onnx2tf 1.29.18__tar.gz → 1.29.20__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/PKG-INFO +27 -5
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/README.md +26 -4
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/__init__.py +1 -1
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/onnx2tf.py +967 -27
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Col2Im.py +108 -64
- onnx2tf-1.29.20/onnx2tf/ops/DFT.py +245 -0
- onnx2tf-1.29.20/onnx2tf/ops/DeformConv.py +399 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GatherElements.py +25 -7
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GatherND.py +28 -1
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ScatterElements.py +25 -7
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ScatterND.py +45 -6
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/TensorScatter.py +20 -6
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/utils/common_functions.py +99 -2
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/pyproject.toml +1 -1
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/__main__.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Abs.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Acos.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Acosh.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Add.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/AffineGrid.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/And.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ArgMax.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ArgMin.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Asin.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Asinh.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Atan.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Atanh.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Attention.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/AveragePool.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/BatchNormalization.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Bernoulli.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/BitShift.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/BitwiseAnd.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/BitwiseNot.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/BitwiseOr.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/BitwiseXor.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/BlackmanWindow.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Cast.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Ceil.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Celu.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Clip.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Compress.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Concat.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ConcatFromSequence.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Constant.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ConstantOfShape.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Conv.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ConvInteger.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ConvTranspose.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Cos.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Cosh.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/CumProd.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/CumSum.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/DepthToSpace.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/DequantizeLinear.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Det.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Div.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Dropout.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Einsum.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Elu.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Equal.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Erf.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Exp.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Expand.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/EyeLike.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Flatten.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Floor.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/FusedConv.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GRU.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Gather.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Gelu.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Gemm.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GlobalAveragePool.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GlobalLpPool.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GlobalMaxPool.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Greater.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GreaterOrEqual.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GridSample.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GroupNorm.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/HammingWindow.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/HannWindow.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/HardSigmoid.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/HardSwish.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Hardmax.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Identity.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/If.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ImageDecoder.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Input.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/InstanceNormalization.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Inverse.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/IsInf.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/IsNaN.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LRN.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LSTM.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LayerNormalization.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LeakyRelu.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Less.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LessOrEqual.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Log.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LogSoftmax.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Loop.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LpNormalization.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LpPool.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/MatMul.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/MatMulInteger.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Max.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/MaxPool.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/MaxRoiPool.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/MaxUnpool.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Mean.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/MelWeightMatrix.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Min.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Mish.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Mod.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Mul.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Multinomial.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Neg.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/NegativeLogLikelihoodLoss.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/NonMaxSuppression.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/NonZero.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Not.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/OneHot.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/OptionalGetElement.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/OptionalHasElement.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Or.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/PRelu.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Pad.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Pow.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearAdd.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearConcat.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearConv.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearMatMul.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearMul.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearSigmoid.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearSoftmax.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QuantizeLinear.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RMSNormalization.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RNN.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RandomNormal.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RandomNormalLike.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RandomUniform.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RandomUniformLike.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Range.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Reciprocal.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceL1.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceL2.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceLogSum.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceMax.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceMean.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceMin.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceProd.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceSum.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceSumSquare.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RegexFullMatch.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Relu.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Reshape.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Resize.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReverseSequence.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RoiAlign.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RotaryEmbedding.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Round.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/STFT.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Scan.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Scatter.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Selu.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SequenceAt.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SequenceConstruct.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SequenceEmpty.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SequenceErase.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SequenceInsert.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SequenceLength.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Shape.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Shrink.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Sigmoid.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Sign.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Sin.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Sinh.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Size.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Slice.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Softmax.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SoftmaxCrossEntropyLoss.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Softplus.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Softsign.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SpaceToDepth.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Split.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SplitToSequence.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Sqrt.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Squeeze.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/StringConcat.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/StringNormalizer.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/StringSplit.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Sub.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Sum.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Tan.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Tanh.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ThresholdedRelu.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Tile.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/TopK.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Transpose.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Trilu.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Unique.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Unsqueeze.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Upsample.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Where.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Xor.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/__init__.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/utils/__init__.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/utils/enums.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/utils/iterative_json_optimizer.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/utils/json_auto_generator.py +0 -0
- {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/utils/logging.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.29.
|
|
3
|
+
Version: 1.29.20
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
|
|
5
5
|
Keywords: onnx,tensorflow,tflite,keras,deep-learning,machine-learning
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -137,11 +137,11 @@ https://github.com/PINTO0309/onnx2tf/wiki/model_status
|
|
|
137
137
|
|Cos|:heavy_check_mark:|
|
|
138
138
|
|CumProd|:heavy_check_mark:|
|
|
139
139
|
|CumSum|:heavy_check_mark:|
|
|
140
|
-
|DeformConv
|
|
140
|
+
|DeformConv|:white_check_mark:|
|
|
141
141
|
|DepthToSpace|:heavy_check_mark:|
|
|
142
142
|
|Det|:heavy_check_mark:|
|
|
143
143
|
|DequantizeLinear|:heavy_check_mark:|
|
|
144
|
-
|DFT
|
|
144
|
+
|DFT|:white_check_mark:|
|
|
145
145
|
|Div|:heavy_check_mark:|
|
|
146
146
|
|Dropout|:heavy_check_mark:|
|
|
147
147
|
|DynamicQuantizeLinear|:heavy_check_mark:|
|
|
@@ -365,7 +365,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
365
365
|
docker run --rm -it \
|
|
366
366
|
-v `pwd`:/workdir \
|
|
367
367
|
-w /workdir \
|
|
368
|
-
ghcr.io/pinto0309/onnx2tf:1.29.
|
|
368
|
+
ghcr.io/pinto0309/onnx2tf:1.29.20
|
|
369
369
|
|
|
370
370
|
or
|
|
371
371
|
|
|
@@ -373,7 +373,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
373
373
|
docker run --rm -it \
|
|
374
374
|
-v `pwd`:/workdir \
|
|
375
375
|
-w /workdir \
|
|
376
|
-
docker.io/pinto0309/onnx2tf:1.29.
|
|
376
|
+
docker.io/pinto0309/onnx2tf:1.29.20
|
|
377
377
|
|
|
378
378
|
or
|
|
379
379
|
|
|
@@ -1887,6 +1887,15 @@ optional arguments:
|
|
|
1887
1887
|
model partitioned into subgraphs.
|
|
1888
1888
|
e.g. --output_names_to_interrupt_model_conversion "output0" "output1" "output2"
|
|
1889
1889
|
|
|
1890
|
+
-easm, --enable_auto_split_model
|
|
1891
|
+
Force auto split regardless of the ONNX file size.
|
|
1892
|
+
Uses --auto_split_max_size_mb as the target partition size.
|
|
1893
|
+
|
|
1894
|
+
-asmsm AUTO_SPLIT_MAX_SIZE_MB, --auto_split_max_size_mb AUTO_SPLIT_MAX_SIZE_MB
|
|
1895
|
+
Target maximum size per partition in MB based on ONNX initializer sizes.
|
|
1896
|
+
Used when auto-split is triggered or forced.
|
|
1897
|
+
Default: 1024
|
|
1898
|
+
|
|
1890
1899
|
-dgc, --disable_group_convolution
|
|
1891
1900
|
Disable GroupConvolution and replace it with SeparableConvolution for
|
|
1892
1901
|
output to saved_model format.
|
|
@@ -2156,6 +2165,8 @@ convert(
|
|
|
2156
2165
|
keep_shape_absolutely_input_names: Optional[List[str]] = None,
|
|
2157
2166
|
input_names_to_interrupt_model_conversion: Union[List[str], NoneType] = None,
|
|
2158
2167
|
output_names_to_interrupt_model_conversion: Union[List[str], NoneType] = None,
|
|
2168
|
+
enable_auto_split_model: Optional[bool] = False,
|
|
2169
|
+
auto_split_max_size_mb: Optional[int] = 1024,
|
|
2159
2170
|
disable_group_convolution: Union[bool, NoneType] = False,
|
|
2160
2171
|
enable_batchmatmul_unfold: Optional[bool] = False,
|
|
2161
2172
|
enable_rnn_unroll: Optional[bool] = False,
|
|
@@ -2424,6 +2435,17 @@ convert(
|
|
|
2424
2435
|
e.g.
|
|
2425
2436
|
output_names_to_interrupt_model_conversion=['output0','output1','output2']
|
|
2426
2437
|
|
|
2438
|
+
enable_auto_split_model: Optional[bool]
|
|
2439
|
+
Force auto split regardless of the ONNX file size.
|
|
2440
|
+
Uses auto_split_max_size_mb as the target partition size.
|
|
2441
|
+
Short option: -easm
|
|
2442
|
+
Default: False
|
|
2443
|
+
|
|
2444
|
+
auto_split_max_size_mb: Optional[int]
|
|
2445
|
+
Target maximum size per partition in MB based on ONNX initializer sizes.
|
|
2446
|
+
Used when auto-split is triggered or forced.
|
|
2447
|
+
Default: 1024
|
|
2448
|
+
|
|
2427
2449
|
disable_group_convolution: Optional[bool]
|
|
2428
2450
|
Disable GroupConvolution and replace it with SeparableConvolution for
|
|
2429
2451
|
output to saved_model format.
|
|
@@ -95,11 +95,11 @@ https://github.com/PINTO0309/onnx2tf/wiki/model_status
|
|
|
95
95
|
|Cos|:heavy_check_mark:|
|
|
96
96
|
|CumProd|:heavy_check_mark:|
|
|
97
97
|
|CumSum|:heavy_check_mark:|
|
|
98
|
-
|DeformConv
|
|
98
|
+
|DeformConv|:white_check_mark:|
|
|
99
99
|
|DepthToSpace|:heavy_check_mark:|
|
|
100
100
|
|Det|:heavy_check_mark:|
|
|
101
101
|
|DequantizeLinear|:heavy_check_mark:|
|
|
102
|
-
|DFT
|
|
102
|
+
|DFT|:white_check_mark:|
|
|
103
103
|
|Div|:heavy_check_mark:|
|
|
104
104
|
|Dropout|:heavy_check_mark:|
|
|
105
105
|
|DynamicQuantizeLinear|:heavy_check_mark:|
|
|
@@ -323,7 +323,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
323
323
|
docker run --rm -it \
|
|
324
324
|
-v `pwd`:/workdir \
|
|
325
325
|
-w /workdir \
|
|
326
|
-
ghcr.io/pinto0309/onnx2tf:1.29.
|
|
326
|
+
ghcr.io/pinto0309/onnx2tf:1.29.20
|
|
327
327
|
|
|
328
328
|
or
|
|
329
329
|
|
|
@@ -331,7 +331,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
331
331
|
docker run --rm -it \
|
|
332
332
|
-v `pwd`:/workdir \
|
|
333
333
|
-w /workdir \
|
|
334
|
-
docker.io/pinto0309/onnx2tf:1.29.
|
|
334
|
+
docker.io/pinto0309/onnx2tf:1.29.20
|
|
335
335
|
|
|
336
336
|
or
|
|
337
337
|
|
|
@@ -1845,6 +1845,15 @@ optional arguments:
|
|
|
1845
1845
|
model partitioned into subgraphs.
|
|
1846
1846
|
e.g. --output_names_to_interrupt_model_conversion "output0" "output1" "output2"
|
|
1847
1847
|
|
|
1848
|
+
-easm, --enable_auto_split_model
|
|
1849
|
+
Force auto split regardless of the ONNX file size.
|
|
1850
|
+
Uses --auto_split_max_size_mb as the target partition size.
|
|
1851
|
+
|
|
1852
|
+
-asmsm AUTO_SPLIT_MAX_SIZE_MB, --auto_split_max_size_mb AUTO_SPLIT_MAX_SIZE_MB
|
|
1853
|
+
Target maximum size per partition in MB based on ONNX initializer sizes.
|
|
1854
|
+
Used when auto-split is triggered or forced.
|
|
1855
|
+
Default: 1024
|
|
1856
|
+
|
|
1848
1857
|
-dgc, --disable_group_convolution
|
|
1849
1858
|
Disable GroupConvolution and replace it with SeparableConvolution for
|
|
1850
1859
|
output to saved_model format.
|
|
@@ -2114,6 +2123,8 @@ convert(
|
|
|
2114
2123
|
keep_shape_absolutely_input_names: Optional[List[str]] = None,
|
|
2115
2124
|
input_names_to_interrupt_model_conversion: Union[List[str], NoneType] = None,
|
|
2116
2125
|
output_names_to_interrupt_model_conversion: Union[List[str], NoneType] = None,
|
|
2126
|
+
enable_auto_split_model: Optional[bool] = False,
|
|
2127
|
+
auto_split_max_size_mb: Optional[int] = 1024,
|
|
2117
2128
|
disable_group_convolution: Union[bool, NoneType] = False,
|
|
2118
2129
|
enable_batchmatmul_unfold: Optional[bool] = False,
|
|
2119
2130
|
enable_rnn_unroll: Optional[bool] = False,
|
|
@@ -2382,6 +2393,17 @@ convert(
|
|
|
2382
2393
|
e.g.
|
|
2383
2394
|
output_names_to_interrupt_model_conversion=['output0','output1','output2']
|
|
2384
2395
|
|
|
2396
|
+
enable_auto_split_model: Optional[bool]
|
|
2397
|
+
Force auto split regardless of the ONNX file size.
|
|
2398
|
+
Uses auto_split_max_size_mb as the target partition size.
|
|
2399
|
+
Short option: -easm
|
|
2400
|
+
Default: False
|
|
2401
|
+
|
|
2402
|
+
auto_split_max_size_mb: Optional[int]
|
|
2403
|
+
Target maximum size per partition in MB based on ONNX initializer sizes.
|
|
2404
|
+
Used when auto-split is triggered or forced.
|
|
2405
|
+
Default: 1024
|
|
2406
|
+
|
|
2385
2407
|
disable_group_convolution: Optional[bool]
|
|
2386
2408
|
Disable GroupConvolution and replace it with SeparableConvolution for
|
|
2387
2409
|
output to saved_model format.
|