onnx2tf 1.29.18__tar.gz → 1.29.20__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (216) hide show
  1. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/PKG-INFO +27 -5
  2. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/README.md +26 -4
  3. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/onnx2tf.py +967 -27
  5. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Col2Im.py +108 -64
  6. onnx2tf-1.29.20/onnx2tf/ops/DFT.py +245 -0
  7. onnx2tf-1.29.20/onnx2tf/ops/DeformConv.py +399 -0
  8. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GatherElements.py +25 -7
  9. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GatherND.py +28 -1
  10. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ScatterElements.py +25 -7
  11. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ScatterND.py +45 -6
  12. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/TensorScatter.py +20 -6
  13. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/utils/common_functions.py +99 -2
  14. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/pyproject.toml +1 -1
  15. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/__main__.py +0 -0
  16. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Abs.py +0 -0
  17. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Acos.py +0 -0
  18. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Acosh.py +0 -0
  19. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Add.py +0 -0
  20. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/AffineGrid.py +0 -0
  21. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/And.py +0 -0
  22. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ArgMax.py +0 -0
  23. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ArgMin.py +0 -0
  24. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Asin.py +0 -0
  25. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Asinh.py +0 -0
  26. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Atan.py +0 -0
  27. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Atanh.py +0 -0
  28. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Attention.py +0 -0
  29. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/AveragePool.py +0 -0
  30. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/BatchNormalization.py +0 -0
  31. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Bernoulli.py +0 -0
  32. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/BitShift.py +0 -0
  33. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/BitwiseAnd.py +0 -0
  34. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/BitwiseNot.py +0 -0
  35. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/BitwiseOr.py +0 -0
  36. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/BitwiseXor.py +0 -0
  37. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/BlackmanWindow.py +0 -0
  38. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Cast.py +0 -0
  39. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Ceil.py +0 -0
  40. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Celu.py +0 -0
  41. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Clip.py +0 -0
  42. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Compress.py +0 -0
  43. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Concat.py +0 -0
  44. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  45. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Constant.py +0 -0
  46. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ConstantOfShape.py +0 -0
  47. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Conv.py +0 -0
  48. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ConvInteger.py +0 -0
  49. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ConvTranspose.py +0 -0
  50. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Cos.py +0 -0
  51. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Cosh.py +0 -0
  52. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/CumProd.py +0 -0
  53. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/CumSum.py +0 -0
  54. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/DepthToSpace.py +0 -0
  55. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/DequantizeLinear.py +0 -0
  56. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Det.py +0 -0
  57. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Div.py +0 -0
  58. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Dropout.py +0 -0
  59. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  60. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Einsum.py +0 -0
  61. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Elu.py +0 -0
  62. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Equal.py +0 -0
  63. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Erf.py +0 -0
  64. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Exp.py +0 -0
  65. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Expand.py +0 -0
  66. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/EyeLike.py +0 -0
  67. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Flatten.py +0 -0
  68. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Floor.py +0 -0
  69. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/FusedConv.py +0 -0
  70. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GRU.py +0 -0
  71. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Gather.py +0 -0
  72. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Gelu.py +0 -0
  73. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Gemm.py +0 -0
  74. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  75. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GlobalLpPool.py +0 -0
  76. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  77. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Greater.py +0 -0
  78. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  79. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GridSample.py +0 -0
  80. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/GroupNorm.py +0 -0
  81. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/HammingWindow.py +0 -0
  82. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/HannWindow.py +0 -0
  83. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/HardSigmoid.py +0 -0
  84. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/HardSwish.py +0 -0
  85. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Hardmax.py +0 -0
  86. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Identity.py +0 -0
  87. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/If.py +0 -0
  88. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ImageDecoder.py +0 -0
  89. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Input.py +0 -0
  90. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/InstanceNormalization.py +0 -0
  91. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Inverse.py +0 -0
  92. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/IsInf.py +0 -0
  93. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/IsNaN.py +0 -0
  94. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LRN.py +0 -0
  95. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LSTM.py +0 -0
  96. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LayerNormalization.py +0 -0
  97. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LeakyRelu.py +0 -0
  98. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Less.py +0 -0
  99. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LessOrEqual.py +0 -0
  100. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Log.py +0 -0
  101. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LogSoftmax.py +0 -0
  102. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Loop.py +0 -0
  103. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LpNormalization.py +0 -0
  104. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/LpPool.py +0 -0
  105. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/MatMul.py +0 -0
  106. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/MatMulInteger.py +0 -0
  107. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Max.py +0 -0
  108. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/MaxPool.py +0 -0
  109. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/MaxRoiPool.py +0 -0
  110. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/MaxUnpool.py +0 -0
  111. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Mean.py +0 -0
  112. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  113. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  114. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Min.py +0 -0
  115. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Mish.py +0 -0
  116. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Mod.py +0 -0
