onnx2tf 1.29.0__tar.gz → 1.29.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {onnx2tf-1.29.0/onnx2tf.egg-info → onnx2tf-1.29.2}/PKG-INFO +3 -3
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/README.md +2 -2
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/__init__.py +1 -1
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Conv.py +27 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/SequenceEmpty.py +1 -1
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/utils/json_auto_generator.py +190 -190
- {onnx2tf-1.29.0 → onnx2tf-1.29.2/onnx2tf.egg-info}/PKG-INFO +3 -3
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/pyproject.toml +1 -1
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/LICENSE +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/LICENSE_onnx-tensorflow +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/__main__.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/onnx2tf.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Abs.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Acos.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Acosh.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Add.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/And.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ArgMax.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ArgMin.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Asin.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Asinh.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Atan.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Atanh.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/AveragePool.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/BatchNormalization.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Bernoulli.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/BitShift.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Cast.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Ceil.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Celu.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Clip.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Col2Im.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Compress.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Concat.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ConcatFromSequence.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Constant.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ConstantOfShape.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ConvInteger.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ConvTranspose.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Cos.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Cosh.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/CumSum.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/DepthToSpace.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/DequantizeLinear.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Det.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Div.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Dropout.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Einsum.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Elu.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Equal.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Erf.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Exp.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Expand.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/EyeLike.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Flatten.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Floor.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/FusedConv.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/GRU.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Gather.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/GatherElements.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/GatherND.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Gelu.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Gemm.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/GlobalAveragePool.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/GlobalLpPool.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/GlobalMaxPool.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Greater.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/GreaterOrEqual.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/GridSample.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/GroupNorm.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/HammingWindow.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/HannWindow.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/HardSigmoid.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/HardSwish.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Hardmax.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Identity.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/If.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Input.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/InstanceNormalization.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Inverse.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/IsInf.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/IsNaN.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/LRN.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/LSTM.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/LayerNormalization.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/LeakyRelu.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Less.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/LessOrEqual.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Log.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/LogSoftmax.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/LpNormalization.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/MatMul.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/MatMulInteger.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Max.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/MaxPool.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/MaxUnpool.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Mean.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/MelWeightMatrix.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Min.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Mish.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Mod.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Mul.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Multinomial.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Neg.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/NonMaxSuppression.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/NonZero.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Not.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/OneHot.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/OptionalGetElement.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/OptionalHasElement.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Or.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/PRelu.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Pad.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Pow.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearAdd.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearConcat.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearConv.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearMatMul.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearMul.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearSigmoid.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/QLinearSoftmax.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/QuantizeLinear.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/RNN.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/RandomNormal.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/RandomNormalLike.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/RandomUniform.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/RandomUniformLike.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Range.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Reciprocal.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceL1.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceL2.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceLogSum.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceMax.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceMean.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceMin.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceProd.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceSum.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ReduceSumSquare.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Relu.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Reshape.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Resize.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ReverseSequence.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/RoiAlign.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Round.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/STFT.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Scatter.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ScatterElements.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ScatterND.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Selu.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/SequenceAt.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/SequenceConstruct.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/SequenceErase.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/SequenceInsert.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/SequenceLength.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Shape.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Shrink.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Sigmoid.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Sign.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Sin.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Sinh.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Size.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Slice.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Softmax.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Softplus.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Softsign.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/SpaceToDepth.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Split.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/SplitToSequence.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Sqrt.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Squeeze.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/StringNormalizer.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Sub.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Sum.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Tan.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Tanh.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/ThresholdedRelu.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Tile.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/TopK.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Transpose.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Trilu.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Unique.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Unsqueeze.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Upsample.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Where.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/Xor.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/_Loop.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/__Loop.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/ops/__init__.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/utils/__init__.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/utils/common_functions.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/utils/enums.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/utils/iterative_json_optimizer.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf/utils/logging.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf.egg-info/SOURCES.txt +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf.egg-info/dependency_links.txt +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf.egg-info/requires.txt +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/onnx2tf.egg-info/top_level.txt +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/setup.cfg +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/setup.py +0 -0
- {onnx2tf-1.29.0 → onnx2tf-1.29.2}/tests/test_model_convert.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.29.
|
|
3
|
+
Version: 1.29.2
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -345,7 +345,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
345
345
|
docker run --rm -it \
|
|
346
346
|
-v `pwd`:/workdir \
|
|
347
347
|
-w /workdir \
|
|
348
|
-
ghcr.io/pinto0309/onnx2tf:1.29.
