onnx2tf 1.28.6__tar.gz → 1.28.8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {onnx2tf-1.28.6/onnx2tf.egg-info → onnx2tf-1.28.8}/PKG-INFO +25 -3
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/README.md +24 -2
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/__init__.py +1 -1
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/onnx2tf.py +55 -6
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Conv.py +1 -1
- {onnx2tf-1.28.6 → onnx2tf-1.28.8/onnx2tf.egg-info}/PKG-INFO +25 -3
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/LICENSE +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/LICENSE_onnx-tensorflow +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/__main__.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Abs.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Acos.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Acosh.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Add.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/And.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ArgMax.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ArgMin.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Asin.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Asinh.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Atan.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Atanh.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/AveragePool.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/BatchNormalization.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Bernoulli.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/BitShift.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Cast.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Ceil.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Celu.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Clip.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Col2Im.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Compress.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Concat.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ConcatFromSequence.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Constant.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ConstantOfShape.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ConvInteger.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ConvTranspose.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Cos.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Cosh.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/CumSum.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/DepthToSpace.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/DequantizeLinear.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Det.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Div.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Dropout.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Einsum.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Elu.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Equal.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Erf.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Exp.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Expand.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/EyeLike.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Flatten.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Floor.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/FusedConv.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/GRU.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Gather.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/GatherElements.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/GatherND.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Gelu.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Gemm.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/GlobalAveragePool.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/GlobalLpPool.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/GlobalMaxPool.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Greater.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/GreaterOrEqual.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/GridSample.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/GroupNorm.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/HammingWindow.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/HannWindow.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/HardSigmoid.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/HardSwish.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Hardmax.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Identity.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/If.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Input.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/InstanceNormalization.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Inverse.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/IsInf.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/IsNaN.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/LRN.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/LSTM.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/LayerNormalization.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/LeakyRelu.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Less.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/LessOrEqual.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Log.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/LogSoftmax.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/LpNormalization.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/MatMul.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/MatMulInteger.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Max.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/MaxPool.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/MaxUnpool.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Mean.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/MelWeightMatrix.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Min.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Mish.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Mod.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Mul.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Multinomial.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Neg.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/NonMaxSuppression.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/NonZero.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Not.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/OneHot.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/OptionalGetElement.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/OptionalHasElement.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Or.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/PRelu.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Pad.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Pow.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/QLinearAdd.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/QLinearConcat.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/QLinearConv.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/QLinearMatMul.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/QLinearMul.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/QLinearSigmoid.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/QLinearSoftmax.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/QuantizeLinear.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/RNN.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/RandomNormal.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/RandomNormalLike.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/RandomUniform.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/RandomUniformLike.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Range.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Reciprocal.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ReduceL1.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ReduceL2.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ReduceLogSum.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ReduceMax.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ReduceMean.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ReduceMin.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ReduceProd.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ReduceSum.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ReduceSumSquare.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Relu.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Reshape.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Resize.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ReverseSequence.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/RoiAlign.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Round.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/STFT.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Scatter.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ScatterElements.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ScatterND.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Selu.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/SequenceAt.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/SequenceConstruct.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/SequenceEmpty.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/SequenceErase.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/SequenceInsert.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/SequenceLength.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Shape.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Shrink.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Sigmoid.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Sign.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Sin.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Sinh.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Size.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Slice.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Softmax.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Softplus.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Softsign.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/SpaceToDepth.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Split.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/SplitToSequence.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Sqrt.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Squeeze.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/StringNormalizer.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Sub.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Sum.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Tan.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Tanh.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/ThresholdedRelu.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Tile.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/TopK.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Transpose.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Trilu.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Unique.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Unsqueeze.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Upsample.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Where.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/Xor.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/_Loop.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/__Loop.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/ops/__init__.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/utils/__init__.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/utils/common_functions.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/utils/enums.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/utils/iterative_json_optimizer.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/utils/json_auto_generator.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf/utils/logging.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf.egg-info/SOURCES.txt +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf.egg-info/dependency_links.txt +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf.egg-info/entry_points.txt +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/onnx2tf.egg-info/top_level.txt +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/setup.cfg +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/setup.py +0 -0
- {onnx2tf-1.28.6 → onnx2tf-1.28.8}/tests/test_model_convert.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.28.
