onnxslim 0.1.82__tar.gz → 0.1.84__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (253) hide show
  1. onnxslim-0.1.84/.github/ISSUE_TEMPLATE/bug_report.md +30 -0
  2. onnxslim-0.1.84/.github/ISSUE_TEMPLATE/custom.md +10 -0
  3. onnxslim-0.1.84/.github/ISSUE_TEMPLATE/feature_request.md +20 -0
  4. {onnxslim-0.1.82 → onnxslim-0.1.84}/.github/workflows/ci.yml +1 -1
  5. onnxslim-0.1.84/.github/workflows/nightly-test.yml +90 -0
  6. {onnxslim-0.1.82 → onnxslim-0.1.84}/PKG-INFO +21 -11
  7. {onnxslim-0.1.82 → onnxslim-0.1.84}/README.md +20 -10
  8. onnxslim-0.1.84/README_CN.md +190 -0
  9. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/optimization/dead_node_elimination.py +85 -4
  10. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/elimination/slice.py +15 -8
  11. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/fusion/concat_reshape.py +3 -1
  12. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/fusion/convadd.py +23 -7
  13. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/fusion/convbn.py +24 -11
  14. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/fusion/convmul.py +26 -9
  15. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/fusion/gemm.py +7 -5
  16. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/fusion/padconv.py +5 -0
  17. onnxslim-0.1.84/onnxslim/core/shape_inference/__init__.py +378 -0
  18. onnxslim-0.1.84/onnxslim/core/shape_inference/aten_ops/__init__.py +16 -0
  19. onnxslim-0.1.84/onnxslim/core/shape_inference/aten_ops/argmax.py +47 -0
  20. onnxslim-0.1.84/onnxslim/core/shape_inference/aten_ops/bitwise_or.py +28 -0
  21. onnxslim-0.1.84/onnxslim/core/shape_inference/aten_ops/diagonal.py +52 -0
  22. onnxslim-0.1.84/onnxslim/core/shape_inference/aten_ops/embedding.py +23 -0
  23. onnxslim-0.1.84/onnxslim/core/shape_inference/aten_ops/group_norm.py +41 -0
  24. onnxslim-0.1.84/onnxslim/core/shape_inference/aten_ops/min_max.py +64 -0
  25. onnxslim-0.1.84/onnxslim/core/shape_inference/aten_ops/multinomial.py +39 -0
  26. onnxslim-0.1.84/onnxslim/core/shape_inference/aten_ops/numpy_t.py +22 -0
  27. onnxslim-0.1.84/onnxslim/core/shape_inference/aten_ops/pool2d.py +40 -0
  28. onnxslim-0.1.84/onnxslim/core/shape_inference/aten_ops/unfold.py +44 -0
  29. onnxslim-0.1.84/onnxslim/core/shape_inference/aten_ops/upsample.py +44 -0
  30. onnxslim-0.1.84/onnxslim/core/shape_inference/base.py +111 -0
  31. onnxslim-0.1.84/onnxslim/core/shape_inference/context.py +645 -0
  32. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/__init__.py +8 -0
  33. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/attention/__init__.py +15 -0
  34. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/attention/attention.py +61 -0
  35. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/attention/decoder_masked_mha.py +37 -0
  36. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/attention/gated_relative_position_bias.py +35 -0
  37. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/attention/longformer_attention.py +21 -0
  38. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/attention/multi_head_attention.py +82 -0
  39. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/attention/multi_scale_deformable_attn.py +29 -0
  40. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/attention/packed_attention.py +39 -0
  41. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/attention/packed_multi_head_attention.py +33 -0
  42. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/attention/remove_padding.py +41 -0
  43. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/attention/restore_padding.py +29 -0
  44. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/misc/__init__.py +15 -0
  45. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/misc/bias_add.py +21 -0
  46. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/misc/bias_gelu.py +21 -0
  47. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/misc/bias_split_gelu.py +30 -0
  48. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/misc/fast_gelu.py +21 -0
  49. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/misc/gelu.py +21 -0
  50. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/misc/gemm_fast_gelu.py +21 -0
  51. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/misc/gemm_float8.py +21 -0
  52. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/misc/python_op.py +67 -0
  53. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/misc/quick_gelu.py +21 -0
  54. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/misc/rotary_embedding.py +31 -0
  55. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/normalization/__init__.py +12 -0
  56. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/normalization/embed_layer_normalization.py +41 -0
  57. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/normalization/group_norm.py +21 -0
  58. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/normalization/layer_normalization.py +42 -0
  59. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/normalization/simplified_layer_normalization.py +23 -0
  60. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/normalization/skip_group_norm.py +23 -0
  61. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/normalization/skip_layer_normalization.py +26 -0
  62. onnxslim-0.1.84/onnxslim/core/shape_inference/contrib_ops/normalization/skip_simplified_layer_normalization.py +23 -0
  63. onnxslim-0.1.84/onnxslim/core/shape_inference/registry.py +90 -0
  64. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/__init__.py +11 -0
  65. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/control_flow/__init__.py +8 -0
  66. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/control_flow/if_op.py +43 -0
  67. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/control_flow/loop.py +74 -0
  68. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/control_flow/scan.py +54 -0
  69. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/__init__.py +20 -0
  70. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/_symbolic_compute.py +34 -0
  71. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/add.py +10 -0
  72. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/div.py +10 -0
  73. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/einsum.py +119 -0
  74. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/equal.py +10 -0
  75. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/floor.py +10 -0
  76. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/matmul.py +21 -0
  77. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/matmul_integer.py +23 -0
  78. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/max.py +10 -0
  79. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/min.py +10 -0
  80. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/mul.py +10 -0
  81. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/neg.py +10 -0
  82. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/reduce_prod.py +27 -0
  83. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/reduce_sum.py +53 -0
