onnx2tf 1.29.5__tar.gz → 1.29.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {onnx2tf-1.29.5/onnx2tf.egg-info → onnx2tf-1.29.6}/PKG-INFO +4 -4
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/README.md +3 -3
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/__init__.py +1 -1
- onnx2tf-1.29.6/onnx2tf/ops/AffineGrid.py +187 -0
- onnx2tf-1.29.6/onnx2tf/ops/Attention.py +612 -0
- onnx2tf-1.29.6/onnx2tf/ops/BlackmanWindow.py +115 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6/onnx2tf.egg-info}/PKG-INFO +4 -4
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf.egg-info/SOURCES.txt +3 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/pyproject.toml +1 -1
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/LICENSE +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/LICENSE_onnx-tensorflow +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/__main__.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/onnx2tf.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Abs.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Acos.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Acosh.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Add.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/And.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ArgMax.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ArgMin.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Asin.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Asinh.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Atan.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Atanh.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/AveragePool.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/BatchNormalization.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Bernoulli.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/BitShift.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/BitwiseAnd.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/BitwiseNot.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/BitwiseOr.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/BitwiseXor.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Cast.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Ceil.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Celu.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Clip.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Col2Im.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Compress.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Concat.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ConcatFromSequence.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Constant.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ConstantOfShape.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Conv.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ConvInteger.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ConvTranspose.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Cos.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Cosh.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/CumProd.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/CumSum.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/DepthToSpace.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/DequantizeLinear.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Det.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Div.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Dropout.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Einsum.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Elu.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Equal.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Erf.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Exp.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Expand.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/EyeLike.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Flatten.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Floor.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/FusedConv.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/GRU.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Gather.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/GatherElements.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/GatherND.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Gelu.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Gemm.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/GlobalAveragePool.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/GlobalLpPool.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/GlobalMaxPool.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Greater.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/GreaterOrEqual.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/GridSample.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/GroupNorm.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/HammingWindow.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/HannWindow.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/HardSigmoid.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/HardSwish.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Hardmax.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Identity.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/If.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Input.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/InstanceNormalization.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Inverse.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/IsInf.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/IsNaN.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/LRN.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/LSTM.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/LayerNormalization.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/LeakyRelu.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Less.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/LessOrEqual.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Log.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/LogSoftmax.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/LpNormalization.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/MatMul.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/MatMulInteger.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Max.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/MaxPool.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/MaxUnpool.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Mean.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/MelWeightMatrix.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Min.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Mish.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Mod.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Mul.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Multinomial.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Neg.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/NonMaxSuppression.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/NonZero.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Not.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/OneHot.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/OptionalGetElement.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/OptionalHasElement.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Or.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/PRelu.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Pad.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Pow.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/QLinearAdd.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/QLinearConcat.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/QLinearConv.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/QLinearMatMul.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/QLinearMul.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/QLinearSigmoid.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/QLinearSoftmax.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/QuantizeLinear.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/RNN.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/RandomNormal.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/RandomNormalLike.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/RandomUniform.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/RandomUniformLike.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Range.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Reciprocal.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ReduceL1.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ReduceL2.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ReduceLogSum.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ReduceMax.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ReduceMean.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ReduceMin.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ReduceProd.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ReduceSum.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ReduceSumSquare.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Relu.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Reshape.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Resize.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ReverseSequence.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/RoiAlign.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Round.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/STFT.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Scatter.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ScatterElements.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ScatterND.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Selu.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/SequenceAt.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/SequenceConstruct.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/SequenceEmpty.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/SequenceErase.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/SequenceInsert.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/SequenceLength.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Shape.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Shrink.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Sigmoid.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Sign.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Sin.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Sinh.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Size.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Slice.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Softmax.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Softplus.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Softsign.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/SpaceToDepth.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Split.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/SplitToSequence.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Sqrt.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Squeeze.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/StringNormalizer.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Sub.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Sum.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Tan.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Tanh.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/ThresholdedRelu.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Tile.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/TopK.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Transpose.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Trilu.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Unique.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Unsqueeze.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Upsample.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Where.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/Xor.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/_Loop.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/__Loop.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/ops/__init__.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/utils/__init__.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/utils/common_functions.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/utils/enums.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/utils/iterative_json_optimizer.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/utils/json_auto_generator.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf/utils/logging.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf.egg-info/dependency_links.txt +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf.egg-info/requires.txt +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/onnx2tf.egg-info/top_level.txt +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/setup.cfg +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/setup.py +0 -0
- {onnx2tf-1.29.5 → onnx2tf-1.29.6}/tests/test_model_convert.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.29.