|
|
3
|
+
Version: 1.28.8
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
334
334
|
docker run --rm -it \
|
|
335
335
|
-v `pwd`:/workdir \
|
|
336
336
|
-w /workdir \
|
|
337
|
-
ghcr.io/pinto0309/onnx2tf:1.28.
|
|
337
|
+
ghcr.io/pinto0309/onnx2tf:1.28.8
|
|
338
338
|
|
|
339
339
|
or
|
|
340
340
|
|
|
@@ -342,7 +342,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
342
342
|
docker run --rm -it \
|
|
343
343
|
-v `pwd`:/workdir \
|
|
344
344
|
-w /workdir \
|
|
345
|
-
docker.io/pinto0309/onnx2tf:1.28.
|
|
345
|
+
docker.io/pinto0309/onnx2tf:1.28.8
|
|
346
346
|
|
|
347
347
|
or
|
|
348
348
|
|
|
@@ -1667,6 +1667,16 @@ optional arguments:
|
|
|
1667
1667
|
Selects whether "per-channel" or "per-tensor" quantization is used.
|
|
1668
1668
|
Default: "per-channel"
|
|
1669
1669
|
|
|
1670
|
+
-qnm QUANT_NORM_MEAN, --quant_norm_mean QUANT_NORM_MEAN
|
|
1671
|
+
Normalized average value during quantization.
|
|
1672
|
+
Only valid when the "-cind" option is not used.
|
|
1673
|
+
Default: "[[[[0.485, 0.456, 0.406]]]]"
|
|
1674
|
+
|
|
1675
|
+
-qns QUANT_NORM_STD, --quant_norm_std QUANT_NORM_STD
|
|
1676
|
+
Normalized standard deviation during quantization.
|
|
1677
|
+
Only valid when the "-cind" option is not used.
|
|
1678
|
+
Default: "[[[[0.229, 0.224, 0.225]]]]"
|
|
1679
|
+
|
|
1670
1680
|
-cind INPUT_NAME NUMPY_FILE_PATH MEAN STD, \
|
|
1671
1681
|
--custom_input_op_name_np_data_path INPUT_NAME NUMPY_FILE_PATH MEAN STD
|
|
1672
1682
|
Input name of OP and path of data file (Numpy) for custom input for -cotof or -oiqt,
|
|
@@ -2095,6 +2105,8 @@ convert(
|
|
|
2095
2105
|
output_weights: Optional[bool] = False,
|
|
2096
2106
|
copy_onnx_input_output_names_to_tflite: Optional[bool] = False,
|
|
2097
2107
|
output_integer_quantized_tflite: Optional[bool] = False,
|
|
2108
|
+
quant_norm_mean: Optional[str] = '[[[[0.485, 0.456, 0.406]]]]',
|
|
2109
|
+
quant_norm_std: Optional[str] = '[[[[0.229, 0.224, 0.225]]]]',
|
|
2098
2110
|
quant_type: Optional[str] = 'per-channel',
|
|
2099
2111
|
custom_input_op_name_np_data_path: Optional[List] = None,
|
|
2100
2112
|
input_quant_dtype: Optional[str] = 'int8',
|
|
@@ -2190,6 +2202,16 @@ convert(
|
|
|
2190
2202
|
output_integer_quantized_tflite: Optional[bool]
|
|
2191
2203
|
Output of integer quantized tflite.
|
|
2192
2204
|
|
|
2205
|
+
quant_norm_mean: Optional[str]
|
|
2206
|
+
Normalized average value during quantization.
|
|
2207
|
+
Only valid when the "-cind" option is not used.
|
|
2208
|
+
Default: "[[[[0.485, 0.456, 0.406]]]]"
|
|
2209
|
+
|
|
2210
|
+
quant_norm_std: Optional[str]
|
|
2211
|
+
Normalized standard deviation during quantization.
|
|
2212
|
+
Only valid when the "-cind" option is not used.
|
|
2213
|
+
Default: "[[[[0.229, 0.224, 0.225]]]]"
|
|
2214
|
+
|
|
2193
2215
|
quant_type: Optional[str]
|
|
2194
2216
|
Selects whether "per-channel" or "per-tensor" quantization is used.
