-shields/coverage.svg"></a>
|
|
50
159
|
<a href="https://github.com/deel-ai/oodeel/blob/master/LICENSE">
|
|
51
|
-
<img alt="License MIT" src="https://img.shields.io/badge/License-MIT-efefef">
|
|
52
|
-
</a>
|
|
160
|
+
<img alt="License MIT" src="https://img.shields.io/badge/License-MIT-efefef"></a>
|
|
53
161
|
</div>
|
|
54
162
|
<br>
|
|
55
163
|
|
|
56
164
|
<!-- Short description of your library -->
|
|
57
165
|
|
|
58
|
-
<b>Oodeel</b> is a library that performs post-hoc deep OOD detection on already trained neural network image classifiers. The philosophy of the library is to favor quality over quantity and to foster easy adoption. As a result, we provide a simple, compact and easily customizable API and carefully integrate and test each proposed baseline into a coherent framework that is designed to enable their use in tensorflow **and** pytorch. You can find the documentation [here](https://deel-ai.github.io/oodeel/).
|
|
166
|
+
<b>Oodeel</b> is a library that performs post-hoc deep OOD (Out-of-Distribution) detection on already trained neural network image classifiers. The philosophy of the library is to favor quality over quantity and to foster easy adoption. As a result, we provide a simple, compact and easily customizable API and carefully integrate and test each proposed baseline into a coherent framework that is designed to enable their use in tensorflow **and** pytorch. You can find the documentation [here](https://deel-ai.github.io/oodeel/).
|
|
59
167
|
|
|
60
168
|
```python
|
|
61
169
|
from oodeel.methods import MLS
|
|
@@ -75,7 +183,8 @@ scores, info = mls.score(ds) # ds is a tf.data.Dataset or a torch.DataLoader
|
|
|
75
183
|
- [Contributing](#contributing)
|
|
76
184
|
- [See Also](#see-also)
|
|
77
185
|
- [Acknowledgments](#acknowledgments)
|
|
78
|
-
- [
|
|
186
|
+
- [Creators](#creators)
|
|
187
|
+
- [Citation](#citation)
|
|
79
188
|
- [License](#license)
|
|
80
189
|
|
|
81
190
|
# Installation
|
|
@@ -202,7 +311,11 @@ Currently, **oodeel** includes the following baselines:
|
|
|
202
311
|
| ReAct | [ReAct: Out-of-distribution Detection With Rectified Activations](http://arxiv.org/abs/2111.12797) | NeurIPS 2021 | avail [tensorflow](docs/notebooks/tensorflow/demo_react_tf.ipynb) or [torch](docs/notebooks/torch/demo_react_torch.ipynb) |
|
|
203
312
|
| NMD | [Neural Mean Discrepancy for Efficient Out-of-Distribution Detection](https://openaccess.thecvf.com/content/CVPR2022/html/Dong_Neural_Mean_Discrepancy_for_Efficient_Out-of-Distribution_Detection_CVPR_2022_paper.html) | CVPR 2022 | planned |
|
|
204
313
|
| Gram | [Detecting Out-of-Distribution Examples with Gram Matrices](https://proceedings.mlr.press/v119/sastry20a.html) | ICML 2020 | avail [tensorflow](docs/notebooks/tensorflow/demo_gram_tf.ipynb) or [torch](docs/notebooks/torch/demo_gram_torch.ipynb) |
|
|
205
|
-
|
|
314
|
+
| GEN | [GEN: Pushing the Limits of Softmax-Based Out-of-Distribution Detection](https://openaccess.thecvf.com/content/CVPR2023/html/Liu_GEN_Pushing_the_Limits_of_Softmax-Based_Out-of-Distribution_Detection_CVPR_2023_paper.html) | CVPR 2023 | avail [tensorflow](docs/notebooks/tensorflow/demo_gen_tf.ipynb) or [torch](docs/notebooks/torch/demo_gen_torch.ipynb) |
