onnx2tf 1.28.4__tar.gz → 1.28.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (204) hide show
  1. {onnx2tf-1.28.4/onnx2tf.egg-info → onnx2tf-1.28.6}/PKG-INFO +3 -4
  2. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/README.md +2 -3
  3. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/utils/common_functions.py +1 -1
  5. {onnx2tf-1.28.4 → onnx2tf-1.28.6/onnx2tf.egg-info}/PKG-INFO +3 -4
  6. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/LICENSE +0 -0
  7. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/LICENSE_onnx-tensorflow +0 -0
  8. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/__main__.py +0 -0
  9. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/onnx2tf.py +0 -0
  10. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Abs.py +0 -0
  11. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Acos.py +0 -0
  12. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Acosh.py +0 -0
  13. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Add.py +0 -0
  14. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/And.py +0 -0
  15. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ArgMax.py +0 -0
  16. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ArgMin.py +0 -0
  17. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Asin.py +0 -0
  18. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Asinh.py +0 -0
  19. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Atan.py +0 -0
  20. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Atanh.py +0 -0
  21. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/AveragePool.py +0 -0
  22. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/BatchNormalization.py +0 -0
  23. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Bernoulli.py +0 -0
  24. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/BitShift.py +0 -0
  25. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Cast.py +0 -0
  26. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Ceil.py +0 -0
  27. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Celu.py +0 -0
  28. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Clip.py +0 -0
  29. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Col2Im.py +0 -0
  30. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Compress.py +0 -0
  31. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Concat.py +0 -0
  32. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  33. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Constant.py +0 -0
  34. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ConstantOfShape.py +0 -0
  35. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Conv.py +0 -0
  36. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ConvInteger.py +0 -0
  37. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ConvTranspose.py +0 -0
  38. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Cos.py +0 -0
  39. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Cosh.py +0 -0
  40. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/CumSum.py +0 -0
  41. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/DepthToSpace.py +0 -0
  42. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/DequantizeLinear.py +0 -0
  43. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Det.py +0 -0
  44. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Div.py +0 -0
  45. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Dropout.py +0 -0
  46. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  47. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Einsum.py +0 -0
  48. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Elu.py +0 -0
  49. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Equal.py +0 -0
  50. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Erf.py +0 -0
  51. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Exp.py +0 -0
  52. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Expand.py +0 -0
  53. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/EyeLike.py +0 -0
  54. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Flatten.py +0 -0
  55. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Floor.py +0 -0
  56. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/FusedConv.py +0 -0
  57. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/GRU.py +0 -0
  58. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Gather.py +0 -0
  59. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/GatherElements.py +0 -0
  60. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/GatherND.py +0 -0
  61. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Gelu.py +0 -0
  62. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Gemm.py +0 -0
  63. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  64. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/GlobalLpPool.py +0 -0
  65. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  66. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Greater.py +0 -0
  67. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  68. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/GridSample.py +0 -0
  69. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/GroupNorm.py +0 -0
  70. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/HammingWindow.py +0 -0
  71. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/HannWindow.py +0 -0
  72. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/HardSigmoid.py +0 -0
  73. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/HardSwish.py +0 -0
  74. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Hardmax.py +0 -0
  75. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Identity.py +0 -0
  76. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/If.py +0 -0
  77. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Input.py +0 -0
  78. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/InstanceNormalization.py +0 -0
  79. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Inverse.py +0 -0
  80. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/IsInf.py +0 -0
  81. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/IsNaN.py +0 -0
  82. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/LRN.py +0 -0
  83. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/LSTM.py +0 -0
  84. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/LayerNormalization.py +0 -0
  85. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/LeakyRelu.py +0 -0
  86. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Less.py +0 -0
  87. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/LessOrEqual.py +0 -0
  88. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Log.py +0 -0
  89. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/LogSoftmax.py +0 -0
  90. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/LpNormalization.py +0 -0
  91. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/MatMul.py +0 -0
  92. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/MatMulInteger.py +0 -0
  93. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Max.py +0 -0
  94. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/MaxPool.py +0 -0
  95. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/MaxUnpool.py +0 -0
  96. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Mean.py +0 -0
  97. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  98. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  99. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Min.py +0 -0
  100. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Mish.py +0 -0
  101. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Mod.py +0 -0
  102. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Mul.py +0 -0
  103. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Multinomial.py +0 -0
  104. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Neg.py +0 -0
  105. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  106. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/NonZero.py +0 -0