|
|
2195
2217
|
Default: "per-channel"
|
|
@@ -309,7 +309,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
309
309
|
docker run --rm -it \
|
|
310
310
|
-v `pwd`:/workdir \
|
|
311
311
|
-w /workdir \
|
|
312
|
-
ghcr.io/pinto0309/onnx2tf:1.28.
|
|
312
|
+
ghcr.io/pinto0309/onnx2tf:1.28.8
|
|
313
313
|
|
|
314
314
|
or
|
|
315
315
|
|
|
@@ -317,7 +317,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
317
317
|
docker run --rm -it \
|
|
318
318
|
-v `pwd`:/workdir \
|
|
319
319
|
-w /workdir \
|
|
320
|
-
docker.io/pinto0309/onnx2tf:1.28.
|
|
320
|
+
docker.io/pinto0309/onnx2tf:1.28.8
|
|
321
321
|
|
|
322
322
|
or
|
|
323
323
|
|
|
@@ -1642,6 +1642,16 @@ optional arguments:
|
|
|
1642
1642
|
Selects whether "per-channel" or "per-tensor" quantization is used.
|
|
1643
1643
|
Default: "per-channel"
|
|
1644
1644
|
|
|
1645
|
+
-qnm QUANT_NORM_MEAN, --quant_norm_mean QUANT_NORM_MEAN
|
|
1646
|
+
Normalized average value during quantization.
|
|
1647
|
+
Only valid when the "-cind" option is not used.
|
|
1648
|
+
Default: "[[[[0.485, 0.456, 0.406]]]]"
|
|
1649
|
+
|
|
1650
|
+
-qns QUANT_NORM_STD, --quant_norm_std QUANT_NORM_STD
|
|
1651
|
+
Normalized standard deviation during quantization.
|
|
1652
|
+
Only valid when the "-cind" option is not used.
|
|
1653
|
+
Default: "[[[[0.229, 0.224, 0.225]]]]"
|
|
1654
|
+
|
|
1645
1655
|
-cind INPUT_NAME NUMPY_FILE_PATH MEAN STD, \
|
|
1646
1656
|
--custom_input_op_name_np_data_path INPUT_NAME NUMPY_FILE_PATH MEAN STD
|
|
1647
1657
|
Input name of OP and path of data file (Numpy) for custom input for -cotof or -oiqt,
|
|
@@ -2070,6 +2080,8 @@ convert(
|
|
|
2070
2080
|
output_weights: Optional[bool] = False,
|
|
2071
2081
|
copy_onnx_input_output_names_to_tflite: Optional[bool] = False,
|
|
2072
2082
|
output_integer_quantized_tflite: Optional[bool] = False,
|
|
2083
|
+
quant_norm_mean: Optional[str] = '[[[[0.485, 0.456, 0.406]]]]',
|
|
2084
|
+
quant_norm_std: Optional[str] = '[[[[0.229, 0.224, 0.225]]]]',
|
|
2073
2085
|
quant_type: Optional[str] = 'per-channel',
|
|
2074
2086
|
custom_input_op_name_np_data_path: Optional[List] = None,
|
|
2075
2087
|
input_quant_dtype: Optional[str] = 'int8',
|
|
@@ -2165,6 +2177,16 @@ convert(
|
|
|
2165
2177
|
output_integer_quantized_tflite: Optional[bool]
|
|
2166
2178
|
Output of integer quantized tflite.
|
|
2167
2179
|
|
|
2180
|
+
quant_norm_mean: Optional[str]
|
|
2181
|
+
Normalized average value during quantization.
|
|
2182
|
+
Only valid when the "-cind" option is not used.
|
|
2183
|
+
Default: "[[[[0.485, 0.456, 0.406]]]]"
|
|
2184
|
+
|
|
2185
|
+
quant_norm_std: Optional[str]
|
|
2186
|
+
Normalized standard deviation during quantization.
|
|
2187
|
+
Only valid when the "-cind" option is not used.
|
|
2188
|
+
Default: "[[[[0.229, 0.224, 0.225]]]]"
|
|
2189
|
+
|
|
2168
2190
|
quant_type: Optional[str]
|
|
2169
2191
|
Selects whether "per-channel" or "per-tensor" quantization is used.