|
|
315
|
+
| RMDS | [A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection](https://arxiv.org/abs/2106.09022) | preprint | avail [tensorflow](docs/notebooks/tensorflow/demo_rmds_tf.ipynb) or [torch](docs/notebooks/torch/demo_rmds_torch.ipynb) |
|
|
316
|
+
| SHE | [Out-of-Distribution Detection based on In-Distribution Data Patterns Memorization with Modern Hopfield Energy](https://openreview.net/forum?id=KkazG4lgKL) | ICLR 2023 | avail [tensorflow](docs/notebooks/tensorflow/demo_she_tf.ipynb) or [torch](docs/notebooks/torch/demo_she_torch.ipynb) |
|
|
317
|
+
| ASH | [Extremely Simple Activation Shaping for Out-of-Distribution Detection](http://arxiv.org/abs/2310.00227) | ICLR 2023 | avail [tensorflow](docs/notebooks/tensorflow/demo_ash_tf.ipynb) or [torch](docs/notebooks/torch/demo_ash_torch.ipynb) |
|
|
318
|
+
| SCALE | [Scaling for Training Time and Post-hoc Out-of-distribution Detection Enhancement](https://arxiv.org/abs/2111.12797) | ICLR 2024 | avail [tensorflow](docs/notebooks/tensorflow/demo_scale_tf.ipynb) or [torch](docs/notebooks/torch/demo_scale_torch.ipynb) |
|
|
206
319
|
|
|
207
320
|
|
|
208
321
|
|
|
@@ -252,6 +365,19 @@ This project received funding from the French ”Investing for the Future – PI
|
|
|
252
365
|
|
|
253
366
|
The library was created by Paul Novello to streamline DEEL research on post-hoc deep OOD methods and foster their adoption by DEEL industrial partners. He was soon joined by Yann Pequignot, Yannick Prudent, Corentin Friedrich and Matthieu Le Goff.
|
|
254
367
|
|
|
368
|
+
# Citation
|
|
369
|
+
|
|
370
|
+
If you use OODEEL for your research project, please consider citing:
|
|
371
|
+
```
|
|
372
|
+
@misc{oodeel,
|
|
373
|
+
author = {Novello, Paul and Prudent, Yannick and Friedrich, Corentin and Pequignot, Yann and Le Goff, Matthieu},
|
|
374
|
+
title = {OODEEL, a simple, compact, and hackable post-hoc deep OOD detection for already trained tensorflow or pytorch image classifiers.},
|
|
375
|
+
year = {2023},
|
|
376
|
+
publisher = {GitHub},
|
|
377
|
+
journal = {GitHub repository},
|
|
378
|
+
howpublished = {\url{https://github.com/deel-ai/oodeel}},
|
|
379
|
+
}
|
|
380
|
+
```
|
|
255
381
|
# License
|
|
256
382
|
|
|
257
383
|
The package is released under [MIT license](LICENSE).
|
|
@@ -12,29 +12,23 @@
|
|
|
12
12
|
<!-- Badge section -->
|
|
13
13
|
<div align="center">
|
|
14
14
|
<a href="#">
|
|
15
|
-
<img src="https://img.shields.io/badge/python-3.8%2B-blue">
|
|
16
|
-
</a>
|
|
15
|
+
<img src="https://img.shields.io/badge/python-3.8%2B-blue"></a>
|
|
17
16
|
<a href="https://github.com/deel-ai/oodeel/actions/workflows/python-linters.yml">
|
|
18
|
-
<img alt="Flake8" src="https://github.com/deel-ai/oodeel/actions/workflows/python-linters.yml/badge.svg">
|
|
19
|
-
</a>
|
|
17
|
+
<img alt="Flake8" src="https://github.com/deel-ai/oodeel/actions/workflows/python-linters.yml/badge.svg"></a>
|
|
20
18
|
<a href="https://github.com/deel-ai/oodeel/actions/workflows/python-tests-tf.yml">
|
|
21
|
-
<img alt="Tests tf" src="https://github.com/deel-ai/oodeel/actions/workflows/python-tests-tf.yml/badge.svg">
|
|
22
|
-
</a>
|
|
19
|
+