  107. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Not.py +0 -0
  108. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/OneHot.py +0 -0
  109. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/OptionalGetElement.py +0 -0
  110. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/OptionalHasElement.py +0 -0
  111. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Or.py +0 -0
  112. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/PRelu.py +0 -0
  113. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Pad.py +0 -0
  114. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Pow.py +0 -0
  115. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/QLinearAdd.py +0 -0
  116. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/QLinearConcat.py +0 -0
  117. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/QLinearConv.py +0 -0
  118. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  119. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/QLinearMatMul.py +0 -0
  120. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/QLinearMul.py +0 -0
  121. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  122. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  123. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/QuantizeLinear.py +0 -0
  124. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/RNN.py +0 -0
  125. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/RandomNormal.py +0 -0
  126. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/RandomNormalLike.py +0 -0
  127. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/RandomUniform.py +0 -0
  128. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/RandomUniformLike.py +0 -0
  129. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Range.py +0 -0
  130. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Reciprocal.py +0 -0
  131. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ReduceL1.py +0 -0
  132. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ReduceL2.py +0 -0
  133. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ReduceLogSum.py +0 -0
  134. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  135. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ReduceMax.py +0 -0
  136. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ReduceMean.py +0 -0
  137. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ReduceMin.py +0 -0
  138. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ReduceProd.py +0 -0
  139. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ReduceSum.py +0 -0
  140. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  141. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Relu.py +0 -0
  142. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Reshape.py +0 -0
  143. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Resize.py +0 -0
  144. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ReverseSequence.py +0 -0
  145. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/RoiAlign.py +0 -0
  146. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Round.py +0 -0
  147. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/STFT.py +0 -0
  148. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  149. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Scatter.py +0 -0
  150. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ScatterElements.py +0 -0
  151. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ScatterND.py +0 -0
  152. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Selu.py +0 -0
  153. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/SequenceAt.py +0 -0
  154. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/SequenceConstruct.py +0 -0
  155. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/SequenceEmpty.py +0 -0
  156. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/SequenceErase.py +0 -0
  157. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/SequenceInsert.py +0 -0
  158. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/SequenceLength.py +0 -0
  159. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Shape.py +0 -0
  160. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Shrink.py +0 -0
  161. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Sigmoid.py +0 -0
  162. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Sign.py +0 -0
  163. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Sin.py +0 -0
  164. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Sinh.py +0 -0
  165. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Size.py +0 -0
  166. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Slice.py +0 -0
  167. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Softmax.py +0 -0
  168. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Softplus.py +0 -0
  169. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Softsign.py +0 -0
  170. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/SpaceToDepth.py +0 -0
  171. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Split.py +0 -0
  172. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/SplitToSequence.py +0 -0
  173. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Sqrt.py +0 -0
  174. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Squeeze.py +0 -0
  175. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/StringNormalizer.py +0 -0
  176. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Sub.py +0 -0
  177. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Sum.py +0 -0
  178. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Tan.py +0 -0
  179. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Tanh.py +0 -0
  180. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  181. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Tile.py +0 -0
  182. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/TopK.py +0 -0
  183. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Transpose.py +0 -0
  184. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Trilu.py +0 -0
  185. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Unique.py +0 -0
  186. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Unsqueeze.py +0 -0
  187. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Upsample.py +0 -0
  188. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Where.py +0 -0
  189. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/Xor.py +0 -0
  190. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/_Loop.py +0 -0
  191. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/__Loop.py +0 -0
  192. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/ops/__init__.py +0 -0
  193. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/utils/__init__.py +0 -0
  194. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/utils/enums.py +0 -0
  195. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/utils/iterative_json_optimizer.py +0 -0
  196. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/utils/json_auto_generator.py +0 -0
  197. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf/utils/logging.py +0 -0
  198. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf.egg-info/SOURCES.txt +0 -0
  199. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf.egg-info/dependency_links.txt +0 -0
  200. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf.egg-info/entry_points.txt +0 -0
  201. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/onnx2tf.egg-info/top_level.txt +0 -0
  202. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/setup.cfg +0 -0
  203. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/setup.py +0 -0
  204. {onnx2tf-1.28.4 → onnx2tf-1.28.6}/tests/test_model_convert.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx2tf
3
- Version: 1.28.4
3
+ Version: 1.28.6
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
334
334
  docker run --rm -it \
335
335
  -v `pwd`:/workdir \
336
336
  -w /workdir \
337
- ghcr.io/pinto0309/onnx2tf:1.28.4
337
+ ghcr.io/pinto0309/onnx2tf:1.28.6
338
338
 