|
|
2170
2192
|
Default: "per-channel"
|
|
@@ -74,6 +74,8 @@ def convert(
|
|
|
74
74
|
copy_onnx_input_output_names_to_tflite: Optional[bool] = False,
|
|
75
75
|
output_dynamic_range_quantized_tflite: Optional[bool] = False,
|
|
76
76
|
output_integer_quantized_tflite: Optional[bool] = False,
|
|
77
|
+
quant_norm_mean: Optional[str] = '[[[[0.485, 0.456, 0.406]]]]',
|
|
78
|
+
quant_norm_std: Optional[str] = '[[[[0.229, 0.224, 0.225]]]]',
|
|
77
79
|
quant_type: Optional[str] = 'per-channel',
|
|
78
80
|
custom_input_op_name_np_data_path: Optional[List] = None,
|
|
79
81
|
input_quant_dtype: Optional[str] = 'int8',
|
|
@@ -172,6 +174,16 @@ def convert(
|
|
|
172
174
|
output_integer_quantized_tflite: Optional[bool]
|
|
173
175
|
Output of integer quantized tflite.
|
|
174
176
|
|
|
177
|
+
quant_norm_mean: Optional[str]
|
|
178
|
+
Normalized average value during quantization.\n
|
|
179
|
+
Only valid when the "-cind" option is not used.\n
|
|
180
|
+
Default: "[[[[0.485, 0.456, 0.406]]]]"
|
|
181
|
+
|
|
182
|
+
quant_norm_std: Optional[str]
|
|
183
|
+
Normalized standard deviation during quantization.\n
|
|
184
|
+
Only valid when the "-cind" option is not used.\n
|
|
185
|
+
Default: "[[[[0.229, 0.224, 0.225]]]]"
|
|
186
|
+
|
|
175
187
|
quant_type: Optional[str]
|
|
176
188
|
Selects whether "per-channel" or "per-tensor" quantization is used.\n
|
|
177
189
|
Default: "per-channel"
|
|
@@ -621,6 +633,19 @@ def convert(
|
|
|
621
633
|
)
|
|
622
634
|
sys.exit(1)
|
|
623
635
|
|
|
636
|
+
# Normalized average value during quantization
|
|
637
|
+
if quant_norm_mean:
|
|
638
|
+
quant_norm_mean_np = np.array(ast.literal_eval(quant_norm_mean), dtype=np.float32)
|
|
639
|
+
else:
|
|
640
|
+
quant_norm_mean_np = np.array(ast.literal_eval("[[[[0.000, 0.000, 0.000]]]]"), dtype=np.float32)
|
|
641
|
+
|
|
642
|
+
# Normalized standard deviation during quantization
|
|
643
|
+
if quant_norm_std:
|
|
644
|
+
quant_norm_std_np = np.array(ast.literal_eval(quant_norm_std), dtype=np.float32)
|
|
645
|
+
else:
|
|
646
|
+
quant_norm_std_np = np.array(ast.literal_eval("[[[[1.000, 1.000, 1.000]]]]"), dtype=np.float32)
|
|
647
|
+
|
|
648
|
+
# param replacement
|
|
624
649
|
replacement_parameters = None
|
|
625
650
|
if param_replacement_file:
|
|
626
651
|
if not os.path.isfile(param_replacement_file):
|
|
@@ -1683,6 +1708,8 @@ def convert(
|
|
|
1683
1708
|
Color.BLUE(f'shape') + f': {output_shape} '+
|
|
1684
1709
|
Color.BLUE(f'dtype') + f': {output_dtype}'
|
|
1685
1710
|
)
|
|
1711
|
+
info(Color.BLUE(f'quant_norm_mean') + f': {quant_norm_mean_np} ')
|
|
1712
|
+
info(Color.BLUE(f'quant_norm_std') + f': {quant_norm_std_np} ')
|
|
1686
1713
|
print('')
|
|
1687
1714
|
|
|
1688
1715
|
# INT8 Converter
|
|
@@ -1720,18 +1747,20 @@ def convert(
|
|
|
1720
1747
|
|
|
1721
1748
|
if model_input.shape[-1] == 3:
|
|
1722
1749
|
# RGB
|
|
1723
|
-
mean =
|
|
1724
|
-
std =
|
|
1750
|
+
mean = quant_norm_mean_np