  117. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Mul.py +0 -0
  118. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Multinomial.py +0 -0
  119. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Neg.py +0 -0
  120. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/NegativeLogLikelihoodLoss.py +0 -0
  121. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  122. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/NonZero.py +0 -0
  123. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Not.py +0 -0
  124. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/OneHot.py +0 -0
  125. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/OptionalGetElement.py +0 -0
  126. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/OptionalHasElement.py +0 -0
  127. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Or.py +0 -0
  128. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/PRelu.py +0 -0
  129. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Pad.py +0 -0
  130. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Pow.py +0 -0
  131. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearAdd.py +0 -0
  132. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearConcat.py +0 -0
  133. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearConv.py +0 -0
  134. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  135. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearMatMul.py +0 -0
  136. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearMul.py +0 -0
  137. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  138. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  139. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/QuantizeLinear.py +0 -0
  140. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RMSNormalization.py +0 -0
  141. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RNN.py +0 -0
  142. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RandomNormal.py +0 -0
  143. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RandomNormalLike.py +0 -0
  144. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RandomUniform.py +0 -0
  145. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RandomUniformLike.py +0 -0
  146. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Range.py +0 -0
  147. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Reciprocal.py +0 -0
  148. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceL1.py +0 -0
  149. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceL2.py +0 -0
  150. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceLogSum.py +0 -0
  151. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  152. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceMax.py +0 -0
  153. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceMean.py +0 -0
  154. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceMin.py +0 -0
  155. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceProd.py +0 -0
  156. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceSum.py +0 -0
  157. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  158. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RegexFullMatch.py +0 -0
  159. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Relu.py +0 -0
  160. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Reshape.py +0 -0
  161. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Resize.py +0 -0
  162. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ReverseSequence.py +0 -0
  163. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RoiAlign.py +0 -0
  164. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/RotaryEmbedding.py +0 -0
  165. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Round.py +0 -0
  166. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/STFT.py +0 -0
  167. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  168. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Scan.py +0 -0
  169. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Scatter.py +0 -0
  170. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Selu.py +0 -0
  171. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SequenceAt.py +0 -0
  172. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SequenceConstruct.py +0 -0
  173. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SequenceEmpty.py +0 -0
  174. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SequenceErase.py +0 -0
  175. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SequenceInsert.py +0 -0
  176. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SequenceLength.py +0 -0
  177. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Shape.py +0 -0
  178. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Shrink.py +0 -0
  179. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Sigmoid.py +0 -0
  180. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Sign.py +0 -0
  181. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Sin.py +0 -0
  182. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Sinh.py +0 -0
  183. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Size.py +0 -0
  184. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Slice.py +0 -0
  185. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Softmax.py +0 -0
  186. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SoftmaxCrossEntropyLoss.py +0 -0
  187. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Softplus.py +0 -0
  188. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Softsign.py +0 -0
  189. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SpaceToDepth.py +0 -0
  190. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Split.py +0 -0
  191. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/SplitToSequence.py +0 -0
  192. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Sqrt.py +0 -0
  193. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Squeeze.py +0 -0
  194. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/StringConcat.py +0 -0
  195. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/StringNormalizer.py +0 -0
  196. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/StringSplit.py +0 -0
  197. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Sub.py +0 -0
  198. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Sum.py +0 -0
  199. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Tan.py +0 -0
  200. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Tanh.py +0 -0
  201. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  202. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Tile.py +0 -0
  203. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/TopK.py +0 -0
  204. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Transpose.py +0 -0
  205. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Trilu.py +0 -0
  206. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Unique.py +0 -0
  207. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Unsqueeze.py +0 -0
  208. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Upsample.py +0 -0
  209. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Where.py +0 -0
  210. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/Xor.py +0 -0
  211. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/ops/__init__.py +0 -0
  212. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/utils/__init__.py +0 -0
  213. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/utils/enums.py +0 -0
  214. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/utils/iterative_json_optimizer.py +0 -0
  215. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/utils/json_auto_generator.py +0 -0
  216. {onnx2tf-1.29.18 → onnx2tf-1.29.20}/onnx2tf/utils/logging.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx2tf
3
- Version: 1.29.18
3
+ Version: 1.29.20
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Keywords: onnx,tensorflow,tflite,keras,deep-learning,machine-learning
6
6
  Author: Katsuya Hyodo
@@ -137,11 +137,11 @@ https://github.com/PINTO0309/onnx2tf/wiki/model_status
137
137
  |Cos|:heavy_check_mark:|
138
138
  |CumProd|:heavy_check_mark:|
139
139
  |CumSum|:heavy_check_mark:|
140
- |DeformConv|**Help wanted**|
140
+ |DeformConv|:white_check_mark:|
141
141
  |DepthToSpace|:heavy_check_mark:|
142
142
  |Det|:heavy_check_mark:|
143
143
  |DequantizeLinear|:heavy_check_mark:|
144
- |DFT|**Help wanted**|
144
+ |DFT|:white_check_mark:|
145
145
  |Div|:heavy_check_mark:|
146
146
  |Dropout|:heavy_check_mark:|
147
147
  |DynamicQuantizeLinear|:heavy_check_mark:|
@@ -365,7 +365,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
365
365
  docker run --rm -it \
366
366
  -v `pwd`:/workdir \
367
367
  -w /workdir \
368
- ghcr.io/pinto0309/onnx2tf:1.29.18
368
+ ghcr.io/pinto0309/onnx2tf:1.29.20
369
369
 