<img alt="Tests tf" src="https://github.com/deel-ai/oodeel/actions/workflows/python-tests-tf.yml/badge.svg"></a>
|
|
23
20
|
<a href="https://github.com/deel-ai/oodeel/actions/workflows/python-tests-torch.yml">
|
|
24
|
-
<img alt="Tests torch" src="https://github.com/deel-ai/oodeel/actions/workflows/python-tests-torch.yml/badge.svg">
|
|
25
|
-
</a>
|
|
21
|
+
<img alt="Tests torch" src="https://github.com/deel-ai/oodeel/actions/workflows/python-tests-torch.yml/badge.svg"></a>
|
|
26
22
|
<a href="https://github.com/deel-ai/oodeel/actions/workflows/python-coverage-shield.yml">
|
|
27
|
-
<img alt="Coverage" src="https://github.com/deel-ai/oodeel/raw/gh-shields/coverage.svg">
|
|
28
|
-
</a>
|
|
23
|
+
<img alt="Coverage" src="https://github.com/deel-ai/oodeel/raw/gh-shields/coverage.svg"></a>
|
|
29
24
|
<a href="https://github.com/deel-ai/oodeel/blob/master/LICENSE">
|
|
30
|
-
<img alt="License MIT" src="https://img.shields.io/badge/License-MIT-efefef">
|
|
31
|
-
</a>
|
|
25
|
+
<img alt="License MIT" src="https://img.shields.io/badge/License-MIT-efefef"></a>
|
|
32
26
|
</div>
|
|
33
27
|
<br>
|
|
34
28
|
|
|
35
29
|
<!-- Short description of your library -->
|
|
36
30
|
|
|
37
|
-
<b>Oodeel</b> is a library that performs post-hoc deep OOD detection on already trained neural network image classifiers. The philosophy of the library is to favor quality over quantity and to foster easy adoption. As a result, we provide a simple, compact and easily customizable API and carefully integrate and test each proposed baseline into a coherent framework that is designed to enable their use in tensorflow **and** pytorch. You can find the documentation [here](https://deel-ai.github.io/oodeel/).
|
|
31
|
+
<b>Oodeel</b> is a library that performs post-hoc deep OOD (Out-of-Distribution) detection on already trained neural network image classifiers. The philosophy of the library is to favor quality over quantity and to foster easy adoption. As a result, we provide a simple, compact and easily customizable API and carefully integrate and test each proposed baseline into a coherent framework that is designed to enable their use in tensorflow **and** pytorch. You can find the documentation [here](https://deel-ai.github.io/oodeel/).
|
|
38
32
|
|
|
39
33
|
```python
|
|
40
34
|
from oodeel.methods import MLS
|
|
@@ -54,7 +48,8 @@ scores, info = mls.score(ds) # ds is a tf.data.Dataset or a torch.DataLoader
|
|
|
54
48
|
- [Contributing](#contributing)
|
|
55
49
|
- [See Also](#see-also)
|
|
56
50
|
- [Acknowledgments](#acknowledgments)
|
|
57
|
-
- [
|
|
51
|
+
- [Creators](#creators)
|
|
52
|
+
- [Citation](#citation)
|
|
58
53
|
- [License](#license)
|
|
59
54
|
|
|
60
55
|
# Installation
|
|
@@ -181,7 +176,11 @@ Currently, **oodeel** includes the following baselines:
|
|
|
181
176
|
| ReAct | [ReAct: Out-of-distribution Detection With Rectified Activations](http://arxiv.org/abs/2111.12797) | NeurIPS 2021 | avail [tensorflow](docs/notebooks/tensorflow/demo_react_tf.ipynb) or [torch](docs/notebooks/torch/demo_react_torch.ipynb) |
|
|
182
177
|
| NMD | [Neural Mean Discrepancy for Efficient Out-of-Distribution Detection](https://openaccess.thecvf.com/content/CVPR2022/html/Dong_Neural_Mean_Discrepancy_for_Efficient_Out-of-Distribution_Detection_CVPR_2022_paper.html) | CVPR 2022 | planned |
|
|
183
178
|
| Gram | [Detecting Out-of-Distribution Examples with Gram Matrices](https://proceedings.mlr.press/v119/sastry20a.html) | ICML 2020 | avail [tensorflow](docs/notebooks/tensorflow/demo_gram_tf.ipynb) or [torch](docs/notebooks/torch/demo_gram_torch.ipynb) |
|
|
184
|
-
|
|
179
|
+
| GEN | [GEN: Pushing the Limits of Softmax-Based Out-of-Distribution Detection](https://openaccess.thecvf.com/content/CVPR2023/html/Liu_GEN_Pushing_the_Limits_of_Softmax-Based_Out-of-Distribution_Detection_CVPR_2023_paper.html) | CVPR 2023 | avail [tensorflow](docs/notebooks/tensorflow/demo_gen_tf.ipynb) or [torch](docs/notebooks/torch/demo_gen_torch.ipynb) |
|
|
180
|
+
| RMDS | [A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection](https://arxiv.org/abs/2106.09022) | preprint | avail [tensorflow](docs/notebooks/tensorflow/demo_rmds_tf.ipynb) or [torch](docs/notebooks/torch/demo_rmds_torch.ipynb) |
|
|
181
|
+
| SHE | [Out-of-Distribution Detection based on In-Distribution Data Patterns Memorization with Modern Hopfield Energy](https://openreview.net/forum?id=KkazG4lgKL) | ICLR 2023 | avail [tensorflow](docs/notebooks/tensorflow/demo_she_tf.ipynb) or [torch](docs/notebooks/torch/demo_she_torch.ipynb) |
|
|
182
|
+
| ASH | [Extremely Simple Activation Shaping for Out-of-Distribution Detection](http://arxiv.org/abs/2310.00227) | ICLR 2023 | avail [tensorflow](docs/notebooks/tensorflow/demo_ash_tf.ipynb) or [torch](docs/notebooks/torch/demo_ash_torch.ipynb) |
|
|
183
|
+
| SCALE | [Scaling for Training Time and Post-hoc Out-of-distribution Detection Enhancement](https://arxiv.org/abs/2111.12797) | ICLR 2024 | avail [tensorflow](docs/notebooks/tensorflow/demo_scale_tf.ipynb) or [torch](docs/notebooks/torch/demo_scale_torch.ipynb) |
|
|
185
184
|
|
|
186
185
|
|
|
187
186
|
|
|
@@ -231,6 +230,19 @@ This project received funding from the French ”Investing for the Future – PI
|
|
|
231
230
|
|
|
232
231
|
The library was created by Paul Novello to streamline DEEL research on post-hoc deep OOD methods and foster their adoption by DEEL industrial partners. He was soon joined by Yann Pequignot, Yannick Prudent, Corentin Friedrich and Matthieu Le Goff.
|
|
233
232
|
|
|
233
|
+
# Citation
|
|
234
|
+
|
|
235
|
+
If you use OODEEL for your research project, please consider citing:
|
|
236
|
+
```
|
|
237
|
+
@misc{oodeel,
|
|
238
|
+
author = {Novello, Paul and Prudent, Yannick and Friedrich, Corentin and Pequignot, Yann and Le Goff, Matthieu},
|
|
239
|
+
title = {OODEEL, a simple, compact, and hackable post-hoc deep OOD detection for already trained tensorflow or pytorch image classifiers.},
|
|
240
|
+
year = {2023},
|
|
241
|
+
publisher = {GitHub},
|
|
242
|
+
journal = {GitHub repository},
|
|
243
|
+
howpublished = {\url{https://github.com/deel-ai/oodeel}},
|
|
244
|
+
}
|
|
245
|
+
```
|
|
234
246
|
# License
|
|
235
247
|
|
|
236
248
|
The package is released under [MIT license](LICENSE).
|
|
@@ -20,4 +20,5 @@
|
|
|
20
20
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
21
21
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
22
22
|
# SOFTWARE.
|
|
23
|
-
from .