  84. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/sub.py +10 -0
  85. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/math/where.py +10 -0
  86. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/__init__.py +22 -0
  87. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/array_feature_extractor.py +32 -0
  88. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/cast.py +21 -0
  89. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/category_mapper.py +30 -0
  90. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/compress.py +39 -0
  91. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/constant.py +27 -0
  92. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/constant_of_shape.py +45 -0
  93. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/dequantize_linear.py +26 -0
  94. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/non_max_suppression.py +26 -0
  95. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/non_zero.py +26 -0
  96. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/one_hot.py +42 -0
  97. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/quantize_linear.py +29 -0
  98. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/range.py +41 -0
  99. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/relative_position_bias.py +31 -0
  100. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/resize.py +74 -0
  101. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/scatter_elements.py +31 -0
  102. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/softmax_cross_entropy_loss.py +44 -0
  103. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/misc/top_k.py +44 -0
  104. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/nn/__init__.py +18 -0
  105. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/nn/all_reduce.py +9 -0
  106. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/nn/average_pool.py +40 -0
  107. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/nn/batch_normalization.py +26 -0
  108. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/nn/conv.py +33 -0
  109. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/nn/cum_sum.py +9 -0
  110. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/nn/identity.py +9 -0
  111. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/nn/max_pool.py +9 -0
  112. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/nn/memcpy_from_host.py +9 -0
  113. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/nn/memcpy_to_host.py +9 -0
  114. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/nn/moe.py +9 -0
  115. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/nn/nhwc_conv.py +33 -0
  116. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/nn/reciprocal.py +9 -0
  117. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/nn/round.py +9 -0
  118. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/sequence/__init__.py +10 -0
  119. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/sequence/concat_from_sequence.py +40 -0
  120. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/sequence/sequence_at.py +31 -0
  121. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/sequence/sequence_insert.py +26 -0
  122. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/sequence/split_to_sequence.py +24 -0
  123. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/sequence/zip_map.py +36 -0
  124. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/__init__.py +20 -0
  125. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/concat.py +62 -0
  126. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/expand.py +36 -0
  127. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/gather.py +48 -0
  128. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/gather_elements.py +31 -0
  129. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/gather_nd.py +42 -0
  130. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/pad.py +41 -0
  131. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/reshape.py +72 -0
  132. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/shape.py +38 -0
  133. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/size.py +29 -0
  134. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/slice.py +183 -0
  135. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/split.py +57 -0
  136. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/squeeze.py +69 -0
  137. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/tile.py +41 -0
  138. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/transpose.py +30 -0
  139. onnxslim-0.1.84/onnxslim/core/shape_inference/standard_ops/tensor/unsqueeze.py +54 -0
  140. onnxslim-0.1.84/onnxslim/core/shape_inference/utils.py +244 -0
  141. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/ir/graph.py +0 -103
  142. onnxslim-0.1.84/onnxslim/third_party/symbolic_shape_infer.py +189 -0
  143. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/utils.py +4 -2
  144. {onnxslim-0.1.82 → onnxslim-0.1.84}/pyproject.toml +6 -4
  145. onnxslim-0.1.84/tests/exporters/__init__.py +0 -0
  146. onnxslim-0.1.84/tests/exporters/onnx/__init__.py +0 -0
  147. onnxslim-0.1.84/tests/exporters/onnx/test_export_cli.py +787 -0
  148. onnxslim-0.1.84/tests/exporters/onnx/utils_tests.py +392 -0
  149. onnxslim-0.1.84/tests/test_amd.py +103 -0
  150. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_dead_node_elimination.py +21 -21
  151. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_fusion_patterns.py +197 -3
  152. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_modelzoo.py +28 -1
  153. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_onnxslim.py +3 -2
  154. onnxslim-0.1.84/tests/test_ultralytics.py +170 -0
  155. onnxslim-0.1.82/.github/workflows/nightly-test.yml +0 -32
  156. onnxslim-0.1.82/onnxslim/third_party/symbolic_shape_infer.py +0 -3272
  157. {onnxslim-0.1.82 → onnxslim-0.1.84}/.codespellignore +0 -0
  158. {onnxslim-0.1.82 → onnxslim-0.1.84}/.github/FUNDING.yml +0 -0
  159. {onnxslim-0.1.82 → onnxslim-0.1.84}/.github/workflows/format.yml +0 -0
  160. {onnxslim-0.1.82 → onnxslim-0.1.84}/.github/workflows/python-publish.yml +0 -0
  161. {onnxslim-0.1.82 → onnxslim-0.1.84}/.gitignore +0 -0
  162. {onnxslim-0.1.82 → onnxslim-0.1.84}/.prettierignore +0 -0
  163. {onnxslim-0.1.82 → onnxslim-0.1.84}/CODE_OF_CONDUCT.md +0 -0
  164. {onnxslim-0.1.82 → onnxslim-0.1.84}/CONTRIBUTING.md +0 -0
  165. {onnxslim-0.1.82 → onnxslim-0.1.84}/LICENSE +0 -0
  166. {onnxslim-0.1.82 → onnxslim-0.1.84}/assets/logo/onnxslim-banner-light.svg +0 -0
  167. {onnxslim-0.1.82 → onnxslim-0.1.84}/assets/logo/onnxslim-banner.svg +0 -0
  168. {onnxslim-0.1.82 → onnxslim-0.1.84}/assets/logo/onnxslim-logo-os-bw.svg +0 -0
  169. {onnxslim-0.1.82 → onnxslim-0.1.84}/assets/logo/onnxslim-logo-os-white.svg +0 -0
  170. {onnxslim-0.1.82 → onnxslim-0.1.84}/assets/logo/onnxslim-logo-os.svg +0 -0
  171. {onnxslim-0.1.82 → onnxslim-0.1.84}/bin/onnxslim +0 -0
  172. {onnxslim-0.1.82 → onnxslim-0.1.84}/docs/_static/style.css +0 -0
  173. {onnxslim-0.1.82 → onnxslim-0.1.84}/docs/_templates/layout.html +0 -0
  174. {onnxslim-0.1.82 → onnxslim-0.1.84}/docs/conf.py +0 -0
  175. {onnxslim-0.1.82 → onnxslim-0.1.84}/docs/index.rst +0 -0
  176. {onnxslim-0.1.82 → onnxslim-0.1.84}/docs/main/toc.rst +0 -0
  177. {onnxslim-0.1.82 → onnxslim-0.1.84}/docs/requirements.txt +0 -0
  178. {onnxslim-0.1.82 → onnxslim-0.1.84}/examples/Boost-onnx-load-speed-by-10/342/200/22315-percent-with-onnxslim-python-package.ipynb" +0 -0
  179. {onnxslim-0.1.82 → onnxslim-0.1.84}/examples/common_subexpression_elimination/README.md +0 -0
  180. {onnxslim-0.1.82 → onnxslim-0.1.84}/examples/common_subexpression_elimination/cse_demo.py +0 -0
  181. {onnxslim-0.1.82 → onnxslim-0.1.84}/examples/input_shape_modification/README.md +0 -0
  182. {onnxslim-0.1.82 → onnxslim-0.1.84}/examples/model_inspect/README.md +0 -0
  183. {onnxslim-0.1.82 → onnxslim-0.1.84}/examples/output_modification/README.md +0 -0
  184. {onnxslim-0.1.82 → onnxslim-0.1.84}/format.sh +0 -0
  185. {onnxslim-0.1.82 → onnxslim-0.1.84}/images/after_cse.png +0 -0
  186. {onnxslim-0.1.82 → onnxslim-0.1.84}/images/before_cse.png +0 -0
  187. {onnxslim-0.1.82 → onnxslim-0.1.84}/images/cse.png +0 -0
  188. {onnxslim-0.1.82 → onnxslim-0.1.84}/images/input_shape_modification.jpg +0 -0
  189. {onnxslim-0.1.82 → onnxslim-0.1.84}/images/model_inspect.jpg +0 -0
  190. {onnxslim-0.1.82 → onnxslim-0.1.84}/images/onnxslim.gif +0 -0
  191. {onnxslim-0.1.82 → onnxslim-0.1.84}/images/output_modification.jpg +0 -0
  192. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/__init__.py +0 -0
  193. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/__main__.py +0 -0
  194. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/argparser.py +0 -0
  195. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/cli/__init__.py +0 -0
  196. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/cli/_main.py +0 -0
  197. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/__init__.py +0 -0
  198. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/optimization/__init__.py +0 -0
  199. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/optimization/subexpression_elimination.py +0 -0
  200. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/optimization/weight_tying.py +0 -0
  201. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/__init__.py +0 -0
  202. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/elimination/__init__.py +0 -0
  203. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/elimination/concat.py +0 -0
  204. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/elimination/reshape.py +0 -0
  205. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/elimination/reshape_as.py +0 -0
  206. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/elimination/unsqueeze.py +0 -0
  207. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/fusion/__init__.py +0 -0
  208. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/fusion/gelu.py +0 -0
  209. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/fusion/reduce.py +0 -0
  210. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/core/pattern/registry.py +0 -0
  211. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/misc/__init__.py +0 -0
  212. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/misc/tabulate.py +0 -0
  213. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/__init__.py +0 -0
  214. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/_sympy/__init__.py +0 -0
  215. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/_sympy/functions.py +0 -0
  216. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/_sympy/numbers.py +0 -0
  217. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/_sympy/printers.py +0 -0
  218. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/_sympy/solve.py +0 -0
  219. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/_sympy/symbol.py +0 -0
  220. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/__init__.py +0 -0
  221. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/exporters/__init__.py +0 -0
  222. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/exporters/base_exporter.py +0 -0
  223. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/exporters/onnx_exporter.py +0 -0
  224. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/graph_pattern/__init__.py +0 -0
  225. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/graph_pattern/graph_pattern.py +0 -0
  226. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/importers/__init__.py +0 -0
  227. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/importers/base_importer.py +0 -0
  228. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/importers/onnx_importer.py +0 -0
  229. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/ir/__init__.py +0 -0
  230. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/ir/function.py +0 -0
  231. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/ir/node.py +0 -0
  232. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/ir/tensor.py +0 -0
  233. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/logger/__init__.py +0 -0
  234. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/logger/logger.py +0 -0
  235. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/util/__init__.py +0 -0
  236. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/util/exception.py +0 -0
  237. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/third_party/onnx_graphsurgeon/util/misc.py +0 -0
  238. {onnxslim-0.1.82 → onnxslim-0.1.84}/onnxslim/version.py +0 -0
  239. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/conftest.py +0 -0
  240. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_benchmark.py +0 -0
  241. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_cli_main.py +0 -0
  242. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_coverage.py +0 -0
  243. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_elimination_patterns.py +0 -0
  244. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_folder.py +0 -0
  245. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_nvidia.py +0 -0
  246. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_onnx_nets.py +0 -0
  247. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_pattern_generator.py +0 -0
  248. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_pattern_matcher.py +0 -0
  249. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_shape_folding.py +0 -0
  250. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_subexpression_elimination.py +0 -0
  251. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_symbolic_shape_inference.py +0 -0
  252. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/test_utils.py +0 -0
  253. {onnxslim-0.1.82 → onnxslim-0.1.84}/tests/utils.py +0 -0
@@ -0,0 +1,30 @@
1
+ ---
2
+ name: Bug report
3
+ about: Create a report to help us improve
4
+ title: ''
5
+ labels: bug
6
+ assignees: inisis
7
+
8
+ ---
9
+
10
+ **Describe the bug**
11
+ A clear and concise description of what the bug is.
12
+
13
+ **To Reproduce**
14
+ Steps to reproduce the bug:
15
+
16
+ **Expected behavior**
17
+ A clear and concise description of what you expected to happen.
18
+
19
+ **Screenshots**
20
+ If applicable, add screenshots to help explain your problem.
21
+
22
+ **Environment:**
23
+ run the script and paste the output.
24
+ ```
25
+ python -c "import importlib; pkgs=['onnx','onnxruntime','onnxslim']; \
26
+ [print(f'{p}: {importlib.import_module(p).__version__}') if importlib.util.find_spec(p) else print(f'{p}: missing') for p in pkgs]"
27
+ ```
28
+
29
+ **Additional context**
30
+ Add any other context about the problem here.
@@ -0,0 +1,10 @@
1
+ ---
2
+ name: Custom issue template
3
+ about: Describe this issue template's purpose here.
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+
@@ -0,0 +1,20 @@
1
+ ---
2
+ name: Feature request
3
+ about: Suggest an idea for this project
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ **Is your feature request related to a problem? Please describe.**
11
+ A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
12
+
13
+ **Describe the solution you'd like**
14
+ A clear and concise description of what you want to happen.
15
+
16
+ **Describe alternatives you've considered**
17
+ A clear and concise description of any alternative solutions or features you've considered.
18
+
19
+ **Additional context**
20
+ Add any other context or screenshots about the feature request here.
@@ -16,7 +16,7 @@ jobs:
16
16
  strategy:
17
17
  fail-fast: false
18
18
  matrix:
19
- python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
19
+ python-version: ["3.8", "3.9", "3.10", "3.11", "3.12", "3.13"]
20
20
 
21
21
  steps:
22
22
  - uses: actions/checkout@v3
@@ -0,0 +1,90 @@
1
+ name: nightly-test
2
+
3
+ on:
4
+ schedule:
5
+ - cron: "0 18 * * *" # Runs at 6:00 PM UTC every day, which is 2:00 AM Beijing Time the next day
6
+ workflow_dispatch:
7
+
8
+ jobs:
9
+ benchmark:
10
+ runs-on: self-hosted
11
+
12
+ steps:
13
+ - uses: actions/checkout@v3
14
+
15
+ - uses: actions/setup-python@v4
16
+ with:
17
+ python-version: "3.12"
18
+
19
+ - name: install dependency
20
+ run: |
21
+ python -m pip install --upgrade pip wheel setuptools
22
+ pip install .
23
+ pip install pytest onnxruntime
24
+
25
+ - name: benchmark test
26
+ run: |
27
+ python tests/test_benchmark.py
28
+
29
+ timm-test:
30
+ runs-on: self-hosted
31
+ needs: benchmark
32
+
33
+ steps:
34
+ - uses: actions/checkout@v3
35
+
36
+ - uses: actions/setup-python@v4
37
+ with:
38
+ python-version: "3.12"
39
+
40
+ - name: install dependency
41
+ run: |
42
+ python -m pip install --upgrade pip wheel setuptools
43
+ pip install .
44
+ pip install pytest pytest-xdist onnxruntime timm torchvision --no-cache-dir --extra-index-url https://download.pytorch.org/whl/cpu
45
+
46
+ - name: timm test
47
+ run: |
48
+ python tests/test_onnx_nets.py
49
+
50
+ ultralytics-test:
51
+ runs-on: self-hosted
52
+ needs: timm-test
53
+
54
+ steps:
55
+ - uses: actions/checkout@v3
56
+
57
+ - uses: actions/setup-python@v4
58
+ with:
59
+ python-version: "3.12"
60
+
61
+ - name: install dependency
62
+ run: |
63
+ python -m pip install --upgrade pip wheel setuptools
64
+ pip install .
65
+ pip install pytest pytest-xdist onnxruntime -U ultralytics
66
+
67
+ - name: ultralytics test
68
+ run: |
69
+ pytest tests/test_ultralytics.py -v -n 1
70
+
71
+ optimum-test:
72
+ runs-on: self-hosted
73
+ needs: ultralytics-test
74
+
75
+ steps:
76
+ - uses: actions/checkout@v3
77
+
78
+ - uses: actions/setup-python@v4
79
+ with:
80
+ python-version: "3.12"
81
+
82
+ - name: install dependency
83
+ run: |
84
+ python -m pip install --upgrade pip wheel setuptools
85
+ uv sync --dev
86
+ pip install einops parameterized transformers "optimum[onnxruntime]"
87
+
88
+ - name: optimum test
89
+ run: |
90
+ pytest tests/exporters/onnx/test_export_cli.py -v -n 4
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnxslim
3
- Version: 0.1.82
3
+ Version: 0.1.84
4
4
  Summary: OnnxSlim: A Toolkit to Help Optimize Onnx Model
5
5
  Project-URL: homepage, https://github.com/inisis/OnnxSlim
6
6
  Project-URL: issues, https://github.com/inisis/OnnxSlim/issues
@@ -20,17 +20,14 @@ Requires-Dist: sympy>=1.13.1
20
20
  Description-Content-Type: text/markdown
21
21
 
22
22
  <p align="center">
23
- <img src="assets/logo/onnxslim-banner-light.svg#gh-light-mode-only" alt="OnnxSlim Logo" width="640"/>
24
- <img src="assets/logo/onnxslim-banner.svg#gh-dark-mode-only" alt="OnnxSlim Logo" width="640"/>
23
+ <img src="https://raw.githubusercontent.com/inisis/OnnxSlim/main/assets/logo/onnxslim-banner-light.svg#gh-light-mode-only" alt="OnnxSlim Logo" width="640"/>
24
+ <img src="https://raw.githubusercontent.com/inisis/OnnxSlim/main/assets/logo/onnxslim-banner.svg#gh-dark-mode-only" alt="OnnxSlim Logo" width="640"/>
25
25
  </p>
26
26
 
27
27
  <p align="center">
28
28
  <a href="https://pypi.org/project/onnxslim">
29
29
  <img src="https://img.shields.io/pypi/v/onnxslim?color=blue" />
30
30
  </a>
31
- <a href="https://pypi.org/project/onnxslim">
32
- <img src="https://static.pepy.tech/badge/onnxslim/week" />
33
- </a>
34
31
  <a href="https://pypi.org/project/onnxslim">
35
32
  <img src="https://static.pepy.tech/badge/onnxslim/month" />
36
33
  </a>
@@ -51,6 +48,7 @@ Description-Content-Type: text/markdown
51
48
 
52
49
  OnnxSlim can help you slim your onnx model, with less operators, but same accuracy, better inference speed.
53
50
 
51
+ - 🚀 2026/01/04: Achieved 5M downloads
54
52
  - 🚀 2025/11/29: Top 1% on PyPI
55
53
  - 🚀 2025/11/27: OnnxSlim is merged into [NVIDIA TensorRT-Model-Optimizer](https://github.com/NVIDIA/TensorRT-Model-Optimizer) 🤗🤗🤗
56
54
  - 🚀 2025/05/17: OnnxSlim is merged into [HuggingFace optimum](https://github.com/huggingface/optimum) 🤗🤗🤗
@@ -61,10 +59,6 @@ OnnxSlim can help you slim your onnx model, with less operators, but same accura
61
59
  - 🚀 2024/04/30: Rank 1st in the [AICAS 2024 LLM inference optimization challenge](https://tianchi.aliyun.com/competition/entrance/532170/customize440) held by Arm and T-head
62
60
  - 🚀 2024/01/25: OnnxSlim is merged to [mnn-llm](https://github.com/wangzhaode/mnn-llm), performance increased by 5%
63
61
 
64
- # Benchmark
65
-
66
- ![Image](https://github.com/user-attachments/assets/fefc79f1-5d8d-486b-935a-a088846b3900)
67
-
68
62
  # Installation
69
63
 
70
64
  ## Using Prebuilt
@@ -104,7 +98,9 @@ import onnxslim
104
98
 
105
99
  model = onnx.load("model.onnx")
106
100
  slimmed_model = onnxslim.slim(model)
107
- onnx.save(slimmed_model, "slimmed_model.onnx")
101
+
102
+ if slimmed_model:
103
+ onnx.save(slimmed_model, "slimmed_model.onnx")
108
104
  ```
109
105
 
110
106
  For more usage, see onnxslim -h or refer to our [examples](./examples)
@@ -182,6 +178,14 @@ For more usage, see onnxslim -h or refer to our [examples](./examples)
182
178
  <a href="https://github.com/deepghs/imgutils" target="_blank">deepghs/imgutils</a>
183
179
  </td>
184
180
  </tr>
181
+ <tr>
182
+ <td style="vertical-align:middle;">
183
+ <img src="https://avatars.githubusercontent.com/u/430818?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
184
+ <a href="https://github.com/amd/Quark" target="_blank">amd/Quark</a>
185
+ </td>
186
+ <td style="vertical-align:middle;">
187
+ </td>
188
+ </tr>
185
189
  </table>
186
190
 
187
191
  # References
@@ -192,6 +196,12 @@ For more usage, see onnxslim -h or refer to our [examples](./examples)
192
196
  > - [tabulate](https://github.com/astanin/python-tabulate)
193
197
  > - [onnxruntime](https://github.com/microsoft/onnxruntime)
194
198
 
199
+ # Contributors
200
+
201
+ <a href="https://github.com/inisis/onnxslim/graphs/contributors">
202
+ <img src="https://contrib.rocks/image?repo=inisis/onnxslim" />
203
+ </a>
204
+
195
205
  # Contact
196
206
 
197
207
  Discord: https://discord.gg/nRw2Fd3VUS QQ Group: `873569894`
@@ -1,15 +1,12 @@
1
1
  <p align="center">
2
- <img src="assets/logo/onnxslim-banner-light.svg#gh-light-mode-only" alt="OnnxSlim Logo" width="640"/>
3
- <img src="assets/logo/onnxslim-banner.svg#gh-dark-mode-only" alt="OnnxSlim Logo" width="640"/>
2
+ <img src="https://raw.githubusercontent.com/inisis/OnnxSlim/main/assets/logo/onnxslim-banner-light.svg#gh-light-mode-only" alt="OnnxSlim Logo" width="640"/>
3
+ <img src="https://raw.githubusercontent.com/inisis/OnnxSlim/main/assets/logo/onnxslim-banner.svg#gh-dark-mode-only" alt="OnnxSlim Logo" width="640"/>
4
4
  </p>
5
5
 
6
6
  <p align="center">
7
7
  <a href="https://pypi.org/project/onnxslim">
8
8
  <img src="https://img.shields.io/pypi/v/onnxslim?color=blue" />
9
9
  </a>
10
- <a href="https://pypi.org/project/onnxslim">
11
- <img src="https://static.pepy.tech/badge/onnxslim/week" />
12
- </a>
13
10
  <a href="https://pypi.org/project/onnxslim">
14
11
  <img src="https://static.pepy.tech/badge/onnxslim/month" />
15
12
  </a>
@@ -30,6 +27,7 @@
30
27
 
31
28
  OnnxSlim can help you slim your onnx model, with less operators, but same accuracy, better inference speed.
32
29
 
30
+ - 🚀 2026/01/04: Achieved 5M downloads
33
31
  - 🚀 2025/11/29: Top 1% on PyPI
34
32
  - 🚀 2025/11/27: OnnxSlim is merged into [NVIDIA TensorRT-Model-Optimizer](https://github.com/NVIDIA/TensorRT-Model-Optimizer) 🤗🤗🤗
35
33
  - 🚀 2025/05/17: OnnxSlim is merged into [HuggingFace optimum](https://github.com/huggingface/optimum) 🤗🤗🤗
@@ -40,10 +38,6 @@ OnnxSlim can help you slim your onnx model, with less operators, but same accura
40
38
  - 🚀 2024/04/30: Rank 1st in the [AICAS 2024 LLM inference optimization challenge](https://tianchi.aliyun.com/competition/entrance/532170/customize440) held by Arm and T-head
41
39
  - 🚀 2024/01/25: OnnxSlim is merged to [mnn-llm](https://github.com/wangzhaode/mnn-llm), performance increased by 5%
42
40
 
43
- # Benchmark
44
-
45
- ![Image](https://github.com/user-attachments/assets/fefc79f1-5d8d-486b-935a-a088846b3900)
46
-
47
41
  # Installation
48
42
 
49
43
  ## Using Prebuilt
@@ -83,7 +77,9 @@ import onnxslim
83
77
 
84
78
  model = onnx.load("model.onnx")
85
79
  slimmed_model = onnxslim.slim(model)
86
- onnx.save(slimmed_model, "slimmed_model.onnx")
80
+
81
+ if slimmed_model:
82
+ onnx.save(slimmed_model, "slimmed_model.onnx")
87
83
  ```
88
84
 
89
85
  For more usage, see onnxslim -h or refer to our [examples](./examples)
@@ -161,6 +157,14 @@ For more usage, see onnxslim -h or refer to our [examples](./examples)
161
157
  <a href="https://github.com/deepghs/imgutils" target="_blank">deepghs/imgutils</a>
162
158
  </td>
163
159
  </tr>
160
+ <tr>
161
+ <td style="vertical-align:middle;">
162
+ <img src="https://avatars.githubusercontent.com/u/430818?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
163
+ <a href="https://github.com/amd/Quark" target="_blank">amd/Quark</a>
164
+ </td>
165
+ <td style="vertical-align:middle;">
166
+ </td>
167
+ </tr>
164
168
  </table>
165
169
 
166
170
  # References
@@ -171,6 +175,12 @@ For more usage, see onnxslim -h or refer to our [examples](./examples)
171
175
  > - [tabulate](https://github.com/astanin/python-tabulate)
172
176
  > - [onnxruntime](https://github.com/microsoft/onnxruntime)
173
177
 
178
+ # Contributors
179
+
180
+ <a href="https://github.com/inisis/onnxslim/graphs/contributors">
181
+ <img src="https://contrib.rocks/image?repo=inisis/onnxslim" />
182
+ </a>
183
+
174
184
  # Contact
175
185
 
176
186
  Discord: https://discord.gg/nRw2Fd3VUS QQ Group: `873569894`
@@ -0,0 +1,190 @@
1
+ <p align="center">
2
+ <img src="https://raw.githubusercontent.com/inisis/OnnxSlim/main/assets/logo/onnxslim-banner-light.svg#gh-light-mode-only" alt="OnnxSlim Logo" width="640"/>
3
+ <img src="https://raw.githubusercontent.com/inisis/OnnxSlim/main/assets/logo/onnxslim-banner.svg#gh-dark-mode-only" alt="OnnxSlim Logo" width="640"/>
4
+ </p>
5
+
6
+ <p align="center">
7
+ <a href="https://pypi.org/project/onnxslim">
8
+ <img src="https://img.shields.io/pypi/v/onnxslim?color=blue" />
9
+ </a>
10
+ <a href="https://pypi.org/project/onnxslim">
11
+ <img src="https://static.pepy.tech/badge/onnxslim/month" />
12
+ </a>
13
+ <a href="https://pypi.org/project/onnxslim">
14
+ <img src="https://static.pepy.tech/badge/onnxslim" />
15
+ </a>
16
+ <a href="https://github.com/inisis/onnxslim/actions/workflows/ci.yaml">
17
+ <img src="https://github.com/inisis/onnxslim/actions/workflows/ci.yml/badge.svg" />
18
+ </a>
19
+ <a href="https://codecov.io/gh/inisis/onnxslim" >
20
+ <img src="https://codecov.io/gh/inisis/onnxslim/branch/main/graph/badge.svg?token=C69ZH6802N"/>
21
+ </a>
22
+ <a href="https://muhammadrizwanmunawar.medium.com/boost-onnx-load-speed-by-10-15-with-onnxslims-python-package-d401eb8c2e69">
23
+ <img src="https://img.shields.io/badge/Blog-OnnxSlim?style=flat&label=OnnxSlim" />
24
+ </a>
25
+ <a href="https://deepwiki.com/inisis/OnnxSlim"><img src="https://img.shields.io/badge/DeepWiki-inisis%2FOnnxSlim-blue.svg?logo=" alt="DeepWiki"></a>
26
+ </p>
27
+
28
+ <p align="center">
29
+ <a href="./README.md">English</a> | <b>简体中文</b>
30
+ </p>
31
+
32
+ OnnxSlim 可以帮助您精简 ONNX 模型,减少算子数量,同时保持精度不变,提升推理速度。
33
+
34
+ - 🚀 2026/01/04: 下载量突破 500 万
35
+ - 🚀 2025/11/29: PyPI 排名前 1%
36
+ - 🚀 2025/11/27: OnnxSlim 已合并至 [NVIDIA TensorRT-Model-Optimizer](https://github.com/NVIDIA/TensorRT-Model-Optimizer) 🤗🤗🤗
37
+ - 🚀 2025/05/17: OnnxSlim 已合并至 [HuggingFace optimum](https://github.com/huggingface/optimum) 🤗🤗🤗
38
+ - 🚀 2025/04/30: 在 [AICAS 2025 大模型推理优化挑战赛](https://tianchi.aliyun.com/competition/entrance/532289/customize588)中荣获第一名
39
+ - 🚀 2025/01/28: 下载量突破 100 万
40
+ - 🚀 2024/06/23: OnnxSlim 已合并至 [transformers.js](https://github.com/huggingface/transformers.js) 🤗🤗🤗
41
+ - 🚀 2024/06/02: OnnxSlim 已合并至 [ultralytics](https://github.com/ultralytics/ultralytics) ❤️❤️❤️
42
+ - 🚀 2024/04/30: 在 Arm 和平头哥举办的 [AICAS 2024 大模型推理优化挑战赛](https://tianchi.aliyun.com/competition/entrance/532170/customize440)中荣获第一名
43
+ - 🚀 2024/01/25: OnnxSlim 已合并至 [mnn-llm](https://github.com/wangzhaode/mnn-llm),性能提升 5%
44
+
45
+ # 安装
46
+
47
+ ## 使用预构建版本
48
+
49
+ ```bash
50
+ pip install onnxslim
51
+ ```
52
+
53
+ ## 从源码安装
54
+
55
+ ```bash
56
+ pip install git+https://github.com/inisis/OnnxSlim@main
57
+ ```
58
+
59
+ ## 从本地安装
60
+
61
+ ```bash
62
+ git clone https://github.com/inisis/OnnxSlim && cd OnnxSlim/
63
+ pip install .