370
370
  or
371
371
 
@@ -373,7 +373,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
373
373
  docker run --rm -it \
374
374
  -v `pwd`:/workdir \
375
375
  -w /workdir \
376
- docker.io/pinto0309/onnx2tf:1.29.18
376
+ docker.io/pinto0309/onnx2tf:1.29.20
377
377
 
378
378
  or
379
379
 
@@ -1887,6 +1887,15 @@ optional arguments:
1887
1887
  model partitioned into subgraphs.
1888
1888
  e.g. --output_names_to_interrupt_model_conversion "output0" "output1" "output2"
1889
1889
 
1890
+ -easm, --enable_auto_split_model
1891
+ Force auto split regardless of the ONNX file size.
1892
+ Uses --auto_split_max_size_mb as the target partition size.
1893
+
1894
+ -asmsm AUTO_SPLIT_MAX_SIZE_MB, --auto_split_max_size_mb AUTO_SPLIT_MAX_SIZE_MB
1895
+ Target maximum size per partition in MB based on ONNX initializer sizes.
1896
+ Used when auto-split is triggered or forced.
1897
+ Default: 1024
1898
+
1890
1899
  -dgc, --disable_group_convolution
1891
1900
  Disable GroupConvolution and replace it with SeparableConvolution for
1892
1901
  output to saved_model format.
@@ -2156,6 +2165,8 @@ convert(
2156
2165
  keep_shape_absolutely_input_names: Optional[List[str]] = None,
2157
2166
  input_names_to_interrupt_model_conversion: Union[List[str], NoneType] = None,
2158
2167
  output_names_to_interrupt_model_conversion: Union[List[str], NoneType] = None,
2168
+ enable_auto_split_model: Optional[bool] = False,
2169
+ auto_split_max_size_mb: Optional[int] = 1024,
2159
2170
  disable_group_convolution: Union[bool, NoneType] = False,
2160
2171
  enable_batchmatmul_unfold: Optional[bool] = False,
2161
2172
  enable_rnn_unroll: Optional[bool] = False,
@@ -2424,6 +2435,17 @@ convert(
2424
2435
  e.g.
2425
2436
  output_names_to_interrupt_model_conversion=['output0','output1','output2']
2426
2437
 