|
|
23
|
+
from .data_handler import load_data_handler
|
|
24
|
+
from .deprecated.DEPRECATED_ooddataset import OODDataset
|
|
@@ -0,0 +1,304 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
|
|
3
|
+
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
|
|
4
|
+
# CRIAQ and ANITI - https://www.deel.ai/
|
|
5
|
+
#
|
|
6
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
7
|
+
# of this software and associated documentation files (the "Software"), to deal
|
|
8
|
+
# in the Software without restriction, including without limitation the rights
|
|
9
|
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
10
|
+
# copies of the Software, and to permit persons to whom the Software is
|
|
11
|
+
# furnished to do so, subject to the following conditions:
|
|
12
|
+
#
|
|
13
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
14
|
+
# copies or substantial portions of the Software.
|
|
15
|
+
#
|
|
16
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
17
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
18
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
19
|
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
20
|
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
21
|
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
22
|
+
# SOFTWARE.
|
|
23
|
+
import importlib.util
|
|
24
|
+
from abc import ABC
|
|
25
|
+
from abc import abstractmethod
|
|
26
|
+
|
|
27
|
+
import numpy as np
|
|
28
|
+
|
|
29
|
+
from ..types import Callable
|
|
30
|
+
from ..types import DatasetType
|
|
31
|
+
from ..types import ItemType
|
|
32
|
+
from ..types import Optional
|
|
33
|
+
from ..types import TensorType
|
|
34
|
+
from ..types import Tuple
|
|
35
|
+
from ..types import Union
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def get_backend():
|
|
39
|
+
"""Detects whether TensorFlow or PyTorch is available and returns
|
|
40
|
+
the preferred backend."""
|
|
41
|
+
available_backends = []
|
|
42
|
+
if importlib.util.find_spec("tensorflow"):
|
|
43
|
+
available_backends.append("tensorflow")
|
|
44
|
+
if importlib.util.find_spec("torch"):
|
|
45
|
+
available_backends.append("torch")
|
|
46
|
+
|
|
47
|
+
if len(available_backends) == 1:
|
|
48
|
+
return available_backends[0]
|
|
49
|
+
elif len(available_backends) == 0:
|
|
50
|
+
raise ImportError("Neither TensorFlow nor PyTorch is installed.")
|
|
51
|
+
else:
|
|
52
|
+
raise ImportError(
|
|
53
|
+
"Both TensorFlow and PyTorch are installed. Please specify the backend."
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def load_data_handler(backend: str = None):
|
|
58
|
+
if backend is None:
|
|
59
|
+
backend = get_backend()
|
|
60
|
+
|
|
61
|
+
if backend == "tensorflow":
|
|
62
|
+
from .tf_data_handler import TFDataHandler
|
|
63
|
+
|
|
64
|
+
return TFDataHandler()
|
|
65
|
+
|
|
66
|
+
elif backend == "torch":
|
|
67
|
+
from .torch_data_handler import TorchDataHandler
|
|
68
|
+
|
|
69
|
+
return TorchDataHandler()
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
class DataHandler(ABC):
|
|
73
|
+
"""
|
|
74
|
+
Class to manage Datasets. The aim is to provide a simple interface
|
|
75
|
+
for working with datasets (torch, tensorflow or other...) and manage them without
|
|
76
|
+
having to use library-specific syntax.
|
|
77
|
+
"""
|
|
78
|
+
|
|
79
|
+
def __init__(self):
|
|
80
|
+
self.backend = None
|
|
81
|
+
self.channel_order = None
|
|
82
|
+
|
|
83
|
+
def split_by_class(
|
|
84
|
+
self,
|
|
85
|
+
dataset: DatasetType,
|
|
86
|
+
in_labels: Optional[Union[np.ndarray, list]] = None,
|
|
87
|
+
out_labels: Optional[Union[np.ndarray, list]] = None,
|
|
88
|
+
) -> Optional[Tuple[DatasetType]]:
|
|
89
|
+
"""Filter the dataset by assigning ood labels depending on labels
|
|
90
|
+
value (typically, class id).