|
|
1751
|
+
std = quant_norm_std_np
|
|
1725
1752
|
elif model_input.shape[-1] == 4:
|
|
1726
1753
|
# RGBA
|
|
1727
|
-
|
|
1728
|
-
|
|
1754
|
+
zero = np.zeros((*quant_norm_mean_np.shape[:-1], 1), dtype=quant_norm_mean_np.dtype)
|
|
1755
|
+
mean = np.concatenate([quant_norm_mean_np, zero], axis=-1)
|
|
1756
|
+
one = np.ones((*quant_norm_std_np.shape[:-1], 1), dtype=quant_norm_std_np.dtype)
|
|
1757
|
+
std = np.concatenate([quant_norm_std_np, zero], axis=-1)
|
|
1729
1758
|
new_element_array = np.full((*calib_data.shape[:-1], 1), 0.500, dtype=np.float32)
|
|
1730
1759
|
calib_data = np.concatenate((calib_data, new_element_array), axis=-1)
|
|
1731
1760
|
else:
|
|
1732
1761
|
# Others
|
|
1733
|
-
mean =
|
|
1734
|
-
std =
|
|
1762
|
+
mean = quant_norm_mean_np
|
|
1763
|
+
std = quant_norm_std_np
|
|
1735
1764
|
|
|
1736
1765
|
calib_data_dict[model_input.name] = \
|
|
1737
1766
|
[
|
|
@@ -2475,6 +2504,24 @@ def main():
|
|
|
2475
2504
|
'Selects whether "per-channel" or "per-tensor" quantization is used. \n' +
|
|
2476
2505
|
'Default: "per-channel"'
|
|
2477
2506
|
)
|
|
2507
|
+
parser.add_argument(
|
|
2508
|
+
'-qnm',
|
|
2509
|
+
'--quant_norm_mean',
|
|
2510
|
+
type=str,
|
|
2511
|
+
default='[[[[0.485, 0.456, 0.406]]]]',
|
|
2512
|
+
help=\
|
|
2513
|
+
'Normalized average value during quantization. \n' +
|
|
2514
|
+
'Default: "[[[[0.485, 0.456, 0.406]]]]"'
|
|
2515
|
+
)
|
|
2516
|
+
parser.add_argument(
|
|
2517
|
+
'-qns',
|
|
2518
|
+
'--quant_norm_std',
|
|
2519
|
+
type=str,
|
|
2520
|
+
default='[[[[0.229, 0.224, 0.225]]]]',
|
|
2521
|
+
help=\
|
|
2522
|
+
'Normalized standard deviation during quantization. \n' +
|
|
2523
|
+
'Default: "[[[[0.229, 0.224, 0.225]]]]"'
|
|
2524
|
+
)
|
|
2478
2525
|
parser.add_argument(
|
|
2479
2526
|
'-cind',
|
|
2480
2527
|
'--custom_input_op_name_np_data_path',
|
|
@@ -3061,6 +3108,8 @@ def main():
|
|
|
3061
3108
|
copy_onnx_input_output_names_to_tflite=args.copy_onnx_input_output_names_to_tflite,
|
|
3062
3109
|
output_dynamic_range_quantized_tflite=args.output_dynamic_range_quantized_tflite,
|
|
3063
3110
|
output_integer_quantized_tflite=args.output_integer_quantized_tflite,
|
|
3111
|
+
quant_norm_mean=args.quant_norm_mean,
|
|
3112
|
+
quant_norm_std=args.quant_norm_std,
|
|
3064
3113
|
quant_type=args.quant_type,
|
|
3065
3114
|
custom_input_op_name_np_data_path=custom_params,
|
|
3066
3115
|
input_quant_dtype=args.input_quant_dtype,
|
|
@@ -62,7 +62,7 @@ def make_node(
|
|
|
62
62
|
before_op_output_shape_trans,
|
|
63
63
|
)
|
|
64
64
|
kernel_shape = graph_node.attrs.get('kernel_shape', [])
|
|
65
|
-
kernel_size = len(kernel_shape)
|
|
65
|
+
kernel_size = len(kernel_shape) if kernel_shape != [] else len(graph_node.inputs[1].shape) - 2
|
|
66
66
|
try:
|
|
67
67
|
input_weights = get_weights_constant_or_variable(
|
|
68
68
|
const_or_var=graph_node.inputs[1] \
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.28.
|
|
3
|
+
Version: 1.28.8
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
334
334
|
docker run --rm -it \
|
|
335
335
|
-v `pwd`:/workdir \
|
|
336
336
|
-w /workdir \
|
|
337
|
-
ghcr.io/pinto0309/onnx2tf:1.28.
|
|
337
|
+
ghcr.io/pinto0309/onnx2tf:1.28.8
|
|
338
338
|
|
|
339
339
|
or
|
|
340
340
|
|
|
@@ -342,7 +342,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
342
342
|
docker run --rm -it \
|
|
343
343
|
-v `pwd`:/workdir \
|
|
344
344
|
-w /workdir \
|
|
345
|
-
docker.io/pinto0309/onnx2tf:1.28.
|
|
345
|
+
docker.io/pinto0309/onnx2tf:1.28.8
|
|
346
346
|
|
|
347
347
|
or
|
|
348
348
|
|
|
@@ -1667,6 +1667,16 @@ optional arguments:
|
|
|
1667
1667
|
Selects whether "per-channel" or "per-tensor" quantization is used.
|
|
1668
1668
|
Default: "per-channel"
|
|
1669
1669
|
|
|
1670
|
+
-qnm QUANT_NORM_MEAN, --quant_norm_mean QUANT_NORM_MEAN
|
|
1671
|
+
Normalized average value during quantization.
|
|
1672
|
+
Only valid when the "-cind" option is not used.
|
|
1673
|
+
Default: "[[[[0.485, 0.456, 0.406]]]]"
|
|
1674
|
+
|
|
1675
|
+
-qns QUANT_NORM_STD, --quant_norm_std QUANT_NORM_STD
|
|
1676
|
+
Normalized standard deviation during quantization.
|
|
1677
|
+
Only valid when the "-cind" option is not used.
|
|
1678
|
+
Default: "[[[[0.229, 0.224, 0.225]]]]"
|
|
1679
|
+
|
|
1670
1680
|
-cind INPUT_NAME NUMPY_FILE_PATH MEAN STD, \
|
|
1671
1681
|
--custom_input_op_name_np_data_path INPUT_NAME NUMPY_FILE_PATH MEAN STD
|
|
1672
1682
|
Input name of OP and path of data file (Numpy) for custom input for -cotof or -oiqt,
|
|
@@ -2095,6 +2105,8 @@ convert(
|
|
|
2095
2105
|
output_weights: Optional[bool] = False,
|
|
2096
2106
|
copy_onnx_input_output_names_to_tflite: Optional[bool] = False,
|
|
2097
2107
|
output_integer_quantized_tflite: Optional[bool] = False,
|
|
2108
|
+
quant_norm_mean: Optional[str] = '[[[[0.485, 0.456, 0.406]]]]',
|
|
2109
|
+
quant_norm_std: Optional[str] = '[[[[0.229, 0.224, 0.225]]]]',
|
|
2098
2110
|
quant_type: Optional[str] = 'per-channel',
|
|
2099
2111
|
custom_input_op_name_np_data_path: Optional[List] = None,
|
|
2100
2112
|
input_quant_dtype: Optional[str] = 'int8',
|
|
@@ -2190,6 +2202,16 @@ convert(
|
|
|
2190
2202
|
output_integer_quantized_tflite: Optional[bool]
|
|
2191
2203
|
Output of integer quantized tflite.
|
|
2192
2204
|
|
|
2205
|
+
quant_norm_mean: Optional[str]
|
|
2206
|
+
Normalized average value during quantization.
|
|
2207
|
+
Only valid when the "-cind" option is not used.
|
|
2208
|
+
Default: "[[[[0.485, 0.456, 0.406]]]]"
|
|
2209
|
+
|
|
2210
|
+
quant_norm_std: Optional[str]
|
|
2211
|
+
Normalized standard deviation during quantization.
|
|
2212
|
+
Only valid when the "-cind" option is not used.
|
|
2213
|
+
Default: "[[[[0.229, 0.224, 0.225]]]]"
|
|
2214
|
+
|
|
2193
2215
|
quant_type: Optional[str]
|
|
2194
2216
|
Selects whether "per-channel" or "per-tensor" quantization is used.
|
|
2195
2217
|
Default: "per-channel"
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|