2438
+ enable_auto_split_model: Optional[bool]
2439
+ Force auto split regardless of the ONNX file size.
2440
+ Uses auto_split_max_size_mb as the target partition size.
2441
+ Short option: -easm
2442
+ Default: False
2443
+
2444
+ auto_split_max_size_mb: Optional[int]
2445
+ Target maximum size per partition in MB based on ONNX initializer sizes.
2446
+ Used when auto-split is triggered or forced.
2447
+ Default: 1024
2448
+
2427
2449
  disable_group_convolution: Optional[bool]
2428
2450
  Disable GroupConvolution and replace it with SeparableConvolution for
2429
2451
  output to saved_model format.
@@ -95,11 +95,11 @@ https://github.com/PINTO0309/onnx2tf/wiki/model_status
95
95
  |Cos|:heavy_check_mark:|
96
96
  |CumProd|:heavy_check_mark:|
97
97
  |CumSum|:heavy_check_mark:|
98
- |DeformConv|**Help wanted**|
98
+ |DeformConv|:white_check_mark:|
99
99
  |DepthToSpace|:heavy_check_mark:|
100
100
  |Det|:heavy_check_mark:|
101
101
  |DequantizeLinear|:heavy_check_mark:|
102
- |DFT|**Help wanted**|
102
+ |DFT|:white_check_mark:|
103
103
  |Div|:heavy_check_mark:|
104
104
  |Dropout|:heavy_check_mark:|
105
105
  |DynamicQuantizeLinear|:heavy_check_mark:|
@@ -323,7 +323,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
323
323
  docker run --rm -it \
324
324
  -v `pwd`:/workdir \
325
325
  -w /workdir \
326
- ghcr.io/pinto0309/onnx2tf:1.29.18
326
+ ghcr.io/pinto0309/onnx2tf:1.29.20
327
327
 
328
328
  or
329
329
 
@@ -331,7 +331,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
331
331
  docker run --rm -it \
332
332
  -v `pwd`:/workdir \
333
333
  -w /workdir \
334
- docker.io/pinto0309/onnx2tf:1.29.18
334
+ docker.io/pinto0309/onnx2tf:1.29.20
335
335
 
336
336
  or
337
337
 
@@ -1845,6 +1845,15 @@ optional arguments:
1845
1845
  model partitioned into subgraphs.
1846
1846
  e.g. --output_names_to_interrupt_model_conversion "output0" "output1" "output2"
1847
1847
 
1848
+ -easm, --enable_auto_split_model
1849
+ Force auto split regardless of the ONNX file size.
1850
+ Uses --auto_split_max_size_mb as the target partition size.
1851
+
1852
+ -asmsm AUTO_SPLIT_MAX_SIZE_MB, --auto_split_max_size_mb AUTO_SPLIT_MAX_SIZE_MB
1853
+ Target maximum size per partition in MB based on ONNX initializer sizes.
1854
+ Used when auto-split is triggered or forced.
1855
+ Default: 1024
1856
+
1848
1857
  -dgc, --disable_group_convolution
1849
1858
  Disable GroupConvolution and replace it with SeparableConvolution for
1850
1859
  output to saved_model format.
@@ -2114,6 +2123,8 @@ convert(
2114
2123
  keep_shape_absolutely_input_names: Optional[List[str]] = None,
2115
2124
  input_names_to_interrupt_model_conversion: Union[List[str], NoneType] = None,
2116
2125
  output_names_to_interrupt_model_conversion: Union[List[str], NoneType] = None,
2126
+ enable_auto_split_model: Optional[bool] = False,
2127
+ auto_split_max_size_mb: Optional[int] = 1024,
2117
2128
  disable_group_convolution: Union[bool, NoneType] = False,
2118
2129
  enable_batchmatmul_unfold: Optional[bool] = False,
2119
2130
  enable_rnn_unroll: Optional[bool] = False,
@@ -2382,6 +2393,17 @@ convert(
2382
2393
  e.g.
2383
2394
  output_names_to_interrupt_model_conversion=['output0','output1','output2']
2384
2395
 
2396
+ enable_auto_split_model: Optional[bool]
2397
+ Force auto split regardless of the ONNX file size.
2398
+ Uses auto_split_max_size_mb as the target partition size.
2399
+ Short option: -easm
2400
+ Default: False
2401
+
2402
+ auto_split_max_size_mb: Optional[int]
2403
+ Target maximum size per partition in MB based on ONNX initializer sizes.
2404
+ Used when auto-split is triggered or forced.
2405
+ Default: 1024
2406
+
2385
2407
  disable_group_convolution: Optional[bool]
2386
2408
  Disable GroupConvolution and replace it with SeparableConvolution for
2387
2409
  output to saved_model format.
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.29.18'
3
+ __version__ = '1.29.20'