|
|
91
|
+
|
|
92
|
+
Args:
|
|
93
|
+
in_labels (Optional[Union[np.ndarray, list]], optional): set of labels
|
|
94
|
+
to be considered as in-distribution. Defaults to None.
|
|
95
|
+
out_labels (Optional[Union[np.ndarray, list]], optional): set of labels
|
|
96
|
+
to be considered as out-of-distribution. Defaults to None.
|
|
97
|
+
|
|
98
|
+
Returns:
|
|
99
|
+
Optional[Tuple[OODDataset]]: Tuple of in-distribution and
|
|
100
|
+
out-of-distribution OODDatasets
|
|
101
|
+
"""
|
|
102
|
+
# Make sure the dataset has labels
|
|
103
|
+
assert (in_labels is not None) or (
|
|
104
|
+
out_labels is not None
|
|
105
|
+
), "specify labels to filter with"
|
|
106
|
+
assert self.get_item_length(dataset) >= 2, "the dataset has no labels"
|
|
107
|
+
|
|
108
|
+
# Filter the dataset depending on in_labels and out_labels given
|
|
109
|
+
if (out_labels is not None) and (in_labels is not None):
|
|
110
|
+
in_data = self.filter_by_value(dataset, "label", in_labels)
|
|
111
|
+
out_data = self.filter_by_value(dataset, "label", out_labels)
|
|
112
|
+
|
|
113
|
+
if out_labels is None:
|
|
114
|
+
in_data = self.filter_by_value(dataset, "label", in_labels)
|
|
115
|
+
out_data = self.filter_by_value(dataset, "label", in_labels, excluded=True)
|
|
116
|
+
|
|
117
|
+
elif in_labels is None:
|
|
118
|
+
in_data = self.filter_by_value(dataset, "label", out_labels, excluded=True)
|
|
119
|
+
out_data = self.filter_by_value(dataset, "label", out_labels)
|
|
120
|
+
|
|
121
|
+
# Return the filtered OODDatasets
|
|
122
|
+
return in_data, out_data
|
|
123
|
+
|
|
124
|
+
@classmethod
|
|
125
|
+
@abstractmethod
|
|
126
|
+
def prepare(
|
|
127
|
+
cls,
|
|
128
|
+
dataset: DatasetType,
|
|
129
|
+
batch_size: int,
|
|
130
|
+
preprocess_fn: Optional[Callable] = None,
|
|
131
|
+
augment_fn: Optional[Callable] = None,
|
|
132
|
+
columns: Optional[list] = None,
|
|
133
|
+
shuffle: bool = False,
|
|
134
|
+
dict_based_fns: bool = True,
|
|
135
|
+
return_tuple: bool = True,
|
|
136
|
+
**kwargs_prepare,
|
|
137
|
+
) -> DatasetType:
|
|
138
|
+
"""Prepare dataset for scoring or training
|
|
139
|
+
|
|
140
|
+
Args:
|
|
141
|
+
batch_size (int): Batch size
|
|
142
|
+
preprocess_fn (Callable, optional): Preprocessing function to apply to
|
|
143
|
+
the dataset. Defaults to None.
|
|
144
|
+
augment_fn (Callable, optional): Augment function to be used (when the
|
|
145
|
+
returned dataset is to be used for training). Defaults to None.
|
|
146
|
+
columns (list, optional): List of columns
|
|
147
|
+
that will be returned. Keep all columns if None. Defaults to None.
|
|
148
|
+
shuffle (bool, optional): To shuffle the returned dataset or not.
|
|
149
|
+
Defaults to False.
|
|
150
|
+
dict_based_fns (bool): Whether to use preprocess and DA functions as dict
|
|
151
|
+
based (if True) or as tuple based (if False). Defaults to True.
|
|
152
|
+
return_tuple (bool, optional): Whether to return each dataset item
|
|
153
|
+
as a tuple. Defaults to True.
|
|
154
|
+
kwargs_prepare (dict): Additional parameters to be passed to the
|
|
155
|
+
data_handler for backend specific preparation.
|
|
156
|
+
|
|
157
|
+
|
|
158
|
+
Returns:
|
|
159
|
+
DatasetType: prepared dataset
|
|
160
|
+
"""
|
|
161
|
+
raise NotImplementedError()
|
|
162
|
+
|
|
163
|
+
@staticmethod
|
|
164
|
+
@abstractmethod
|
|
165
|
+
def load_dataset_from_arrays(
|
|
166
|
+
dataset_id: ItemType, columns: Optional[list] = None
|
|
167
|
+
) -> DatasetType:
|
|
168
|
+
"""Load a DatasetType from a np.ndarray / Tensor
|
|
169
|
+
|
|
170
|
+
Args:
|
|
171
|
+
dataset_id (ItemType): numpy array(s) to load.
|
|
172
|
+
columns (list, optional): Column names to assign. If None,
|
|
173
|
+
assigned as "input_i" for i-th column. Defaults to None.
|
|
174
|
+
|
|
175
|
+
Returns:
|
|
176
|
+
DatasetType
|
|
177
|
+
"""
|
|
178
|
+
raise NotImplementedError()
|
|
179
|
+
|
|
180
|
+
@staticmethod
|
|
181
|
+
@abstractmethod
|
|
182
|
+
def load_custom_dataset(
|
|
183
|
+
dataset_id: DatasetType, columns: Optional[list] = None
|
|
184
|
+
) -> DatasetType:
|
|
185
|
+
"""Load a custom dataset by ensuring it is properly formatted.
|
|
186
|
+
|
|
187
|
+
Args:
|
|
188
|
+
dataset_id (DatasetType): dataset
|
|
189
|
+
columns (list, optional): Column names to use for elements if dataset_id is
|
|
190
|
+
tuple based. If None, assigned as "input_i"
|
|
191
|
+
for i-th column. Defaults to None.
|
|
192
|
+
|
|
193
|
+
Returns:
|
|
194
|
+
A properly formatted dataset.
|
|
195
|
+
"""
|
|
196
|
+
raise NotImplementedError()
|
|
197
|
+
|
|
198
|
+
@staticmethod
|
|
199
|
+
@abstractmethod
|
|
200
|
+
def map_ds(dataset: DatasetType, map_fn: Callable) -> DatasetType:
|
|
201
|
+
"""Map a function to a Dataset
|
|
202
|
+
|
|
203
|
+
Args:
|
|
204
|
+
dataset (DatasetType): Dataset to map the function to
|
|
205
|
+
map_fn (Callable): Function to map
|
|
206
|
+
|
|
207
|
+
Returns:
|
|
208
|
+
DatasetType: Mapped dataset
|
|
209
|
+
"""
|
|
210
|
+
raise NotImplementedError()
|
|
211
|
+
|
|
212
|
+
@staticmethod
|
|
213
|
+
@abstractmethod
|
|
214
|
+
def filter_by_value(
|
|
215
|
+
dataset: DatasetType,
|
|
216
|
+
column_name: str,
|
|
217
|
+
values: list,
|
|
218
|
+
excluded: bool = False,
|
|
219
|
+
) -> DatasetType:
|
|
220
|
+
"""Filter the dataset by checking the value of a column is in `values`
|
|
221
|
+
|
|
222
|
+
Args:
|
|
223
|
+
dataset (Dataset): Dataset to filter
|
|
224
|
+
column_name (str): Column to filter the dataset with
|
|
225
|
+
values (list): Column values to keep (if excluded is False)
|
|
226
|
+
or to exclude
|
|
227
|
+
excluded (bool, optional): To keep (False) or exclude (True) the samples
|
|
228
|
+
with column value included in Values. Defaults to False.
|
|
229
|
+
|
|
230
|
+
Returns:
|
|
231
|
+
DatasetType: Filtered dataset
|
|
232
|
+
"""
|
|
233
|
+
raise NotImplementedError()
|
|
234
|
+
|
|
235
|
+
@staticmethod
|
|
236
|
+
@abstractmethod
|
|
237
|
+
def get_item_length(dataset: DatasetType) -> int:
|
|
238
|
+
"""Number of elements in a dataset item
|
|
239
|
+
|
|
240
|
+
Args:
|
|
241
|
+
dataset (DatasetType): Dataset
|
|
242
|
+
|
|
243
|
+
Returns:
|
|
244
|
+
int: Item length
|
|
245
|
+
"""
|
|
246
|
+
raise NotImplementedError()
|
|
247
|
+
|
|
248
|
+
@staticmethod
|
|
249
|
+
@abstractmethod
|
|
250
|
+
def get_dataset_length(dataset: DatasetType) -> int:
|
|
251
|
+
"""Number of items in a dataset
|
|
252
|
+
|
|
253
|
+
Args:
|
|
254
|
+
dataset (DatasetType): Dataset
|
|
255
|
+
|
|
256
|
+
Returns:
|
|
257
|
+
int: Dataset length
|
|
258
|
+
"""
|
|
259
|
+
raise NotImplementedError()
|
|
260
|
+
|
|
261
|
+
@staticmethod
|
|
262
|
+
@abstractmethod
|
|
263
|
+
def get_column_elements_shape(
|
|
264
|
+
dataset: DatasetType, column_name: Union[str, int]
|
|
265
|
+
) -> tuple:
|
|
266
|
+
"""Get the shape of the elements of a column of dataset identified by
|
|
267
|
+
column_name
|
|
268
|
+
|
|
269
|
+
Args:
|
|
270
|
+
dataset (Dataset): a Dataset
|
|
271
|
+
column_name (Union[str, int]): The column name to get
|
|
272
|
+
the element shape from.
|
|
273
|
+
|
|
274
|
+
Returns:
|
|
275
|
+
tuple: the shape of an element from column_name
|
|
276
|
+
"""
|
|
277
|
+
raise NotImplementedError()
|
|
278
|
+
|
|
279
|
+
@staticmethod
|
|
280
|
+
@abstractmethod
|
|
281
|
+
def get_input_from_dataset_item(elem: ItemType) -> TensorType:
|
|
282
|
+
"""Get the tensor that is to be feed as input to a model from a dataset element.
|
|
283
|
+
|
|
284
|
+
Args:
|
|
285
|
+
elem (ItemType): dataset element to extract input from
|
|
286
|
+
|
|
287
|
+
Returns:
|
|
288
|
+
TensorType: Input tensor
|
|
289
|
+
"""
|
|
290
|
+
raise NotImplementedError()
|
|
291
|
+
|
|
292
|
+
@staticmethod
|
|
293
|
+
@abstractmethod
|
|
294
|
+
def get_label_from_dataset_item(item: ItemType):
|
|
295
|
+
"""Retrieve label tensor from item as a tuple/list. Label must be at index 1
|
|
296
|
+
in the item tuple. If one-hot encoded, labels are converted to single value.
|
|
297
|
+
|
|
298
|
+
Args:
|
|
299
|
+
elem (ItemType): dataset element to extract label from
|
|
300
|
+
|
|
301
|
+
Returns:
|
|
302
|
+
Any: Label tensor
|
|
303
|
+
"""
|
|
304
|
+
raise NotImplementedError()
|
|
@@ -25,12 +25,12 @@ from abc import abstractmethod
|
|
|
25
25
|
|
|
26
26
|
import numpy as np
|
|
27
27
|
|
|
28
|
-
from
|
|
29
|
-
from
|
|
30
|
-
from
|
|
31
|
-
from
|
|
32
|
-
from
|
|
33
|
-
from
|
|
28
|
+
from ...types import Callable
|
|
29
|
+
from ...types import DatasetType
|
|
30
|
+
from ...types import ItemType
|
|
31
|
+
from ...types import Optional
|
|
32
|
+
from ...types import Tuple
|
|
33
|
+
from ...types import Union
|
|
34
34
|
|
|
35
35
|
|
|
36
36
|
class DataHandler(ABC):
|