onnx2tf 1.29.1__tar.gz → 1.29.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (205) hide show
  1. {onnx2tf-1.29.1/onnx2tf.egg-info → onnx2tf-1.29.2}/PKG-INFO +3 -3
  2. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/README.md +2 -2
  3. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Conv.py +27 -0
  5. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/utils/json_auto_generator.py +190 -190
  6. {onnx2tf-1.29.1 → onnx2tf-1.29.2/onnx2tf.egg-info}/PKG-INFO +3 -3
  7. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/pyproject.toml +1 -1
  8. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/LICENSE +0 -0
  9. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/LICENSE_onnx-tensorflow +0 -0
  10. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/__main__.py +0 -0
  11. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/onnx2tf.py +0 -0
  12. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Abs.py +0 -0
  13. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Acos.py +0 -0
  14. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Acosh.py +0 -0
  15. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Add.py +0 -0
  16. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/And.py +0 -0
  17. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ArgMax.py +0 -0
  18. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ArgMin.py +0 -0
  19. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Asin.py +0 -0
  20. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Asinh.py +0 -0
  21. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Atan.py +0 -0
  22. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Atanh.py +0 -0
  23. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/AveragePool.py +0 -0
  24. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/BatchNormalization.py +0 -0
  25. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Bernoulli.py +0 -0
  26. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/BitShift.py +0 -0
  27. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Cast.py +0 -0
  28. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Ceil.py +0 -0
  29. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Celu.py +0 -0
  30. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Clip.py +0 -0
  31. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Col2Im.py +0 -0
  32. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Compress.py +0 -0
  33. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Concat.py +0 -0
  34. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  35. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Constant.py +0 -0
  36. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ConstantOfShape.py +0 -0
  37. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ConvInteger.py +0 -0
  38. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ConvTranspose.py +0 -0
  39. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Cos.py +0 -0
  40. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Cosh.py +0 -0
  41. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/CumSum.py +0 -0
  42. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/DepthToSpace.py +0 -0
  43. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/DequantizeLinear.py +0 -0
  44. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Det.py +0 -0
  45. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Div.py +0 -0
  46. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Dropout.py +0 -0
  47. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  48. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Einsum.py +0 -0
  49. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Elu.py +0 -0
  50. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Equal.py +0 -0
  51. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Erf.py +0 -0
  52. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Exp.py +0 -0
  53. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Expand.py +0 -0
  54. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/EyeLike.py +0 -0
  55. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Flatten.py +0 -0
  56. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Floor.py +0 -0
  57. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/FusedConv.py +0 -0
  58. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/GRU.py +0 -0
  59. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Gather.py +0 -0
  60. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/GatherElements.py +0 -0
  61. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/GatherND.py +0 -0
  62. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Gelu.py +0 -0
  63. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Gemm.py +0 -0
  64. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  65. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/GlobalLpPool.py +0 -0
  66. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  67. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Greater.py +0 -0
  68. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  69. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/GridSample.py +0 -0
  70. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/GroupNorm.py +0 -0
  71. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/HammingWindow.py +0 -0
  72. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/HannWindow.py +0 -0
  73. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/HardSigmoid.py +0 -0
  74. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/HardSwish.py +0 -0
  75. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Hardmax.py +0 -0
  76. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Identity.py +0 -0
  77. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/If.py +0 -0
  78. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Input.py +0 -0
  79. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/InstanceNormalization.py +0 -0
  80. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Inverse.py +0 -0
  81. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/IsInf.py +0 -0
  82. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/IsNaN.py +0 -0
  83. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/LRN.py +0 -0
  84. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/LSTM.py +0 -0
  85. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/LayerNormalization.py +0 -0
  86. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/LeakyRelu.py +0 -0
  87. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Less.py +0 -0
  88. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/LessOrEqual.py +0 -0
  89. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Log.py +0 -0
  90. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/LogSoftmax.py +0 -0
  91. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/LpNormalization.py +0 -0
  92. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/MatMul.py +0 -0
  93. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/MatMulInteger.py +0 -0
  94. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Max.py +0 -0
  95. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/MaxPool.py +0 -0
  96. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/MaxUnpool.py +0 -0
  97. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Mean.py +0 -0
  98. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  99. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  100. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Min.py +0 -0
  101. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Mish.py +0 -0
  102. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Mod.py +0 -0
  103. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Mul.py +0 -0
  104. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Multinomial.py +0 -0
  105. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Neg.py +0 -0
  106. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  107. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/NonZero.py +0 -0
  108. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Not.py +0 -0
  109. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/OneHot.py +0 -0
  110. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/OptionalGetElement.py +0 -0
  111. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/OptionalHasElement.py +0 -0
  112. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Or.py +0 -0
  113. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/PRelu.py +0 -0
  114. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Pad.py +0 -0
  115. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Pow.py +0 -0
  116. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearAdd.py +0 -0
  117. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearConcat.py +0 -0
  118. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearConv.py +0 -0
  119. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  120. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearMatMul.py +0 -0
  121. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearMul.py +0 -0
  122. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  123. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  124. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/QuantizeLinear.py +0 -0
  125. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/RNN.py +0 -0
  126. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/RandomNormal.py +0 -0
  127. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/RandomNormalLike.py +0 -0
  128. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/RandomUniform.py +0 -0
  129. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/RandomUniformLike.py +0 -0
  130. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Range.py +0 -0
  131. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Reciprocal.py +0 -0
  132. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceL1.py +0 -0
  133. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceL2.py +0 -0
  134. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceLogSum.py +0 -0
  135. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  136. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceMax.py +0 -0
  137. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceMean.py +0 -0
  138. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceMin.py +0 -0
  139. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceProd.py +0 -0
  140. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceSum.py +0 -0
  141. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  142. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Relu.py +0 -0
  143. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Reshape.py +0 -0
  144. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Resize.py +0 -0
  145. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ReverseSequence.py +0 -0
  146. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/RoiAlign.py +0 -0
  147. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Round.py +0 -0
  148. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/STFT.py +0 -0
  149. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  150. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Scatter.py +0 -0
  151. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ScatterElements.py +0 -0
  152. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ScatterND.py +0 -0
  153. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Selu.py +0 -0
  154. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/SequenceAt.py +0 -0
  155. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/SequenceConstruct.py +0 -0
  156. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/SequenceEmpty.py +0 -0
  157. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/SequenceErase.py +0 -0
  158. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/SequenceInsert.py +0 -0
  159. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/SequenceLength.py +0 -0
  160. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Shape.py +0 -0
  161. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Shrink.py +0 -0
  162. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Sigmoid.py +0 -0
  163. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Sign.py +0 -0
  164. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Sin.py +0 -0
  165. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Sinh.py +0 -0
  166. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Size.py +0 -0
  167. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Slice.py +0 -0
  168. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Softmax.py +0 -0
  169. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Softplus.py +0 -0
  170. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Softsign.py +0 -0
  171. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/SpaceToDepth.py +0 -0
  172. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Split.py +0 -0
  173. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/SplitToSequence.py +0 -0
  174. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Sqrt.py +0 -0
  175. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Squeeze.py +0 -0
  176. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/StringNormalizer.py +0 -0
  177. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Sub.py +0 -0
  178. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Sum.py +0 -0
  179. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Tan.py +0 -0
  180. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Tanh.py +0 -0
  181. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  182. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Tile.py +0 -0
  183. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/TopK.py +0 -0
  184. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Transpose.py +0 -0
  185. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Trilu.py +0 -0
  186. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Unique.py +0 -0
  187. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Unsqueeze.py +0 -0
  188. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Upsample.py +0 -0
  189. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Where.py +0 -0
  190. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/Xor.py +0 -0
  191. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/_Loop.py +0 -0
  192. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/__Loop.py +0 -0
  193. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/ops/__init__.py +0 -0
  194. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/utils/__init__.py +0 -0
  195. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/utils/common_functions.py +0 -0
  196. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/utils/enums.py +0 -0
  197. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/utils/iterative_json_optimizer.py +0 -0
  198. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf/utils/logging.py +0 -0
  199. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf.egg-info/SOURCES.txt +0 -0
  200. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf.egg-info/dependency_links.txt +0 -0
  201. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf.egg-info/requires.txt +0 -0
  202. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/onnx2tf.egg-info/top_level.txt +0 -0
  203. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/setup.cfg +0 -0
  204. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/setup.py +0 -0
  205. {onnx2tf-1.29.1 → onnx2tf-1.29.2}/tests/test_model_convert.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx2tf
3
- Version: 1.29.1
3
+ Version: 1.29.2
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -345,7 +345,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
345
345
  docker run --rm -it \
346
346
  -v `pwd`:/workdir \
347
347
  -w /workdir \
348
- ghcr.io/pinto0309/onnx2tf:1.29.1
348
+ ghcr.io/pinto0309/onnx2tf:1.29.2
349
349
 
350
350
  or
351
351
 
@@ -353,7 +353,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
353
353
  docker run --rm -it \
354
354
  -v `pwd`:/workdir \
355
355
  -w /workdir \
356
- docker.io/pinto0309/onnx2tf:1.29.1
356
+ docker.io/pinto0309/onnx2tf:1.29.2
357
357
 
358
358
  or
359
359
 
@@ -309,7 +309,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
309
309
  docker run --rm -it \
310
310
  -v `pwd`:/workdir \
311
311
  -w /workdir \
312
- ghcr.io/pinto0309/onnx2tf:1.29.1
312
+ ghcr.io/pinto0309/onnx2tf:1.29.2
313
313
 
314
314
  or
315
315
 
@@ -317,7 +317,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
317
317
  docker run --rm -it \
318
318
  -v `pwd`:/workdir \
319
319
  -w /workdir \
320
- docker.io/pinto0309/onnx2tf:1.29.1
320
+ docker.io/pinto0309/onnx2tf:1.29.2
321
321
 
322
322
  or
323
323
 
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.29.1'
3
+ __version__ = '1.29.2'
@@ -370,6 +370,20 @@ def make_node(
370
370
  )
371
371
 
372
372
  def depth_conv_bias(input_tensor, input_weights, pad_mode, strides, dilations, input_bias):
373
+ # tf.nn.depthwise_conv2d uses a different output shape when dilation>1 and stride>1.
374
+ # Emulate stride>1 by running stride=1 then subsampling to match ONNX.
375
+ if pad_mode == 'VALID' \
376
+ and max(dilations) > 1 \
377
+ and any(s > 1 for s in strides[1:-1]):
378
+ conv = tf.nn.depthwise_conv2d(
379
+ input=input_tensor,
380
+ filter=input_weights,
381
+ padding=pad_mode,
382
+ strides=[1, 1, 1, 1],
383
+ dilations=dilations,
384
+ )
385
+ conv = conv[:, ::strides[1], ::strides[2], :]
386
+ return tf.add(conv, input_bias)
373
387
  return \
374
388
  tf.add(
375
389
  tf.nn.depthwise_conv2d(
@@ -438,6 +452,19 @@ def make_node(
438
452
  )
439
453
 
440
454
  def depth_conv_nobias(input_tensor, input_weights, pad_mode, strides, dilations):
455
+ # tf.nn.depthwise_conv2d uses a different output shape when dilation>1 and stride>1.
456
+ # Emulate stride>1 by running stride=1 then subsampling to match ONNX.
457
+ if pad_mode == 'VALID' \
458
+ and max(dilations) > 1 \
459
+ and any(s > 1 for s in strides[1:-1]):
460
+ conv = tf.nn.depthwise_conv2d(
461
+ input=input_tensor,
462
+ filter=input_weights,
463
+ padding=pad_mode,
464
+ strides=[1, 1, 1, 1],
465
+ dilations=dilations,
466
+ )
467
+ return conv[:, ::strides[1], ::strides[2], :]
441
468
  return \
442
469
  tf.nn.depthwise_conv2d(
443
470
  input=input_tensor,