339
339
  or
340
340
 
@@ -342,12 +342,11 @@ Video speed is adjusted approximately 50 times slower than actual speed.
342
342
  docker run --rm -it \
343
343
  -v `pwd`:/workdir \
344
344
  -w /workdir \
345
- docker.io/pinto0309/onnx2tf:1.28.4
345
+ docker.io/pinto0309/onnx2tf:1.28.6
346
346
 
347
347
  or
348
348
 
349
349
  pip install -U onnx==1.17.0 \
350
- && pip install -U nvidia-pyindex \
351
350
  && pip install -U onnx-graphsurgeon \
352
351
  && pip install -U onnxruntime==1.18.1 \
353
352
  && pip install -U onnxsim==0.4.33 \
@@ -309,7 +309,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
309
309
  docker run --rm -it \
310
310
  -v `pwd`:/workdir \
311
311
  -w /workdir \
312
- ghcr.io/pinto0309/onnx2tf:1.28.4
312
+ ghcr.io/pinto0309/onnx2tf:1.28.6
313
313
 
314
314
  or
315
315
 
@@ -317,12 +317,11 @@ Video speed is adjusted approximately 50 times slower than actual speed.
317
317
  docker run --rm -it \
318
318
  -v `pwd`:/workdir \
319
319
  -w /workdir \
320
- docker.io/pinto0309/onnx2tf:1.28.4
320
+ docker.io/pinto0309/onnx2tf:1.28.6
321
321
 
322
322
  or
323
323
 
324
324
  pip install -U onnx==1.17.0 \
325
- && pip install -U nvidia-pyindex \
326
325
  && pip install -U onnx-graphsurgeon \
327
326
  && pip install -U onnxruntime==1.18.1 \
328
327
  && pip install -U onnxsim==0.4.33 \
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.28.4'
3
+ __version__ = '1.28.6'
@@ -4275,7 +4275,7 @@ def download_test_image_data() -> np.ndarray:
4275
4275
  except requests.exceptions.Timeout:
4276
4276
  # Wasabi Storage
4277
4277
  URL = f'https://s3.us-central-1.wasabisys.com/onnx2tf-en/datas/{FILE_NAME}'
4278
- test_sample_images_npy = requests.get(URL).content
4278
+ test_sample_images_npy = requests.get(URL, timeout=(1.0, 5.0)).content
4279
4279
  else:
4280
4280
  with open(LOCAL_FILE_PATH, 'rb') as test_sample_images_npy_file:
4281
4281
  test_sample_images_npy = test_sample_images_npy_file.read()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx2tf
3
- Version: 1.28.4
3
+ Version: 1.28.6
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
334
334
  docker run --rm -it \
335
335
  -v `pwd`:/workdir \
336
336
  -w /workdir \
337
- ghcr.io/pinto0309/onnx2tf:1.28.4
337
+ ghcr.io/pinto0309/onnx2tf:1.28.6
338
338
 
339
339
  or
340
340
 
@@ -342,12 +342,11 @@ Video speed is adjusted approximately 50 times slower than actual speed.
342
342
  docker run --rm -it \
343
343
  -v `pwd`:/workdir \
344
344
  -w /workdir \
345
- docker.io/pinto0309/onnx2tf:1.28.4
345
+ docker.io/pinto0309/onnx2tf:1.28.6
346
346
 
347
347
  or
348
348
 
349
349
  pip install -U onnx==1.17.0 \
350
- && pip install -U nvidia-pyindex \
351
350
  && pip install -U onnx-graphsurgeon \
352
351
  && pip install -U onnxruntime==1.18.1 \
353
352
  && pip install -U onnxsim==0.4.33 \
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes