onnxslim 0.1.38__tar.gz → 0.1.75__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (84) hide show
  1. onnxslim-0.1.75/PKG-INFO +146 -0
  2. onnxslim-0.1.75/README.md +112 -0
  3. onnxslim-0.1.75/VERSION +1 -0
  4. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/__init__.py +0 -1
  5. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/argparser.py +65 -13
  6. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/cli/_main.py +56 -31
  7. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/__init__.py +27 -9
  8. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/optimization/__init__.py +72 -16
  9. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/optimization/dead_node_elimination.py +32 -19
  10. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/optimization/subexpression_elimination.py +11 -21
  11. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/optimization/weight_tying.py +19 -0
  12. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/pattern/__init__.py +71 -50
  13. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/pattern/elimination/__init__.py +2 -0
  14. onnxslim-0.1.75/onnxslim/core/pattern/elimination/concat.py +61 -0
  15. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/pattern/elimination/reshape.py +3 -3
  16. onnxslim-0.1.75/onnxslim/core/pattern/elimination/reshape_as.py +64 -0
  17. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/pattern/elimination/slice.py +7 -7
  18. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/pattern/elimination/unsqueeze.py +14 -5
  19. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/pattern/fusion/__init__.py +2 -0
  20. onnxslim-0.1.75/onnxslim/core/pattern/fusion/concat_reshape.py +50 -0
  21. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/pattern/fusion/convadd.py +3 -3
  22. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/pattern/fusion/convbn.py +9 -9
  23. onnxslim-0.1.75/onnxslim/core/pattern/fusion/convmul.py +69 -0
  24. onnxslim-0.1.75/onnxslim/core/pattern/fusion/gemm.py +330 -0
  25. onnxslim-0.1.75/onnxslim/core/pattern/fusion/padconv.py +89 -0
  26. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/pattern/fusion/reduce.py +21 -10
  27. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/pattern/registry.py +3 -1
  28. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/misc/tabulate.py +12 -10
  29. onnxslim-0.1.75/onnxslim/third_party/_sympy/functions.py +205 -0
  30. onnxslim-0.1.75/onnxslim/third_party/_sympy/numbers.py +397 -0
  31. onnxslim-0.1.75/onnxslim/third_party/_sympy/printers.py +491 -0
  32. onnxslim-0.1.75/onnxslim/third_party/_sympy/solve.py +172 -0
  33. onnxslim-0.1.75/onnxslim/third_party/_sympy/symbol.py +102 -0
  34. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/exporters/onnx_exporter.py +105 -53
  35. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/graph_pattern/graph_pattern.py +12 -13
  36. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/importers/onnx_importer.py +33 -27
  37. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/ir/function.py +13 -12
  38. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/ir/graph.py +19 -15
  39. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/ir/node.py +58 -9
  40. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/ir/tensor.py +26 -15
  41. onnxslim-0.1.75/onnxslim/third_party/onnx_graphsurgeon/util/__init__.py +0 -0
  42. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/util/misc.py +9 -8
  43. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/symbolic_shape_infer.py +270 -178
  44. onnxslim-0.1.75/onnxslim/utils.py +794 -0
  45. onnxslim-0.1.75/onnxslim/version.py +1 -0
  46. onnxslim-0.1.75/onnxslim.egg-info/PKG-INFO +146 -0
  47. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim.egg-info/SOURCES.txt +11 -2
  48. onnxslim-0.1.75/onnxslim.egg-info/requires.txt +5 -0
  49. onnxslim-0.1.75/pyproject.toml +9 -0
  50. {onnxslim-0.1.38 → onnxslim-0.1.75}/setup.py +1 -1
  51. onnxslim-0.1.38/PKG-INFO +0 -89
  52. onnxslim-0.1.38/README.md +0 -69
  53. onnxslim-0.1.38/VERSION +0 -1
  54. onnxslim-0.1.38/onnxslim/core/pattern/fusion/gemm.py +0 -174
  55. onnxslim-0.1.38/onnxslim/core/pattern/fusion/padconv.py +0 -78
  56. onnxslim-0.1.38/onnxslim/core/utils.py +0 -28
  57. onnxslim-0.1.38/onnxslim/misc/font.py +0 -3
  58. onnxslim-0.1.38/onnxslim/utils.py +0 -631
  59. onnxslim-0.1.38/onnxslim/version.py +0 -1
  60. onnxslim-0.1.38/onnxslim.egg-info/PKG-INFO +0 -89
  61. onnxslim-0.1.38/onnxslim.egg-info/requires.txt +0 -3
  62. {onnxslim-0.1.38 → onnxslim-0.1.75}/LICENSE +0 -0
  63. {onnxslim-0.1.38 → onnxslim-0.1.75}/MANIFEST.in +0 -0
  64. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/__main__.py +0 -0
  65. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/cli/__init__.py +0 -0
  66. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/core/pattern/fusion/gelu.py +0 -0
  67. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/misc/__init__.py +0 -0
  68. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/__init__.py +0 -0
  69. {onnxslim-0.1.38/onnxslim/third_party/onnx_graphsurgeon/ir → onnxslim-0.1.75/onnxslim/third_party/_sympy}/__init__.py +0 -0
  70. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/__init__.py +0 -0
  71. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/exporters/__init__.py +0 -0
  72. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/exporters/base_exporter.py +0 -0
  73. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/graph_pattern/__init__.py +0 -0
  74. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/importers/__init__.py +0 -0
  75. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/importers/base_importer.py +0 -0
  76. {onnxslim-0.1.38/onnxslim/third_party/onnx_graphsurgeon/util → onnxslim-0.1.75/onnxslim/third_party/onnx_graphsurgeon/ir}/__init__.py +0 -0
  77. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/logger/__init__.py +0 -0
  78. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/logger/logger.py +0 -0
  79. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim/third_party/onnx_graphsurgeon/util/exception.py +0 -0
  80. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim.egg-info/dependency_links.txt +0 -0
  81. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim.egg-info/entry_points.txt +0 -0
  82. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim.egg-info/top_level.txt +0 -0
  83. {onnxslim-0.1.38 → onnxslim-0.1.75}/onnxslim.egg-info/zip-safe +0 -0
  84. {onnxslim-0.1.38 → onnxslim-0.1.75}/setup.cfg +0 -0
@@ -0,0 +1,146 @@
1
+ Metadata-Version: 2.4
2
+ Name: onnxslim
3
+ Version: 0.1.75
4
+ Summary: OnnxSlim: A Toolkit to Help Optimize Onnx Model
5
+ Home-page: https://github.com/inisis/OnnxSlim
6
+ Author: inisis
7
+ Author-email: desmond.yao@buaa.edu.cn
8
+ License: MIT
9
+ Project-URL: Bug Tracker, https://github.com/inisis/OnnxSlim/issues
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: License :: OSI Approved :: MIT License
12
+ Classifier: Intended Audience :: Developers
13
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
14
+ Requires-Python: >=3.6
15
+ Description-Content-Type: text/markdown
16
+ License-File: LICENSE
17
+ Requires-Dist: onnx
18
+ Requires-Dist: sympy>=1.13.3
19
+ Requires-Dist: packaging
20
+ Requires-Dist: colorama
21
+ Requires-Dist: ml_dtypes
22
+ Dynamic: author
23
+ Dynamic: author-email
24
+ Dynamic: classifier
25
+ Dynamic: description
26
+ Dynamic: description-content-type
27
+ Dynamic: home-page
28
+ Dynamic: license
29
+ Dynamic: license-file
30
+ Dynamic: project-url
31
+ Dynamic: requires-dist
32
+ Dynamic: requires-python
33
+ Dynamic: summary
34
+
35
+ # OnnxSlim
36
+
37
+ <p align="center">
38
+ <a href="https://pypi.org/project/onnxslim">
39
+ <img src="https://img.shields.io/pypi/v/onnxslim?color=blue" />
40
+ </a>
41
+ <a href="https://pypi.org/project/onnxslim">
42
+ <img src="https://static.pepy.tech/badge/onnxslim/week" />
43
+ </a>
44
+ <a href="https://pypi.org/project/onnxslim">
45
+ <img src="https://static.pepy.tech/badge/onnxslim/month" />
46
+ </a>
47
+ <a href="https://pypi.org/project/onnxslim">
48
+ <img src="https://static.pepy.tech/badge/onnxslim" />
49
+ </a>
50
+ <a href="https://github.com/inisis/onnxslim/actions/workflows/ci.yaml">
51
+ <img src="https://github.com/inisis/onnxslim/actions/workflows/ci.yml/badge.svg" />
52
+ </a>
53
+ <a href="https://codecov.io/gh/inisis/onnxslim" >
54
+ <img src="https://codecov.io/gh/inisis/onnxslim/branch/main/graph/badge.svg?token=C69ZH6802N"/>
55
+ </a>
56
+ <a href="https://muhammadrizwanmunawar.medium.com/boost-onnx-load-speed-by-10-15-with-onnxslims-python-package-d401eb8c2e69">
57
+ <img src="https://img.shields.io/badge/Blog-OnnxSlim?style=flat&label=OnnxSlim" />
58
+ </a>
59
+ <a href="https://deepwiki.com/inisis/OnnxSlim"><img src="https://img.shields.io/badge/DeepWiki-inisis%2FOnnxSlim-blue.svg?logo=" alt="DeepWiki"></a>
60
+ </p>
61
+
62
+ OnnxSlim can help you slim your onnx model, with less operators, but same accuracy, better inference speed.
63
+
64
+ - 🚀 2025/05/17: OnnxSlim is merged into [optimum](https://github.com/huggingface/optimum) 🤗🤗🤗
65
+ - 🚀 2025/04/30: Rank 1st in the [AICAS 2025 LLM inference optimization challenge](https://tianchi.aliyun.com/competition/entrance/532289/customize588)
66
+ - 🚀 2025/01/28: Achieved 1M downloads
67
+ - 🚀 2024/06/23: OnnxSlim is merged into [transformers.js](https://github.com/huggingface/transformers.js) 🤗🤗🤗
68
+ - 🚀 2024/06/02: OnnxSlim is merged into [ultralytics](https://github.com/ultralytics/ultralytics) ❤️❤️❤️
69
+ - 🚀 2024/04/30: Rank 1st in the [AICAS 2024 LLM inference optimization challenge](https://tianchi.aliyun.com/competition/entrance/532170/customize440) held by Arm and T-head
70
+ - 🚀 2024/01/25: OnnxSlim is merged to [mnn-llm](https://github.com/wangzhaode/mnn-llm), performance increased by 5%
71
+
72
+ # Benchmark
73
+
74
+ ![Image](https://github.com/user-attachments/assets/fefc79f1-5d8d-486b-935a-a088846b3900)
75
+
76
+ # Installation
77
+
78
+ ## Using Prebuilt
79
+
80
+ ```bash
81
+ pip install onnxslim
82
+ ```
83
+
84
+ ## Install From Source
85
+
86
+ ```bash
87
+ pip install git+https://github.com/inisis/OnnxSlim@main
88
+ ```
89
+
90
+ ## Install From Local
91
+
92
+ ```bash
93
+ git clone https://github.com/inisis/OnnxSlim && cd OnnxSlim/
94
+ pip install .
95
+ ```
96
+
97
+ # How to use
98
+
99
+ ## Bash
100
+
101
+ ```bash
102
+ onnxslim your_onnx_model slimmed_onnx_model
103
+ ```
104
+
105
+ <div align=left><img src="https://raw.githubusercontent.com/inisis/onnxslim/main/images/onnxslim.gif"></div>
106
+
107
+ ## Inscript
108
+
109
+ ```inscript
110
+ import onnx
111
+ import onnxslim
112
+
113
+ model = onnx.load("model.onnx")
114
+ slimmed_model = onnxslim.slim(model)
115
+ onnx.save(slimmed_model, "slimmed_model.onnx")
116
+ ```
117
+
118
+ For more usage, see onnxslim -h or refer to our [examples](./examples)
119
+
120
+ # Projects using OnnxSlim
121
+
122
+ - <img src="https://avatars.githubusercontent.com/u/131524?s=48&v=4" width="22" height="22"/>[Mozilla/smart_autofill](https://github.com/mozilla/smart_autofill)
123
+ - <img src="https://avatars.githubusercontent.com/u/1961952?s=48&v=4" width="22" height="22"/>[alibaba/MNN](https://github.com/alibaba/MNN)
124
+ - <img src="https://avatars.githubusercontent.com/u/23534030?s=48&v=4" width="22" height="22"/>[PaddlePaddle/PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
125
+ - <img src="https://avatars.githubusercontent.com/u/25720743?s=48&v=4" width="22" height="22"/>[huggingface/transformers.js](https://github.com/huggingface/transformers.js)
126
+ - <img src="https://avatars.githubusercontent.com/u/25720743?s=48&v=4" width="22" height="22"/>[huggingface/optimum](https://github.com/huggingface/optimum)
127
+ - <img src="https://avatars.githubusercontent.com/u/86091366?s=48&v=4" width="22" height="22"/>[THU-MIG/yolov10](https://github.com/THU-MIG/yolov10)
128
+ - <img src="https://avatars.githubusercontent.com/u/26833451?s=48&v=4" width="22" height="22"/>[ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)
129
+ - <img src="https://avatars.githubusercontent.com/u/109945100?s=48&v=4" width="22" height="22"/>[ModelScope/FunASR](https://github.com/modelscope/FunASR)
130
+ - <img src="https://avatars.githubusercontent.com/u/1961952?s=48&v=4" width="22" height="22"/>[alibaba/MNN-LLM](https://github.com/wangzhaode/mnn-llm)
131
+ - <img src="https://avatars.githubusercontent.com/u/126587470?s=48&v=4" width="22" height="22"/>[deepghs/imgutils](https://github.com/deepghs/imgutils)
132
+ - <img src="https://avatars.githubusercontent.com/u/48153283?s=48&v=4" width="22" height="22"/>[sunsmarterjie/yolov12](https://github.com/sunsmarterjie/yolov12)
133
+ - <img src="https://avatars.githubusercontent.com/u/147458884?s=48&v=4" width="22" height="22"/>[nndeploy/nndeploy](https://github.com/nndeploy/nndeploy)
134
+ - <img src="https://avatars.githubusercontent.com/u/111754012?s=48&v=4" width="22" height="22"/>[CVCUDA/CV-CUDA](https://github.com/CVCUDA/CV-CUDA)
135
+
136
+ # References
137
+
138
+ > - [onnx-graphsurgeon](https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon)
139
+ > - [Polygraphy](https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy/polygraphy)
140
+ > - [onnx-simplifier](https://github.com/daquexian/onnx-simplifier)
141
+ > - [tabulate](https://github.com/astanin/python-tabulate)
142
+ > - [onnxruntime](https://github.com/microsoft/onnxruntime)
143
+
144
+ # Contact
145
+
146
+ Discord: https://discord.gg/nRw2Fd3VUS QQ Group: `873569894`
@@ -0,0 +1,112 @@
1
+ # OnnxSlim
2
+
3
+ <p align="center">
4
+ <a href="https://pypi.org/project/onnxslim">
5
+ <img src="https://img.shields.io/pypi/v/onnxslim?color=blue" />
6
+ </a>
7
+ <a href="https://pypi.org/project/onnxslim">
8
+ <img src="https://static.pepy.tech/badge/onnxslim/week" />
9
+ </a>
10
+ <a href="https://pypi.org/project/onnxslim">
11
+ <img src="https://static.pepy.tech/badge/onnxslim/month" />
12
+ </a>
13
+ <a href="https://pypi.org/project/onnxslim">
14
+ <img src="https://static.pepy.tech/badge/onnxslim" />
15
+ </a>
16
+ <a href="https://github.com/inisis/onnxslim/actions/workflows/ci.yaml">
17
+ <img src="https://github.com/inisis/onnxslim/actions/workflows/ci.yml/badge.svg" />
18
+ </a>
19
+ <a href="https://codecov.io/gh/inisis/onnxslim" >
20
+ <img src="https://codecov.io/gh/inisis/onnxslim/branch/main/graph/badge.svg?token=C69ZH6802N"/>
21
+ </a>
22
+ <a href="https://muhammadrizwanmunawar.medium.com/boost-onnx-load-speed-by-10-15-with-onnxslims-python-package-d401eb8c2e69">
23
+ <img src="https://img.shields.io/badge/Blog-OnnxSlim?style=flat&label=OnnxSlim" />
24
+ </a>
25
+ <a href="https://deepwiki.com/inisis/OnnxSlim"><img src="https://img.shields.io/badge/DeepWiki-inisis%2FOnnxSlim-blue.svg?logo=" alt="DeepWiki"></a>
26
+ </p>
27
+
28
+ OnnxSlim can help you slim your onnx model, with less operators, but same accuracy, better inference speed.
29
+
30
+ - 🚀 2025/05/17: OnnxSlim is merged into [optimum](https://github.com/huggingface/optimum) 🤗🤗🤗
31
+ - 🚀 2025/04/30: Rank 1st in the [AICAS 2025 LLM inference optimization challenge](https://tianchi.aliyun.com/competition/entrance/532289/customize588)
32
+ - 🚀 2025/01/28: Achieved 1M downloads
33
+ - 🚀 2024/06/23: OnnxSlim is merged into [transformers.js](https://github.com/huggingface/transformers.js) 🤗🤗🤗
34
+ - 🚀 2024/06/02: OnnxSlim is merged into [ultralytics](https://github.com/ultralytics/ultralytics) ❤️❤️❤️
35
+ - 🚀 2024/04/30: Rank 1st in the [AICAS 2024 LLM inference optimization challenge](https://tianchi.aliyun.com/competition/entrance/532170/customize440) held by Arm and T-head
36
+ - 🚀 2024/01/25: OnnxSlim is merged to [mnn-llm](https://github.com/wangzhaode/mnn-llm), performance increased by 5%
37
+
38
+ # Benchmark
39
+
40
+ ![Image](https://github.com/user-attachments/assets/fefc79f1-5d8d-486b-935a-a088846b3900)
41
+
42
+ # Installation
43
+
44
+ ## Using Prebuilt
45
+
46
+ ```bash
47
+ pip install onnxslim
48
+ ```
49
+
50
+ ## Install From Source
51
+
52
+ ```bash
53
+ pip install git+https://github.com/inisis/OnnxSlim@main
54
+ ```
55
+
56
+ ## Install From Local
57
+
58
+ ```bash
59
+ git clone https://github.com/inisis/OnnxSlim && cd OnnxSlim/
60
+ pip install .
61
+ ```
62
+
63
+ # How to use
64
+
65
+ ## Bash
66
+
67
+ ```bash
68
+ onnxslim your_onnx_model slimmed_onnx_model
69
+ ```
70
+
71
+ <div align=left><img src="https://raw.githubusercontent.com/inisis/onnxslim/main/images/onnxslim.gif"></div>
72
+
73
+ ## Inscript
74
+
75
+ ```inscript
76
+ import onnx
77
+ import onnxslim
78
+
79
+ model = onnx.load("model.onnx")
80
+ slimmed_model = onnxslim.slim(model)
81
+ onnx.save(slimmed_model, "slimmed_model.onnx")
82
+ ```
83
+
84
+ For more usage, see onnxslim -h or refer to our [examples](./examples)
85
+
86
+ # Projects using OnnxSlim
87
+
88
+ - <img src="https://avatars.githubusercontent.com/u/131524?s=48&v=4" width="22" height="22"/>[Mozilla/smart_autofill](https://github.com/mozilla/smart_autofill)
89
+ - <img src="https://avatars.githubusercontent.com/u/1961952?s=48&v=4" width="22" height="22"/>[alibaba/MNN](https://github.com/alibaba/MNN)
90
+ - <img src="https://avatars.githubusercontent.com/u/23534030?s=48&v=4" width="22" height="22"/>[PaddlePaddle/PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
91
+ - <img src="https://avatars.githubusercontent.com/u/25720743?s=48&v=4" width="22" height="22"/>[huggingface/transformers.js](https://github.com/huggingface/transformers.js)
92
+ - <img src="https://avatars.githubusercontent.com/u/25720743?s=48&v=4" width="22" height="22"/>[huggingface/optimum](https://github.com/huggingface/optimum)
93
+ - <img src="https://avatars.githubusercontent.com/u/86091366?s=48&v=4" width="22" height="22"/>[THU-MIG/yolov10](https://github.com/THU-MIG/yolov10)
94
+ - <img src="https://avatars.githubusercontent.com/u/26833451?s=48&v=4" width="22" height="22"/>[ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)
95
+ - <img src="https://avatars.githubusercontent.com/u/109945100?s=48&v=4" width="22" height="22"/>[ModelScope/FunASR](https://github.com/modelscope/FunASR)
96
+ - <img src="https://avatars.githubusercontent.com/u/1961952?s=48&v=4" width="22" height="22"/>[alibaba/MNN-LLM](https://github.com/wangzhaode/mnn-llm)
97
+ - <img src="https://avatars.githubusercontent.com/u/126587470?s=48&v=4" width="22" height="22"/>[deepghs/imgutils](https://github.com/deepghs/imgutils)
98
+ - <img src="https://avatars.githubusercontent.com/u/48153283?s=48&v=4" width="22" height="22"/>[sunsmarterjie/yolov12](https://github.com/sunsmarterjie/yolov12)
99
+ - <img src="https://avatars.githubusercontent.com/u/147458884?s=48&v=4" width="22" height="22"/>[nndeploy/nndeploy](https://github.com/nndeploy/nndeploy)
100
+ - <img src="https://avatars.githubusercontent.com/u/111754012?s=48&v=4" width="22" height="22"/>[CVCUDA/CV-CUDA](https://github.com/CVCUDA/CV-CUDA)
101
+
102
+ # References
103
+
104
+ > - [onnx-graphsurgeon](https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon)
105
+ > - [Polygraphy](https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy/polygraphy)
106
+ > - [onnx-simplifier](https://github.com/daquexian/onnx-simplifier)
107
+ > - [tabulate](https://github.com/astanin/python-tabulate)
108
+ > - [onnxruntime](https://github.com/microsoft/onnxruntime)
109
+
110
+ # Contact
111
+
112
+ Discord: https://discord.gg/nRw2Fd3VUS QQ Group: `873569894`
@@ -0,0 +1 @@
1
+ 0.1.75
@@ -3,7 +3,6 @@ import warnings
3
3
 
4
4
  from onnxslim.cli import slim
5
5
  from onnxslim.core.pattern.registry import (
6
- DEFAULT_FUSION_PATTERNS,
7
6
  register_fusion_pattern,
8
7
  )
9
8
  from onnxslim.version import __version__
@@ -1,9 +1,34 @@
1
1
  import argparse
2
2
  import dataclasses
3
+ from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
3
4
  from dataclasses import dataclass, field
4
- from typing import List, Optional, Type
5
-
6
- import onnxslim
5
+ from typing import List, Optional, Type, Union, get_args, get_origin, TypedDict, Dict, Literal
6
+
7
+ from .core.optimization import OptimizationSettings
8
+ from .core.pattern.registry import DEFAULT_FUSION_PATTERNS
9
+ from .version import __version__
10
+
11
+
12
+ class OnnxSlimKwargs(TypedDict, total=False):
13
+ model_check: bool
14
+ input_shapes: Dict[str, List[int]]
15
+ inputs: List[str]
16
+ outputs: List[str]
17
+ no_shape_infer: bool
18
+ skip_optimizations: List[str]
19
+ dtype: Literal["float16", "float32", "uint8", "int8"]
20
+ skip_fusion_patterns: List[str]
21
+ size_threshold: int
22
+ inspect: bool
23
+ dump_to_disk: bool
24
+ save_as_external_data: bool
25
+ model_check_inputs: Optional[List[str]]
26
+ verbose: bool
27
+
28
+ def _get_inner_type(arg_type):
29
+ if get_origin(arg_type) is Union:
30
+ return next((t for t in get_args(arg_type) if t is not type(None)), str)
31
+ return arg_type
7
32
 
8
33
 
9
34
  @dataclass
@@ -31,14 +56,24 @@ class OptimizationArguments:
31
56
  """
32
57
 
33
58
  no_shape_infer: bool = field(default=False, metadata={"help": "whether to disable shape_infer, default false."})
34
- no_constant_folding: bool = field(
35
- default=False, metadata={"help": "whether to disable constant_folding, default false."}
59
+ skip_optimizations: Optional[List[str]] = field(
60
+ default=None,
61
+ metadata={
62
+ "help": "whether to skip some optimizations",
63
+ "choices": list(OptimizationSettings.keys()),
64
+ },
36
65
  )
37
66
  skip_fusion_patterns: Optional[List[str]] = field(
38
67
  default=None,
39
68
  metadata={
40
69
  "help": "whether to skip the fusion of some patterns",
41
- "choices": list(onnxslim.DEFAULT_FUSION_PATTERNS.keys()),
70
+ "choices": list(DEFAULT_FUSION_PATTERNS.keys()),
71
+ },
72
+ )
73
+ size_threshold: int = field(
74
+ default=None,
75
+ metadata={
76
+ "help": "size threshold in bytes, size larger than this value will not be folded, default None, which means fold all constants",
42
77
  },
43
78
  )
44
79
 
@@ -109,8 +144,11 @@ class CheckerArguments:
109
144
  verbose: bool = field(default=False, metadata={"help": "verbose mode, default False."})
110
145
 
111
146
 
112
- class ArgumentParser:
113
- def __init__(self, *argument_dataclasses: Type):
147
+ class OnnxSlimArgumentParser(ArgumentParser):
148
+ def __init__(self, *argument_dataclasses: Type, **kwargs):
149
+ if "formatter_class" not in kwargs:
150
+ kwargs["formatter_class"] = ArgumentDefaultsHelpFormatter
151
+ super().__init__(**kwargs)
114
152
  self.argument_dataclasses = argument_dataclasses
115
153
  self.parser = argparse.ArgumentParser(
116
154
  description="OnnxSlim: A Toolkit to Help Optimizer Onnx Model",
@@ -120,13 +158,19 @@ class ArgumentParser:
120
158
 
121
159
  def _add_arguments(self):
122
160
  for dataclass_type in self.argument_dataclasses:
161
+ if dataclass_type is ModelArguments:
162
+ continue
123
163
  for field_name, field_def in dataclass_type.__dataclass_fields__.items():
124
- arg_type = field_def.type
164
+ arg_type = _get_inner_type(field_def.type)
125
165
  default_value = field_def.default if field_def.default is not field_def.default_factory else None
126
166
  help_text = field_def.metadata.get("help", "")
127
- nargs = "+" if arg_type == Optional[List[str]] else None
167
+ nargs = "+" if get_origin(arg_type) == list else None
128
168
  choices = field_def.metadata.get("choices", None)
129
-
169
+ if choices and default_value is not None and default_value not in choices:
170
+ raise ValueError(
171
+ f"Invalid default value '{default_value}' for argument '{field_name}'. Must be one of {choices}."
172
+ )
173
+ arg_type = get_args(arg_type)[0] if get_args(arg_type) else arg_type
130
174
  if arg_type == bool:
131
175
  self.parser.add_argument(
132
176
  f"--{field_name.replace('_', '-')}",
@@ -137,7 +181,7 @@ class ArgumentParser:
137
181
  else:
138
182
  self.parser.add_argument(
139
183
  f"--{field_name.replace('_', '-')}",
140
- type=arg_type if arg_type != Optional[List[str]] else str,
184
+ type=arg_type,
141
185
  default=default_value,
142
186
  nargs=nargs,
143
187
  choices=choices,
@@ -147,9 +191,17 @@ class ArgumentParser:
147
191
  # Add positional arguments separately for ModelArguments
148
192
  self.parser.add_argument("input_model", help="input onnx model")
149
193
  self.parser.add_argument("output_model", nargs="?", default=None, help="output onnx model")
150
- self.parser.add_argument("-v", "--version", action="version", version=onnxslim.__version__)
194
+ self.parser.add_argument("-v", "--version", action="version", version=__version__)
151
195
 
152
196
  def parse_args_into_dataclasses(self):
197
+ # Pre-parse arguments to check for `--inspect`
198
+ pre_parsed_args, _ = self.parser.parse_known_args()
199
+ if pre_parsed_args.inspect:
200
+ for action in self.parser._actions:
201
+ if action.dest == "input_model":
202
+ action.nargs = "+"
203
+ break
204
+
153
205
  args = self.parser.parse_args()
154
206
  args_dict = vars(args)
155
207
 
@@ -1,14 +1,17 @@
1
- from typing import Union
1
+ from __future__ import annotations
2
2
 
3
3
  import onnx
4
4
 
5
+ from onnxslim.argparser import OnnxSlimKwargs
5
6
 
6
- def slim(model: Union[str, onnx.ModelProto], *args, **kwargs):
7
+
8
+ def slim(model: str | onnx.ModelProto | list[str | onnx.ModelProto], *args, **kwargs: OnnxSlimKwargs):
7
9
  import os
8
10
  import time
9
11
  from pathlib import Path
10
12
 
11
13
  from onnxslim.core import (
14
+ OptimizationSettings,
12
15
  convert_data_format,
13
16
  freeze,
14
17
  input_modification,
@@ -18,6 +21,7 @@ def slim(model: Union[str, onnx.ModelProto], *args, **kwargs):
18
21
  shape_infer,
19
22
  )
20
23
  from onnxslim.utils import (
24
+ TensorInfo,
21
25
  check_onnx,
22
26
  check_point,
23
27
  check_result,
@@ -27,6 +31,7 @@ def slim(model: Union[str, onnx.ModelProto], *args, **kwargs):
27
31
  print_model_info_as_table,
28
32
  save,
29
33
  summarize_model,
34
+ update_outputs_dims,
30
35
  )
31
36
 
32
37
  output_model = args[0] if len(args) > 0 else kwargs.get("output_model", None)
@@ -35,10 +40,12 @@ def slim(model: Union[str, onnx.ModelProto], *args, **kwargs):
35
40
  inputs = kwargs.get("inputs", None)
36
41
  outputs = kwargs.get("outputs", None)
37
42
  no_shape_infer = kwargs.get("no_shape_infer", False)
38
- no_constant_folding = kwargs.get("no_constant_folding", False)
43
+ skip_optimizations = kwargs.get("skip_optimizations", None)
39
44
  dtype = kwargs.get("dtype", None)
40
45
  skip_fusion_patterns = kwargs.get("skip_fusion_patterns", None)
41
- inspect = kwargs.get("inspect", False)
46
+ size_threshold = kwargs.get("size_threshold", None)
47
+ size_threshold = int(size_threshold) if size_threshold else None
48
+ kwargs.get("inspect", False)
42
49
  dump_to_disk = kwargs.get("dump_to_disk", False)
43
50
  save_as_external_data = kwargs.get("save_as_external_data", False)
44
51
  model_check_inputs = kwargs.get("model_check_inputs", None)
@@ -48,24 +55,37 @@ def slim(model: Union[str, onnx.ModelProto], *args, **kwargs):
48
55
 
49
56
  MAX_ITER = int(os.getenv("ONNXSLIM_MAX_ITER")) if os.getenv("ONNXSLIM_MAX_ITER") else 10
50
57
 
51
- if isinstance(model, str):
52
- model_name = Path(model).name
53
- model = onnx.load(model)
54
- else:
55
- model_name = "OnnxModel"
58
+ start_time = time.time()
56
59
 
57
- freeze(model)
60
+ def get_info(model, inspect=False):
61
+ if isinstance(model, str):
62
+ model_name = Path(model).name
63
+ model = onnx.load(model)
64
+ else:
65
+ model_name = "OnnxModel"
58
66
 
59
- start_time = time.time()
67
+ freeze(model)
68
+
69
+ if not inspect:
70
+ return model_name, model
71
+
72
+ model_info = summarize_model(model, model_name)
73
+
74
+ return model_info
60
75
 
61
- if output_model or inspect:
62
- float_info = summarize_model(model)
76
+ if isinstance(model, list):
77
+ model_info_list = [get_info(m, inspect=True) for m in model]
63
78
 
64
- if inspect:
65
- print_model_info_as_table(model_name, [float_info])
66
79
  if dump_to_disk:
67
- dump_model_info_to_disk(model_name, float_info)
68
- return None
80
+ [dump_model_info_to_disk(info) for info in model_info_list]
81
+
82
+ print_model_info_as_table(model_info_list)
83
+
84
+ return
85
+ else:
86
+ model_name, model = get_info(model)
87
+ if output_model:
88
+ original_info = summarize_model(model, model_name)
69
89
 
70
90
  if inputs:
71
91
  model = input_modification(model, inputs)
@@ -79,14 +99,17 @@ def slim(model: Union[str, onnx.ModelProto], *args, **kwargs):
79
99
  if model_check:
80
100
  input_data_dict, raw_onnx_output, model = check_onnx(model, model_check_inputs)
81
101
 
102
+ output_info = {TensorInfo(o).name: TensorInfo(o).shape for o in model.graph.output}
103
+
82
104
  if not no_shape_infer:
83
105
  model = shape_infer(model)
84
106
 
85
- if not no_constant_folding:
107
+ OptimizationSettings.reset(skip_optimizations)
108
+ if OptimizationSettings.enabled():
86
109
  graph_check_point = check_point(model)
87
110
  while MAX_ITER > 0:
88
111
  logger.debug(f"iter: {MAX_ITER}")
89
- model = optimize(model, skip_fusion_patterns)
112
+ model = optimize(model, skip_fusion_patterns, size_threshold)
90
113
  if not no_shape_infer:
91
114
  model = shape_infer(model)
92
115
  graph = check_point(model)
@@ -101,21 +124,23 @@ def slim(model: Union[str, onnx.ModelProto], *args, **kwargs):
101
124
  if dtype:
102
125
  model = convert_data_format(model, dtype)
103
126
 
127
+ model = update_outputs_dims(model, output_dims=output_info)
128
+
104
129
  if model_check:
105
130
  slimmed_onnx_output, model = onnxruntime_inference(model, input_data_dict)
106
- check_result(raw_onnx_output, slimmed_onnx_output)
131
+ if not check_result(raw_onnx_output, slimmed_onnx_output):
132
+ return None
107
133
 
108
134
  if not output_model:
109
135
  return model
110
136
 
111
- slimmed_info = summarize_model(model)
137
+ slimmed_info = summarize_model(model, output_model)
112
138
  save(model, output_model, model_check, save_as_external_data, slimmed_info)
113
139
 
114
140
  end_time = time.time()
115
141
  elapsed_time = end_time - start_time
116
142
  print_model_info_as_table(
117
- model_name,
118
- [float_info, slimmed_info],
143
+ [original_info, slimmed_info],
119
144
  elapsed_time,
120
145
  )
121
146
 
@@ -123,26 +148,26 @@ def slim(model: Union[str, onnx.ModelProto], *args, **kwargs):
123
148
  def main():
124
149
  """Entry point for the OnnxSlim toolkit, processes command-line arguments and passes them to the slim function."""
125
150
  from onnxslim.argparser import (
126
- ArgumentParser,
127
151
  CheckerArguments,
128
152
  ModelArguments,
129
153
  ModificationArguments,
154
+ OnnxSlimArgumentParser,
130
155
  OptimizationArguments,
131
156
  )
132
157
 
133
- argument_parser = ArgumentParser(ModelArguments, OptimizationArguments, ModificationArguments, CheckerArguments)
158
+ argument_parser = OnnxSlimArgumentParser(
159
+ ModelArguments, OptimizationArguments, ModificationArguments, CheckerArguments
160
+ )
134
161
  model_args, optimization_args, modification_args, checker_args = argument_parser.parse_args_into_dataclasses()
135
162
 
136
- if checker_args.inspect and model_args.output_model:
137
- argument_parser.error("--inspect and output_model are mutually exclusive")
138
-
139
163
  if not checker_args.inspect and checker_args.dump_to_disk:
140
164
  argument_parser.error("dump_to_disk can only be used with --inspect")
141
165
 
142
- if not optimization_args.no_shape_infer or optimization_args.no_constant_folding:
143
- from onnxslim.utils import check_onnx_compatibility
166
+ if not optimization_args.no_shape_infer:
167
+ from onnxslim.utils import check_onnx_compatibility, is_onnxruntime_available
144
168
 
145
- check_onnx_compatibility()
169
+ if is_onnxruntime_available():
170
+ check_onnx_compatibility()
146
171
 
147
172
  slim(
148
173
  model_args.input_model,