64
+ ```
65
+
66
+ # 使用方法
67
+
68
+ ## 命令行
69
+
70
+ ```bash
71
+ onnxslim your_onnx_model slimmed_onnx_model
72
+ ```
73
+
74
+ <div align=left><img src="https://raw.githubusercontent.com/inisis/onnxslim/main/images/onnxslim.gif"></div>
75
+
76
+ ## 代码调用
77
+
78
+ ```python
79
+ import onnx
80
+ import onnxslim
81
+
82
+ model = onnx.load("model.onnx")
83
+ slimmed_model = onnxslim.slim(model)
84
+
85
+ if slimmed_model:
86
+ onnx.save(slimmed_model, "slimmed_model.onnx")
87
+ ```
88
+
89
+ 更多用法请参考 `onnxslim -h` 或查看我们的[示例](./examples)
90
+
91
+ # 使用 OnnxSlim 的项目
92
+
93
+ <table style="width:100%; border-collapse:separate; border-spacing:10px;">
94
+ <tr>
95
+ <td style="vertical-align:middle;">
96
+ <img src="https://avatars.githubusercontent.com/u/1728152?s=200&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
97
+ <a href="https://github.com/NVIDIA/TensorRT-Model-Optimizer" target="_blank">NVIDIA/TensorRT-Model-Optimizer</a>
98
+ </td>
99
+ <td style="vertical-align:middle;">
100
+ <img src="https://avatars.githubusercontent.com/u/1961952?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
101
+ <a href="https://github.com/alibaba/MNN" target="_blank">alibaba/MNN</a>
102
+ </td>
103
+ </tr>
104
+ <tr>
105
+ <td style="vertical-align:middle;">
106
+ <img src="https://avatars.githubusercontent.com/u/26833451?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
107
+ <a href="https://github.com/ultralytics/ultralytics" target="_blank">ultralytics/ultralytics</a>
108
+ </td>
109
+ <td style="vertical-align:middle;">
110
+ <img src="https://avatars.githubusercontent.com/u/131524?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
111
+ <a href="https://github.com/mozilla/smart_autofill" target="_blank">Mozilla/smart_autofill</a>
112
+ </td>
113
+ </tr>
114
+ <tr>
115
+ <td style="vertical-align:middle;">
116
+ <img src="https://avatars.githubusercontent.com/u/1961952?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
117
+ <a href="https://github.com/wangzhaode/mnn-llm" target="_blank">alibaba/MNN-LLM</a>
118
+ </td>
119
+ <td style="vertical-align:middle;">
120
+ <img src="https://avatars.githubusercontent.com/u/25720743?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
121
+ <a href="https://github.com/huggingface/transformers.js" target="_blank">huggingface/transformers.js</a>
122
+ </td>
123
+ </tr>
124
+ <tr>
125
+ <td style="vertical-align:middle;">
126
+ <img src="https://avatars.githubusercontent.com/u/25720743?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
127
+ <a href="https://github.com/huggingface/optimum" target="_blank">huggingface/optimum</a>
128
+ </td>
129
+ <td style="vertical-align:middle;">
130
+ <img src="https://avatars.githubusercontent.com/u/23534030?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
131
+ <a href="https://github.com/PaddlePaddle/PaddleOCR" target="_blank">PaddlePaddle/PaddleOCR</a>
132
+ </td>
133
+ </tr>
134
+ <tr>
135
+ <td style="vertical-align:middle;">
136
+ <img src="https://avatars.githubusercontent.com/u/109945100?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
137
+ <a href="https://github.com/modelscope/FunASR" target="_blank">ModelScope/FunASR</a>
138
+ </td>
139
+ <td style="vertical-align:middle;">
140
+ <img src="https://avatars.githubusercontent.com/u/111754012?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
141
+ <a href="https://github.com/CVCUDA/CV-CUDA" target="_blank">CVCUDA/CV-CUDA</a>
142
+ </td>
143
+ </tr>
144
+ <tr>
145
+ <td style="vertical-align:middle;">
146
+ <img src="https://avatars.githubusercontent.com/u/86091366?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
147
+ <a href="https://github.com/THU-MIG/yolov10" target="_blank">THU-MIG/yolov10</a>
148
+ </td>
149
+ <td style="vertical-align:middle;">
150
+ <img src="https://avatars.githubusercontent.com/u/48153283?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
151
+ <a href="https://github.com/sunsmarterjie/yolov12" target="_blank">sunsmarterjie/yolov12</a>
152
+ </td>
153
+ </tr>
154
+ <tr>
155
+ <td style="vertical-align:middle;">
156
+ <img src="https://avatars.githubusercontent.com/u/147458884?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
157
+ <a href="https://github.com/nndeploy/nndeploy" target="_blank">nndeploy/nndeploy</a>
158
+ </td>
159
+ <td style="vertical-align:middle;">
160
+ <img src="https://avatars.githubusercontent.com/u/126587470?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
161
+ <a href="https://github.com/deepghs/imgutils" target="_blank">deepghs/imgutils</a>
162
+ </td>
163
+ </tr>
164
+ <tr>
165
+ <td style="vertical-align:middle;">