|
|
348
|
+
ghcr.io/pinto0309/onnx2tf:1.29.2
|
|
349
349
|
|
|
350
350
|
or
|
|
351
351
|
|
|
@@ -353,7 +353,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
353
353
|
docker run --rm -it \
|
|
354
354
|
-v `pwd`:/workdir \
|
|
355
355
|
-w /workdir \
|
|
356
|
-
docker.io/pinto0309/onnx2tf:1.29.
|
|
356
|
+
docker.io/pinto0309/onnx2tf:1.29.2
|
|
357
357
|
|
|
358
358
|
or
|
|
359
359
|
|
|
@@ -309,7 +309,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
309
309
|
docker run --rm -it \
|
|
310
310
|
-v `pwd`:/workdir \
|
|
311
311
|
-w /workdir \
|
|
312
|
-
ghcr.io/pinto0309/onnx2tf:1.29.
|
|
312
|
+
ghcr.io/pinto0309/onnx2tf:1.29.2
|
|
313
313
|
|
|
314
314
|
or
|
|
315
315
|
|
|
@@ -317,7 +317,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
317
317
|
docker run --rm -it \
|
|
318
318
|
-v `pwd`:/workdir \
|
|
319
319
|
-w /workdir \
|
|
320
|
-
docker.io/pinto0309/onnx2tf:1.29.
|
|
320
|
+
docker.io/pinto0309/onnx2tf:1.29.2
|
|
321
321
|
|
|
322
322
|
or
|
|
323
323
|
|
|
@@ -370,6 +370,20 @@ def make_node(
|
|
|
370
370
|
)
|
|
371
371
|
|
|
372
372
|
def depth_conv_bias(input_tensor, input_weights, pad_mode, strides, dilations, input_bias):
|
|
373
|
+
# tf.nn.depthwise_conv2d uses a different output shape when dilation>1 and stride>1.
|
|
374
|
+
# Emulate stride>1 by running stride=1 then subsampling to match ONNX.
|
|
375
|
+
if pad_mode == 'VALID' \
|
|
376
|
+
and max(dilations) > 1 \
|
|
377
|
+
and any(s > 1 for s in strides[1:-1]):
|
|
378
|
+
conv = tf.nn.depthwise_conv2d(
|
|
379
|
+
input=input_tensor,
|
|
380
|
+
filter=input_weights,
|
|
381
|
+
padding=pad_mode,
|
|
382
|
+
strides=[1, 1, 1, 1],
|
|
383
|
+
dilations=dilations,
|
|
384
|
+
)
|
|
385
|
+
conv = conv[:, ::strides[1], ::strides[2], :]
|
|
386
|
+
return tf.add(conv, input_bias)
|
|
373
387
|
return \
|
|
374
388
|
tf.add(
|
|
375
389
|
tf.nn.depthwise_conv2d(
|
|
@@ -438,6 +452,19 @@ def make_node(
|
|
|
438
452
|
)
|
|
439
453
|
|
|
440
454
|
def depth_conv_nobias(input_tensor, input_weights, pad_mode, strides, dilations):
|
|
455
|
+
# tf.nn.depthwise_conv2d uses a different output shape when dilation>1 and stride>1.
|
|
456
|
+
# Emulate stride>1 by running stride=1 then subsampling to match ONNX.
|
|
457
|
+
if pad_mode == 'VALID' \
|
|
458
|
+
and max(dilations) > 1 \
|
|
459
|
+
and any(s > 1 for s in strides[1:-1]):
|
|
460
|
+
conv = tf.nn.depthwise_conv2d(
|
|
461
|
+
input=input_tensor,
|
|
462
|
+
filter=input_weights,
|
|
463
|
+
padding=pad_mode,
|
|
464
|
+
strides=[1, 1, 1, 1],
|
|
465
|
+
dilations=dilations,
|
|
466
|
+
)
|
|
467
|
+
return conv[:, ::strides[1], ::strides[2], :]
|
|
441
468
|
return \
|
|
442
469
|
tf.nn.depthwise_conv2d(
|
|
443
470
|
input=input_tensor,
|
|
@@ -30,7 +30,7 @@ def make_node(
|
|
|
30
30
|
tf_layers_dict: dict
|
|
31
31
|
optype, shape, dtype, tensorflow graph
|
|
32
32
|
"""
|
|
33
|
-
sequence_dtype = ONNX_DTYPES_TO_TF_DTYPES
|
|
33
|
+
sequence_dtype = ONNX_DTYPES_TO_TF_DTYPES[graph_node.attrs.get('dtype', 1)] # Float32
|
|
34
34
|
|
|
35
35
|
graph_node_output: gs.Variable = graph_node.outputs[0]
|
|
36
36
|
shape = graph_node_output.shape
|