|
|
3
|
+
Version: 1.29.6
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -95,7 +95,7 @@ https://github.com/PINTO0309/onnx2tf/wiki/model_status
|
|
|
95
95
|
|Acosh|:heavy_check_mark:|
|
|
96
96
|
|Acos|:heavy_check_mark:|
|
|
97
97
|
|Add|:heavy_check_mark:|
|
|
98
|
-
|AffineGrid
|
|
98
|
+
|AffineGrid|:heavy_check_mark:|
|
|
99
99
|
|And|:heavy_check_mark:|
|
|
100
100
|
|ArgMax|:heavy_check_mark:|
|
|
101
101
|
|ArgMin|:heavy_check_mark:|
|
|
@@ -103,7 +103,7 @@ https://github.com/PINTO0309/onnx2tf/wiki/model_status
|
|
|
103
103
|
|Asin|:heavy_check_mark:|
|
|
104
104
|
|Atanh|:heavy_check_mark:|
|
|
105
105
|
|Atan|:heavy_check_mark:|
|
|
106
|
-
|Attention
|
|
106
|
+
|Attention|:heavy_check_mark:|
|
|
107
107
|
|AveragePool|:heavy_check_mark:|
|
|
108
108
|
|BatchNormalization|:heavy_check_mark:|
|
|
109
109
|
|Bernoulli|:heavy_check_mark:|
|
|
@@ -112,7 +112,7 @@ https://github.com/PINTO0309/onnx2tf/wiki/model_status
|
|
|
112
112
|
|BitwiseNot|:heavy_check_mark:|
|
|
113
113
|
|BitwiseOr|:heavy_check_mark:|
|
|
114
114
|
|BitwiseXor|:heavy_check_mark:|
|
|
115
|
-
|BlackmanWindow
|
|
115
|
+
|BlackmanWindow|:heavy_check_mark:|
|
|
116
116
|
|Cast|:heavy_check_mark:|
|
|
117
117
|
|Ceil|:heavy_check_mark:|
|
|
118
118
|
|Celu|:heavy_check_mark:|
|
|
@@ -59,7 +59,7 @@ https://github.com/PINTO0309/onnx2tf/wiki/model_status
|
|
|
59
59
|
|Acosh|:heavy_check_mark:|
|
|
60
60
|
|Acos|:heavy_check_mark:|
|
|
61
61
|
|Add|:heavy_check_mark:|
|
|
62
|
-
|AffineGrid
|
|
62
|
+
|AffineGrid|:heavy_check_mark:|
|
|
63
63
|
|And|:heavy_check_mark:|
|
|
64
64
|
|ArgMax|:heavy_check_mark:|
|
|
65
65
|
|ArgMin|:heavy_check_mark:|
|
|
@@ -67,7 +67,7 @@ https://github.com/PINTO0309/onnx2tf/wiki/model_status
|
|
|
67
67
|
|Asin|:heavy_check_mark:|
|
|
68
68
|
|Atanh|:heavy_check_mark:|
|
|
69
69
|
|Atan|:heavy_check_mark:|
|
|
70
|
-
|Attention
|
|
70
|
+
|Attention|:heavy_check_mark:|
|
|
71
71
|
|AveragePool|:heavy_check_mark:|
|
|
72
72
|
|BatchNormalization|:heavy_check_mark:|
|
|
73
73
|
|Bernoulli|:heavy_check_mark:|
|
|
@@ -76,7 +76,7 @@ https://github.com/PINTO0309/onnx2tf/wiki/model_status
|
|
|
76
76
|
|BitwiseNot|:heavy_check_mark:|
|
|
77
77
|
|BitwiseOr|:heavy_check_mark:|
|
|
78
78
|
|BitwiseXor|:heavy_check_mark:|
|
|
79
|
-
|BlackmanWindow
|
|
79
|
+
|BlackmanWindow|:heavy_check_mark:|
|
|
80
80
|
|Cast|:heavy_check_mark:|
|
|
81
81
|
|Ceil|:heavy_check_mark:|
|
|
82
82
|
|Celu|:heavy_check_mark:|
|
|
@@ -0,0 +1,187 @@
|
|
|
1
|
+
import random
|
|
2
|
+
random.seed(0)
|
|
3
|
+
import numpy as np
|
|
4
|
+
np.random.seed(0)
|
|
5
|
+
import tensorflow as tf
|
|
6
|
+
import onnx_graphsurgeon as gs
|
|
7
|
+
from onnx2tf.utils.common_functions import (
|
|
8
|
+
replace_parameter,
|
|
9
|
+
get_constant_or_variable,
|
|
10
|
+
print_node_info,
|
|
11
|
+
inverted_operation_enable_disable,
|
|
12
|
+
make_tf_node_info,
|
|
13
|
+
get_replacement_parameter,
|
|
14
|
+
pre_process_transpose,
|
|
15
|
+
post_process_transpose,
|
|
16
|
+
)
|
|
17
|
+
from typing import Any
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def _make_coords(
|
|
21
|
+
size_dim: Any,
|
|
22
|
+
align_corners: bool,
|
|
23
|
+
dtype: Any,
|
|
24
|
+
) -> Any:
|
|
25
|
+
size_dim = tf.cast(size_dim, tf.int32)
|
|
26
|
+
size_f = tf.cast(size_dim, dtype)
|
|
27
|
+
|
|
28
|
+
if align_corners:
|
|
29
|
+
denom = size_f - tf.constant(1.0, dtype=dtype)
|
|
30
|
+
step = tf.where(
|
|
31
|
+
condition=size_dim > 1,
|
|
32
|
+
x=tf.constant(2.0, dtype=dtype) / denom,
|
|
33
|
+
y=tf.constant(0.0, dtype=dtype),
|
|
34
|
+
)
|
|
35
|
+
start = tf.constant(-1.0, dtype=dtype)
|
|
36
|
+
else:
|
|
37
|
+
step = tf.constant(2.0, dtype=dtype) / size_f
|
|
38
|
+
start = tf.constant(-1.0, dtype=dtype) + step / tf.constant(2.0, dtype=dtype)
|
|
39
|
+
|
|
40
|
+
return start + tf.range(size_dim, dtype=dtype) * step
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
@print_node_info
|
|
44
|
+
@inverted_operation_enable_disable
|
|
45
|
+
@get_replacement_parameter
|
|
46
|
+
def make_node(
|
|
47
|
+
*,
|
|
48
|
+
graph_node: gs.Node,
|
|
49
|
+
tf_layers_dict: dict,
|
|
50
|
+
**kwargs: dict,
|
|
51
|
+
):
|
|
52
|
+
"""AffineGrid
|
|
53
|
+
|
|
54
|
+
Parameters
|
|
55
|
+
----------
|
|
56
|
+
graph_node: gs.Node
|
|
57
|
+
graph_surgeon Node
|
|
58
|
+
|
|
59
|
+
tf_layers_dict: dict
|
|
60
|
+
optype, shape, dtype, tensorflow graph
|
|
61
|
+
"""
|
|
62
|
+
before_op_output_shape_trans_1 = \
|
|
63
|
+
tf_layers_dict.get(graph_node.inputs[0].name, {}).get('before_op_output_shape_trans', True)
|
|
64
|
+
before_op_output_shape_trans_2 = \
|
|
65
|
+
tf_layers_dict.get(graph_node.inputs[1].name, {}).get('before_op_output_shape_trans', True)
|
|
66
|
+
before_op_output_shape_trans = \
|
|
67
|
+
before_op_output_shape_trans_1 \
|
|
68
|
+
and before_op_output_shape_trans_2
|
|
69
|
+
|
|
70
|
+
graph_node_input_theta = get_constant_or_variable(
|
|
71
|
+
graph_node.inputs[0],
|
|
72
|
+
before_op_output_shape_trans,
|
|
73
|
+
)
|
|
74
|
+
graph_node_input_size = get_constant_or_variable(
|
|
75
|
+
graph_node.inputs[1],
|
|
76
|
+
False \
|
|
77
|
+
if hasattr(graph_node.inputs[1], 'values') \
|
|
78
|
+
and isinstance(graph_node.inputs[1].values, np.ndarray) \
|
|
79
|
+
else before_op_output_shape_trans,
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
graph_node_output: gs.Variable = graph_node.outputs[0]
|
|
83
|
+
shape = graph_node_output.shape
|
|
84
|
+
dtype = graph_node_output.dtype
|
|
85
|
+
|
|
86
|
+
# Preserving Graph Structure (Dict)
|
|
87
|
+
tf_layers_dict[graph_node_output.name] = {
|
|
88
|
+
'optype': graph_node.op,
|
|
89
|
+
'shape': shape,
|
|
90
|
+
'dtype': dtype,
|
|
91
|
+
'nhwc': True,
|
|
92
|
+
}
|
|
93
|
+
|
|
94
|
+
theta = tf_layers_dict[graph_node_input_theta.name]['tf_node'] \
|
|
95
|
+
if isinstance(graph_node_input_theta, gs.Variable) else graph_node_input_theta
|
|
96
|
+
size = tf_layers_dict[graph_node_input_size.name]['tf_node'] \
|
|
97
|
+
if isinstance(graph_node_input_size, gs.Variable) else graph_node_input_size
|
|
98
|
+
|
|
99
|
+
# Pre-process transpose
|
|
100
|
+
theta = pre_process_transpose(
|
|
101
|
+
value_before_transpose=theta,
|
|
102
|
+
param_target='inputs',
|
|
103
|
+
param_name=graph_node.inputs[0].name,
|
|
104
|
+
**kwargs,
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
align_corners = bool(graph_node.attrs.get('align_corners', 0))
|
|
108
|
+
align_corners = replace_parameter(
|
|
109
|
+
value_before_replacement=align_corners,
|
|
110
|
+
param_target='attributes',
|
|
111
|
+
param_name='align_corners',
|
|
112
|
+
**kwargs,
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
theta_dtype = theta.dtype
|
|
116
|
+
size_tensor = tf.cast(size, tf.int32)
|
|
117
|
+
|
|
118
|
+
size_rank = size_tensor.shape[0] if size_tensor.shape.rank == 1 else None
|
|
119
|
+
|
|
120
|
+
def _build_grid_2d(size_vec):
|
|
121
|
+
N, _, H, W = tf.unstack(size_vec)
|
|
122
|
+
h_coords = _make_coords(H, align_corners, theta_dtype)
|
|
123
|
+
w_coords = _make_coords(W, align_corners, theta_dtype)
|
|
124
|
+
grid_h, grid_w = tf.meshgrid(h_coords, w_coords, indexing='ij')
|
|
125
|
+
ones = tf.ones_like(grid_w, dtype=theta_dtype)
|
|
126
|
+
grid = tf.stack([grid_w, grid_h, ones], axis=-1)
|
|
127
|
+
grid_flat = tf.reshape(grid, shape=[-1, 3])
|
|
128
|
+
grid_flat_t = tf.transpose(grid_flat)
|
|
129
|
+
grid_flat_t = tf.cast(grid_flat_t, theta_dtype)
|
|
130
|
+
out = tf.matmul(theta, grid_flat_t)
|
|
131
|
+
out = tf.transpose(out, perm=[0, 2, 1])
|
|
132
|
+
out = tf.reshape(out, shape=tf.stack([N, H, W, 2]))
|
|
133
|
+
return out
|
|
134
|
+
|
|
135
|
+
def _build_grid_3d(size_vec):
|
|
136
|
+
N, _, D, H, W = tf.unstack(size_vec)
|
|
137
|
+
d_coords = _make_coords(D, align_corners, theta_dtype)
|
|
138
|
+
h_coords = _make_coords(H, align_corners, theta_dtype)
|
|
139
|
+
w_coords = _make_coords(W, align_corners, theta_dtype)
|
|
140
|
+
grid_d, grid_h, grid_w = tf.meshgrid(d_coords, h_coords, w_coords, indexing='ij')
|
|
141
|
+
ones = tf.ones_like(grid_w, dtype=theta_dtype)
|
|
142
|
+
grid = tf.stack([grid_w, grid_h, grid_d, ones], axis=-1)
|
|
143
|
+
grid_flat = tf.reshape(grid, shape=[-1, 4])
|
|
144
|
+
grid_flat_t = tf.transpose(grid_flat)
|
|
145
|
+
grid_flat_t = tf.cast(grid_flat_t, theta_dtype)
|
|
146
|
+
out = tf.matmul(theta, grid_flat_t)
|
|
147
|
+
out = tf.transpose(out, perm=[0, 2, 1])
|
|
148
|
+
out = tf.reshape(out, shape=tf.stack([N, D, H, W, 3]))
|
|
149
|
+
return out
|
|
150
|
+
|
|
151
|
+
if size_rank == 4:
|
|
152
|
+
grid = _build_grid_2d(size_tensor)
|
|
153
|
+
elif size_rank == 5:
|
|
154
|
+
grid = _build_grid_3d(size_tensor)
|
|
155
|
+
else:
|
|
156
|
+
size_dim = tf.shape(size_tensor)[0]
|
|
157
|
+
grid = tf.cond(
|
|
158
|
+
pred=tf.equal(size_dim, 4),
|
|
159
|
+
true_fn=lambda: _build_grid_2d(size_tensor),
|
|
160
|
+
false_fn=lambda: _build_grid_3d(size_tensor),
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
tf_layers_dict[graph_node_output.name]['tf_node'] = grid
|
|
164
|
+
|
|
165
|
+
# Post-process transpose
|
|
166
|
+
tf_layers_dict[graph_node_output.name]['tf_node'] = post_process_transpose(
|
|
167
|
+
value_before_transpose=tf_layers_dict[graph_node_output.name]['tf_node'],
|
|
168
|
+
param_target='outputs',
|
|
169
|
+
param_name=graph_node.outputs[0].name,
|
|
170
|
+
**kwargs,
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
# Generation of Debug Info
|
|
174
|
+
tf_layers_dict[graph_node_output.name]['tf_node_info'] = \
|
|
175
|
+
make_tf_node_info(
|
|
176
|
+
node_info={
|
|
177
|
+
'tf_op_type': 'AffineGrid',
|
|
178
|
+
'tf_inputs': {
|
|
179
|
+
'theta': theta,
|
|
180
|
+
'size': size,
|
|
181
|
+
'align_corners': align_corners,
|
|
182
|
+
},
|
|
183
|
+
'tf_outputs': {
|
|
184
|
+
'output': tf_layers_dict[graph_node_output.name]['tf_node'],
|
|
185
|
+
},
|
|
186
|
+
}
|
|
187
|
+
)
|