166
+ <img src="https://avatars.githubusercontent.com/u/430818?s=48&v=4" width="22" height="22" style="vertical-align:middle; margin-right:8px;"/>
167
+ <a href="https://github.com/amd/Quark" target="_blank">amd/Quark</a>
168
+ </td>
169
+ <td style="vertical-align:middle;">
170
+ </td>
171
+ </tr>
172
+ </table>
173
+
174
+ # 参考项目
175
+
176
+ > - [onnx-graphsurgeon](https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon)
177
+ > - [Polygraphy](https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy/polygraphy)
178
+ > - [onnx-simplifier](https://github.com/daquexian/onnx-simplifier)
179
+ > - [tabulate](https://github.com/astanin/python-tabulate)
180
+ > - [onnxruntime](https://github.com/microsoft/onnxruntime)
181
+
182
+ # 贡献者
183
+
184
+ <a href="https://github.com/inisis/onnxslim/graphs/contributors">
185
+ <img src="https://contrib.rocks/image?repo=inisis/onnxslim" />
186
+ </a>
187
+
188
+ # 联系我们
189
+
190
+ Discord: https://discord.gg/nRw2Fd3VUS QQ 群: `873569894`
@@ -53,10 +53,17 @@ def dead_node_elimination(graph, is_subgraph=False):
53
53
  node.inputs.pop(1)
54
54
  node.inputs.insert(1, reshape_const)
55
55
  logger.debug(f"replacing {node.op} op: {node.name}")
56
- # elif node.op == "Slice":
57
- # if node.inputs[0].shape and node.outputs[0].shape and node.inputs[0].shape == node.outputs[0].shape and all(isinstance(item, int) for item in node.inputs[0].shape):
58
- # node.erase()
59
- # logger.debug(f"removing {node.op} op: {node.name}")
56
+ elif node.op == "Slice":
57
+ if (node.inputs[0].shape and node.outputs[0].shape
58
+ and node.inputs[0].shape == node.outputs[0].shape
59
+ and all(isinstance(item, int) for item in node.inputs[0].shape)):
60
+
61
+ # Check if slice is a no-op by analyzing parameters directly
62
+ # Slice inputs: data, starts, ends, [axes], [steps]
63
+ if is_noop_slice(node):
64
+ node.erase()
65
+ logger.debug(f"removing {node.op} op: {node.name}")
66
+
60
67
  elif node.op == "Mul":
61
68
  if (isinstance(node.inputs[1], Constant) and isinstance(node.inputs[0], Variable)) or (
62
69
  isinstance(node.inputs[0], Constant) and isinstance(node.inputs[1], Variable)
@@ -153,3 +160,77 @@ def get_constant_variable(node, return_idx=False):
153
160
  for idx, input in enumerate(list(node.inputs)):
154
161
  if isinstance(input, Constant):
155
162
  return (idx, input) if return_idx else input
163
+
164
+
165
+ def is_noop_slice(node):
166
+ """Check if a Slice node is a no-op by analyzing its parameters directly.
167
+
168
+ A Slice is a no-op when it extracts the entire tensor, i.e., for each sliced axis:
169
+ - start == 0 (or equivalent negative index)
170
+ - end >= dim_size (or is INT_MAX-like value)
171
+ - step == 1
172
+ """
173
+ # Slice inputs: data, starts, ends, [axes], [steps]
174
+ if len(node.inputs) < 3:
175
+ return False
176
+
177
+ data_shape = node.inputs[0].shape
178
+ if not data_shape or not all(isinstance(d, int) for d in data_shape):
179
+ return False
180
+
181
+ # Get starts and ends (required)
182
+ starts_input = node.inputs[1]
183
+ ends_input = node.inputs[2]
184
+
185
+ if not isinstance(starts_input, Constant) or not isinstance(ends_input, Constant):
186
+ return False
187
+
188
+ starts = starts_input.values.flatten().tolist()
189
+ ends = ends_input.values.flatten().tolist()
190
+
191
+ # Get axes (optional, defaults to [0, 1, 2, ...])
192
+ if len(node.inputs) > 3 and isinstance(node.inputs[3], Constant):
193
+ axes = node.inputs[3].values.flatten().tolist()
194
+ else:
195
+ axes = list(range(len(starts)))
196
+
197
+ # Get steps (optional, defaults to [1, 1, 1, ...])
198
+ if len(node.inputs) > 4 and isinstance(node.inputs[4], Constant):
199
+ steps = node.inputs[4].values.flatten().tolist()
200
+ else:
201
+ steps = [1] * len(starts)
202
+
203
+ # Check each axis
204
+ ndim = len(data_shape)
205
+ for start, end, axis, step in zip(starts, ends, axes, steps):
206
+ # Normalize negative axis
207
+ if axis < 0:
208
+ axis = ndim + axis
209
+
210
+ if axis < 0 or axis >= ndim:
211
+ return False
212
+
213
+ dim_size = data_shape[axis]
214
+
215
+ # Step must be 1 for no-op
216
+ if step != 1:
217
+ return False
218
+
219
+ # Normalize negative start index
220
+ if start < 0:
221
+ start = max(0, dim_size + start)
222
+
223
+ # Start must be 0
224
+ if start != 0:
225
+ return False
226
+
227
+ # Normalize negative end index
228
+ if end < 0:
229
+ end = dim_size + end
230
+
231
+ # End must cover the entire dimension
232
+ # Common patterns: end == dim_size, or end is a large value like INT_MAX
233
+ if end < dim_size:
234
+ return False
235
+
236
+ return True